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Abstract. Floods are the result of a complex interaction
between meteorological event characteristics and pre-event
catchment conditions. While the large-scale meteorological
conditions have been classified and successfully linked to
floods, this is lacking for the large-scale pre-event catchment
conditions. Therefore, we propose classifying soil moisture
as a key variable of pre-event catchment conditions and
investigating the link between soil moisture patterns and
flood occurrence in the Elbe River basin. Soil moisture is
simulated using a semi-distributed conceptual rainfall-runoff
model over the period 1951–2003. Principal component anal-
ysis (PCA) and cluster analysis are applied successively to
identify days of similar soil moisture patterns. The results
show that PCA considerably reduced the dimensionality of
the soil moisture data. The first principal component (PC)
explains 75.71 % of the soil moisture variability and repre-
sents the large-scale seasonal wetting and drying. The suc-
cessive PCs express spatially heterogeneous catchment pro-
cesses. By clustering the leading PCs, we identify large-scale
soil moisture patterns which frequently occur before the on-
set of floods. In winter, floods are initiated by overall high
soil moisture content, whereas in summer the flood-initiating
soil moisture patterns are diverse and less stable in time.

1 Introduction

Flood generation and magnitude are the result of a complex
interaction between meteorological conditions, such as the
amount and spatial distribution of precipitation or the inflow
of warm air masses, and pre-event hydrological catchment
conditions, such as soil saturation and snow water equivalent
(Merz and Bl̈oschl, 2008, 2009; Brocca et al., 2008; Parajka

et al., 2010; Marchi et al., 2010). In order to capture the vari-
ety of large-scale flood generation mechanisms, flood events
have been classified and analyzed according to their hydro-
meteorological conditions along with their interactions be-
tween catchment state and meteorological conditions (e.g.
Alila and Mtiraoui, 2002; Apipattanavis et al., 2010; Merz
and Bl̈oschl, 2003). These interactions vary from decade to
decade (Alila and Mtiraoui, 2002), seasonally (Sivapalan et
al., 2005; Merz and Blöschl, 2003; Parajka et al., 2010), and
from event to event as well as from catchment to catchment
(Merz and Bl̈oschl, 2003). In addition to the occurrence and
interaction of the hydro-meteorological conditions, their spa-
tial patterns related to flooding need to be taken into account
(Merz and Bl̈oschl, 2003), which can be especially important
in larger catchments (Merz and Blöschl, 2008).

On the regional scale, the automated classification of me-
teorological conditions has already identified a close rela-
tionship between the occurrence and persistence of meteo-
rological circulation pattern types and floods (e.g. Bárdossy
and Filiz, 2005; Jacobeit et al., 2006; Petrow et al., 2009;
Prudhomme and Genevier, 2011; Parajka et al., 2010).

As far as hydrological catchment conditions are con-
cerned, several studies identified soil moisture pattern types
on the local or regional scale applying an automated classifi-
cation (Kim and Barros, 2002; Jawson and Niemann, 2007;
Korres et al., 2010; Ibrahim and Huggins, 2011; Perry and
Niemann, 2007; Wittrock and Ripley, 1999). However, the
analyzed soil moisture data (remotely sensed or ground-
based point measurements) are either limited in their spa-
tial extent covering a small (< 1 km2) study area (e.g. Perry
and Niemann, 2007) and/or in their temporal resolution
(monthly/annual values or a small number of subsequent
days) (e.g. Jawson and Niemann, 2007; Wittrock and Ripley,
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1999). No studies are available that attempt to automatically
classify the patterns of regional hydrological catchment con-
ditions and to link them to flood initiation.

Complementary to the classification of meteorological
conditions, we therefore propose the classification of the hy-
drological catchment conditions at the regional (Elbe) scale
to get a probabilistic insight into the link between flood initia-
tion and the hydrological catchment conditions. As soil mois-
ture is a key variable of hydrological catchment conditions,
we examine whether flood initiation in the Elbe River basin
can be linked to specific soil moisture pattern types.

For the estimation of the hydrological catchment con-
ditions concerning soil moisture, ground-based soil mois-
ture measurements (e.g. time domain reflectometry, fre-
quency domain reflectometry, gravimetric), remotely sensed
soil moisture measurements (Brocca et al., 2009), model-
based soil moisture (Norbiato et al., 2009; Merz and Blöschl,
2003) and surrogate measures such as mean annual precip-
itation (Merz and Bl̈oschl, 2009; Merz et al., 2006), an-
tecedent precipitation index (Merz et al., 2006; Brocca et
al., 2009), Gradex method (Merz and Blöschl, 2008), and
event runoff coefficient (Merz et al., 2006; Sivapalan et al.,
2005; Merz and Bl̈oschl, 2003, 2009) have been applied. In
the present paper, the link between the hydrological catch-
ment conditions and flood initiation in the Elbe Basin is in-
vestigated by using daily profile soil moisture simulated by a
rainfall-runoff model and validated against remotely sensed
soil moisture. It is assumed that the implemented rainfall-
runoff model incorporates the hydrological processes that en-
able the estimation of soil moisture. Afterwards, a principal
component analysis (PCA) and a subsequent clustering of
the leading principal components (PCs) yield different pat-
tern types. PCA is by far the most commonly applied method
among the automated techniques to classify the structure of
spatially variable data, and has also been applied in soil mois-
ture pattern studies (Kim and Barros, 2002; Jawson and Nie-
mann, 2007; Korres et al., 2010; Ibrahim and Huggins, 2011;
Perry and Niemann, 2007; Wittrock and Ripley, 1999). In
parallel, regional flood events are identified and linked to the
derived pattern types.

The remainder of this paper is organized as follows: first,
the study area and input data are described in Sect. 2. The
methods to identify distinct types of daily soil moisture pat-
terns and flood events are provided in Sect. 3. Section 4 de-
scribes the retrieved soil moisture pattern types, their char-
acteristics as well as their relation to flood initiation. These
results are discussed in the subsequent section. Section 6 con-
cludes our findings and suggestions for future research.

2 Study area and data

2.1 Study area

The Elbe/Labe River (Fig. 1) originates in the Giant Moun-
tains 1386 m a.s.l. in the Czech Republic, crosses northeast-
ern Germany and reaches the North Sea after 1094 km. The
Czech Republic and Germany are the main riparian states of
the 148 268 km2 large drainage basin. Negligible parts be-
long to Austria and Poland. About 50 % of the Elbe drainage
basin has an elevation below 200 m a.s.l. One-third is hilly
country with an elevation between 200 and 500 m a.s.l. The
low mountain range (500–750 m a.s.l.) accounts for 15 % and
the mountain range for less than 2 %. Major tributaries are
the Moldau/Vltava contributing an average of 154 m3 s−1 of
river discharge (60 %) at its confluence with the Elbe River,
the Eger/Oȟre (38 m3 s−1), the Mulde (673 s−1), the Saale
(117 m3 s−1), the Schwarze Elster (21 m3 s−1) and the Havel
(114 m3 s−1). The Elbe River basin is situated in a transition
zone between temperate (lower Elbe) and continental climate
(middle and upper Elbe). Especially in the upper Elbe, the
climate is strongly modified by the relief (IKSE, 2005). Mean
annual precipitation in the river basin is 715 mm (1961–
1990). However, there is a large variation within the basin.
In the mountainous areas mean annual precipitation is above
1000 mm, whereas in the middle Elbe mean annual precip-
itation is around 450 mm. In the wintertime, precipitation
falls as snow in the mountainous areas. Depending on snow
depth and elevation, snow melts predominantly in March
although it can persist until May, resulting in a snowmelt-
influenced discharge regime. Mean annual evapotranspira-
tion in the Elbe River basin is 455 mm (IKSE, 2005). In the
highlands, thin cambisols are the main soil type, whereas in
the lowlands, sandy soils and glacial sediments dominate.
In the valleys, loamy soils are found. The western Elbe is
covered by loess (chernozems and luvisols) (Hattermann et
al., 2005). Land use is dominated by cropland (50.8 %), for-
est (evergreen 21.8 %, mixed 5.3 %, deciduous 3.1 %) and
grassland (10.2 %). Settlements account for 6.5 % of the total
basin area (CORINE European Environment Agency, 2000).
Dams have been built in the Elbe headwaters and dikes have
been installed along the river for flood protection purpose.
The Havel region is strongly influenced by past mining activ-
ities. Previously observed flooding was predominantly gener-
ated by snowmelt in combination with rainfall in winter and
spring in the upper Elbe. In summer, large-scale flooding due
to long-lasting rainfall as well as small-scale flooding due to
convective events were observed (IKSE, 2005).

2.2 Data

The data used in this study include climatic data as well as
soil and land use information for driving a hydrologic model.
Discharge observations are utilized for hydrologic model cal-
ibration and validation as well as flood event identification.

Hydrol. Earth Syst. Sci., 17, 1401–1414, 2013 www.hydrol-earth-syst-sci.net/17/1401/2013/
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Fig. 1. Topographic map of the Elbe River basin. Yellow dots: dis-
charge gauges applied in flood identification. Red dots: discharge
gauges applied in flood identification as well as hydrologic model
calibration and validation. Crosses: location of pixel centroids of
the scatterometer data.

Scatterometer soil moisture estimates are used to validate
the simulated soil moisture. The analysis time period is
1 November 1951 to 31 October 2003.

2.2.1 Climatic and hydrologic data

Daily meteorological data (maximum, minimum and mean
air temperature, precipitation amounts, relative humidity,
sunshine and total cloud cover durations) were provided by
the German Weather Service (DWD) and the Czech Hy-
drometeorological Institute (CHMI). In the Czech part of the
basin, the climate station network is less dense. The station
data were corrected for inconsistencies, data gaps and inho-
mogeneities (̈Osterle et al., 2006, 2012).

The soil map was generated by merging the German soil
map “BUEK 1000” provided by the Federal Institute for
Geosciences and Natural Resources (BGR) and the FAO-
UNESCO soil map for the Czech part. The resolution and
quality of the soil maps are different, which may influence
the results of the rainfall-runoff model.

The land use information is taken from the CORINE 2000
land cover data set of the European Environment Agency and
is considered as static during the analysis period.

Discharge data were provided by various German water
authorities and the Global Runoff Data Centre (GRDC). 114

gauging stations (Fig. 1, dots), including a large number of
nested catchments, were used for flood identification. While
the selected gauges are densely and approximately equally
distributed in the German part, six gauges were available in
the Czech part. Catchment size varies between 104 km2 and
131 9502. Half of the gauges covered at least 94 % of the
analysis time period. Hydrological years with more than 60
days of missing data were excluded from the flood identifi-
cation resulting in between 57 (1951) and 114 (1981) gauges
in the analysis. 27 discharge gauges (Fig. 1, red dots) were
used for the calibration and validation of the rainfall-runoff
model.

2.2.2 Scatterometer data

The remotely sensed soil water index (SWI) (Wagner et al.,
1999) was provided by the Vienna University of Technology,
Institute of Photogrammetry and Remote Sensing (http://
www.ipf.tuwien.ac.at/radar/ers-scat/home.htm). Surface soil
moisture is derived from the radar backscattering coeffi-
cient of the scatterometers onboard of the satellites ERS-1
(1991–2000) and ERS-2 (1995–2011). First, the backscat-
tering coefficients are standardized to a reference incidence
angle (40◦) by applying a change detection method. After-
wards, they are rescaled between their minimum and maxi-
mum value to represent the driest and wettest soil moisture
conditions of the topmost soil layer. The soil moisture con-
tent in the first meter of the soil (SWI) is derived by apply-
ing an exponential two-layer water model to the surface soil
moisture estimates (Wagner et al., 1999). The temporal res-
olution of the SWI is 10 days. As soil moisture retrieval is
not possible under snow and frozen soil conditions, the SWI
sample times are restricted from April/May to November.
228 sample times overlap with the hydrological simulation.
The distance between the pixel centroids is approximately
12.5 km (Fig. 1, crosses).

3 Methodology

Profile (layer-depth weighted average) soil moisture content
is simulated with a rainfall-runoff model. For the comparabil-
ity of the profile soil moisture content of different soil types,
the values are standardized by the field capacity of each soil
type. In the following, the standardized profile soil moisture
content is termed soil moisture index (SMI). PCA is used
to map daily spatial SMI onto specific spatial patterns that
express large parts of the spatial variability of the soil mois-
ture series. Cluster analysis groups days of similar soil mois-
ture patterns. In parallel, flood start days are derived from
observed discharge time series and flood prone soil moisture
patterns are identified.

www.hydrol-earth-syst-sci.net/17/1401/2013/ Hydrol. Earth Syst. Sci., 17, 1401–1414, 2013
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3.1 Flood event identification

For the investigation of the link between large-scale soil
moisture patterns and flood initiation, a flood definition
that takes into account the simultaneous or time shifted
flooding at several gauges is required. Several flood iden-
tification methods taking the spatio-temporal coherence of
flooding into account have recently been proposed by e.g.
Rodda (2005), Merz and Blöschl (2003), Keef et al. (2009),
Uhlemann et al. (2010) and Ghizzoni et al. (2012). We identi-
fied large-scale flood events in the Elbe River basin using an
approach proposed by Uhlemann et al. (2010) as the method
is non-restrictive to a certain return period and takes the si-
multaneous or time shifted occurrence of peak discharges
at many sites into account. A flood event is identified if at
least one gauge within the catchment exceeds its 10-yr flood
(POT). In a subsequent step, one searches for further signif-
icant peak discharges in a time frame three days in advance
and ten days after the date of the POT. All peak dates around
the POT are pooled into one flood event. Two flood events
are independent from each other if the last occurrence of a
significant peak of the previous flood and the first significant
peak of the following flood event are separated by at least
four days. Otherwise they are considered as one flood event.
In this way, each flood event is characterized by a flood start
date (first gauge showing significant peak around POT) and
a flood end date (last gauge showing significant peak around
POT). Furthermore, each flood is characterized by a measure
of the overall event severity. The severity measure combines
the overall flood extent and the flood magnitude (for details
see Uhlemann et al., 2010).

To explore the link between flood initiation and the occur-
rence of soil moisture patterns, the soil moisture patterns at
the start dates of the respective flood events are examined.

3.2 Hydrological modeling

3.2.1 Model description

The continuous daily eco-hydrological model SWIM
(Krysanova et al., 1998) is a conceptual, semi-distributed
model based on SWAT (Arnold et al., 1993) and MATSULA
(Krysanova et al., 1989). The model has three levels of spa-
tial disaggregation: the basin (entire considered river basin),
subbasins (subdivision of the basin) and hydrotops. Hydro-
tops are units of unique land use and soil type which are as-
sumed to have a specific hydrological reaction. Climate input
and the groundwater routine act on the subbasin scale. Daily
values of relative humidity, global radiation, precipitation,
mean, maximum and minimum air temperature are interpo-
lated at the subbasin centroids. The snow routine and the soil
water balance are calculated at the hydrotops and river rout-
ing at the basin scale. 1945 subbasins with a median catch-
ment size of 33 km2 (minimum 2 km2, maximum 1034 km2)
were implemented upstream of Wittenberge (Fig. 1).

The snow module is based on the degree-day method.
Snow accumulation and melt depend on threshold air tem-
peratures and a degree-day factor. Surface runoff is calcu-
lated with a modified version of the SCS–curve number
method (Arnold et al., 1993; USDA Soil Conservation Ser-
vice, 1972). In the soil routine, the soil root zone is subdi-
vided into several soil layers in accordance with the soil pro-
file of the specific soil type. To calculate percolation, a stor-
age routing technique is applied on water inflow divided into
slugs of 4 mm. Percolation in each layer depends on the soil
water content which has to exceed field capacity and on the
travel time through the layer governed by the saturated hy-
draulic conductivity. If the subjacent layer is saturated or if
the soil temperature in a layer is below 0◦C no percolation
occurs. Lateral subsurface flow is a function of the remain-
ing drainable water volume and the return flow travel time
which depends on the baseflow factor and on the saturated
conductivity. If the considered soil layer is saturated, water
is assumed to rise to the overlying layer.

Potential evapotranspiration is estimated with the
Priestley–Taylor method (Priestley and Taylor, 1972). Based
on potential evapotranspiration, plant transpiration and soil
evaporation are calculated separately as a function of the
leaf area index according to Ritchie (1972). The actual soil
evaporation is estimated on the upper 0.3 m of the soil zone.
As long as the soil evaporation accumulated since the last
rainfall event is below 6 mm, actual soil evaporation equals
potential soil evaporation. If the soil evaporation exceeds
6 mm, actual evaporation is assumed to decay exponentially.
In the case of a snow cover, the soil evaporation is retained
from the snow water content. For the estimation of the
actual plant transpiration, the potential water use by plants
based on the root development is calculated first. Secondly,
potential water use is adapted to actual water use by the soil
water content and field capacity.

The groundwater module consists of a shallow and a deep
aquifer. The shallow aquifer is recharged by the percolation
from the bottom soil layer with an exponential delay weight-
ing function. The return flow is the groundwater contribution
to the streamflow from the shallow aquifer. The amount of
seepage from the shallow aquifer to the deep aquifer and the
capillary rise from the shallow aquifer back to the soil pro-
file are estimated as linear functions of recharge and actual
evapotranspiration, respectively.

Routing is calculated with the Muskingum method (Maid-
ment, 1993, chap. 10.2.3). Surface runoff and the sum of sub-
surface and groundwater are routed separately.

3.2.2 Model calibration and validation

The Elbe River basin is subdivided into 27 regions, as-
suming homogeneous parameterization within each region
(Fig. 1, red dots). Nine sensitive parameters controlling snow
accumulation and melt, potential evapotranspiration, satu-
rated hydraulic conductivity, recharge as well as discharge

Hydrol. Earth Syst. Sci., 17, 1401–1414, 2013 www.hydrol-earth-syst-sci.net/17/1401/2013/
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Table 1.Model parameters and their calibration range.

Model parameter Description Calibration range

tsnowfall Snowfall temperature [◦C] −1.0 – 2.5
tmelt Snowmelt temperature [◦C] 0.0 – 3.0
snowmeltrate Melting rate [mm d−1] 1.0 – 4.0
thc Correction factor for potential evapotranspiration on sky emissivity [–] 0.1 – 1.2
sccor Correction factor for saturated conductivity [–] 0.1 – 20.0
abf0 α-factor for groundwater [–] 0.0 – 1.0
bff Baseflow factor [–] 0.0 – 2.0
roc2/roc4 Routing coefficient surface/subsurface runoff [–] 0.1 – 15.0

routing (Table 1) are calibrated over the period 1981–1989
and validated over 1951–1980 as well as 1990–2003. Pa-
rameters were estimated for each region progressively from
upstream to downstream by nesting the upstream regions
for which parameters are already estimated in the next step.
A weighted Nash–Sutcliffe efficiency coefficient (Hundecha
and B́ardossy, 2004; Nash and Sutcliffe, 1970) was used as
an objective function:

NS= 1−

∑
w(t)(qc (t) − qo (t))2∑
w(t)(qo (t) − q̄o)2

, (1)

whereqc andqo are simulated and observed discharge, re-
spectively.q̄o is the average observed daily discharge in the
calibration/validation period.w(t) gives weight to certain
parts of the hydrograph. To emphasize high flowsw(t) equals
qo(t). The first 90 days of the simulation period are used as
model initialization and excluded from the efficiency calcu-
lation.

As several parameter combinations can lead to the same
model performance (Beven and Binley, 1992), a Monte Carlo
uncertainty analysis is carried out to identify an ensemble of
parameter sets that lead to behavioral model performances. A
model performance is considered as behavioral, if an a-priori
set threshold of goodness of fit is exceeded.

The Monte Carlo simulation results ini data matricesSMI
(m × n), wherem is the number of observations in time (i.e.
18 993),n is the number of subbasins (i.e. 1945) andi refers
to the number of behavioral parameter combinations (Monte
Carlo parameter sets).

SMI i =

SMI1,1 · · · SMI1,n

...
. . .

...

SMIm,1 · · · SMIm,n

(2)

In a next step, the simulated SMI is validated. The verifica-
tion with soil moisture point measurements (e.g. gravimetric)
is not feasible as these are highly variable over short dis-
tances, whereas satellite-based and hydrological-simulated
soil moisture estimates are spatially integrated values (Para-
jka et al., 2006). For this reason, the temporal SMI progres-
sion is validated against the remotely sensed soil water index

(SWI) by calculating the Pearson correlation coefficient be-
tween SMI and SWI. In accordance with the area share of
overlaying SWI grid points, an area-weighted average SWI
is assigned to each subbasin. For each subbasin between 122
and 197 SWI estimates are available for model validation.

3.3 Principal component analysis

The standardized soil moisture simulations of the behavioral
Monte Carlo runs are arranged consecutively in time reshap-
ing SMI into a matrixSMI∗ of size ((i × m) × n). PCA is
applied to reduce the data dimensionality ofSMI∗. First, the
spatial linear Pearson correlation matrixR (n × n) of SMI∗

is calculated giving equal weight to all subbasins and Monte
Carlo parameter sets. AsR is square and symmetric and
therefore diagonalizable, one can identify the eigenvectorsu

(specific spatial patterns expressing large parts of the spatial
SMI variability) and the eigenvalues diag (λ) of the matrixR:

Ru = λu, (3)

by solving

(R − λI)u = 0, (4)

whereI is the(n×n) identity matrix. The eigenvectorsu are
sorted in decreasing order of their corresponding eigenvalues
λ as the eigenvalueλk is a measure of the explained variance
evk of the corresponding principal component PCk:

evk =
λk∑n
k=1λk

. (5)

Hence, the leading first eigenvector points in the direction of
the highest variance ofSMI∗ and the next eigenvector ex-
plains the subsequent highest variance with the condition be-
ing orthogonal to the already identified eigenvector.

The PCs are obtained by projecting the standardized (zero
mean, unit variance) data matrix ofSMI∗ onto the eigenvec-
tor uk.

PCk = SMI∗

stduk (6)

www.hydrol-earth-syst-sci.net/17/1401/2013/ Hydrol. Earth Syst. Sci., 17, 1401–1414, 2013
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As SMI∗ compromises all behavioral Monte Carlo runs, un-
certainty bounds of each PCk are obtained by decomposing
PCk of size((i × m) × 1) into i time series of lengthm.

The PCs are tested for significance using the rule-N ap-
proach (Overland and Preisendorfer, 1982). The calculated
normalized eigenvalues are compared against the normal-
ized eigenvalues of a random Gaussian matrix. Those lead-
ing normalized eigenvalues that are higher than the 95th per-
centile of the simulated random eigenvalues (1000 Monte
Carlo runs) are treated as significantly different from a ran-
dom field. For further details on PCA see e.g. Hannachi et
al. (2007), Joliffe (1986) or Preisendorfer (1988).

3.4 Cluster analysis

The hierarchical Ward cluster algorithm (Ward Jr., 1963) is
implemented on the leading PCs to identify days of similar
soil moisture patterns. At the beginning, every dayD repre-
sents a single cluster. At each analysis step, the union of all
possible cluster pairs is considered and the cluster pairt that
offers the smallest increase in varianceV is merged.

Vt =

∑
D

∑
k

∣∣PCtDk − P̄Ct ·k

∣∣2 , (7)

where PCtDk denotes the value of thek-th PC at dayD be-
longing to clustert . The algorithm merges the days consecu-
tively until all days are united in a single cluster.

Including all behavioral Monte Carlo runs, the extent of a
single PC is((i×m)×1) i.e. ((38×18 993)×1). Due to lim-
its in the computer capacity, it is not feasible to accomplish a
cluster analysis directly on the leading PCs. Thus, we execute
the cluster analysis in two steps. First, cluster analysis is car-
ried out on the leading PCs of each behavioral Monte Carlo
run separately. To merge the cluster results of the behavioral
Monte Carlo runs, a second cluster analysis is applied on the
cluster centroids (median of respective cluster members) of
the behavioral Monte Carlo runs. It is assumed that the num-
ber of clusters in the first and second cluster step is the same.

Depending on the parameterization of a particular Monte
Carlo run, a single dayD may have different pattern char-
acteristics and is thus assigned to different clusterst . Subse-
quently, each dayD is assigned to the cluster with the highest
probability of occurrence expressed aspD:

pD = max

(
|D ∈ t |

i

)
. (8)

In order to estimate the influence of model parameterization
on the clustert , the medianpD of all days belonging to a
specific clustert is calculated, which defines the probability
of cluster membershippt :

pt = median(pD ∈ t) . (9)

Thus, a small probability of cluster membershippt indicates
a strong influence of the model parameterization on the clus-
ter assignment, while a large probability of cluster member-
shippt indicates a weak influence.

Fig. 2.Number of flood start dates per month and severity classs.

To determine the number of leading PCs in the clustering
as well as the number of clusters (Eq. 7), a sensitivity analy-
sis is conducted varying the number of PCs and the number
of clusters. Based onpt (Eq. 9) the optimum PC-cluster com-
bination is selected.

4 Results

4.1 Identified flood events

From the observed discharge time series, 94 flood events are
identified, out of which 60 % are winter (November–April)
events. Figure 2 displays the flood events separated by the
month of the flood start date and the severity classs. In
February, March, June and December more than ten flood
events are initiated. September and October have by far the
lowest number of flood initiation. In November, no flood
events are initiated. High severities (s > 100) are found in the
winter months December as well as March and in the summer
months June to August. The severe events are not restricted
to the months with the highest number of flood initiation. As
the severity is a combined measure of flood magnitude and
extent (affected river network), one has to take their respec-
tive influence into account. Winter events are characterized
by a large spatial extent of minor magnitudes. In contrast,
summer events are either characterized by a small spatial ex-
tent of very few extreme magnitudes or by a large spatial
extent of miscellaneous magnitudes.

4.2 Hydrological modeling

The application of the Monte Carlo approach resulted in
38 behavioral parameter sets. In the calibration period, all
gauges have a median weighted Nash–Sutcliffe efficiency be-
tween 0.55 and 0.8. The performance difference between the
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Fig. 3. Pearson correlation coefficient (significant level 5 %) be-
tween the median simulated SMI and the remotely sensed SWI.

behavioral Monte Carlo parameter sets is negligible. Their
median weighted Nash–Sutcliffe efficiency ranges between
0.71 and 0.74. In the validation period, the gauges median
weighted Nash–Sutcliffe efficiency ranges between 0.53 and
0.81 (1951–1980) as well as 0.26 and 0.87 (1990–2003).
Gauge Havelberg has by far the lowest efficiency which
can be attributed to various lakes and strong anthropogenic
modifications (mining) not represented in the model. Due to
the chosen model performance measure, the calibration puts
more emphasis on high flows compared to low flows. As a
consequence, runoff volume is in the median overestimated
by 33 % in the calibration period and by 28 % in the valida-
tion period 1951–1980 (40 % in 1990–2003).

For the validation of the SMI, the Pearson correlation coef-
ficient (significant level 5 %) between the median simulated
SMI and the remotely sensed SWI was calculated (Fig. 3).
Except for a few local spots, basin-wide high correlations
are observed. The median correlation is 0.57, the difference
between the 25th and 75th quantile is 0.2. The individual ex-
amination of the Monte Carlo parameterizations leads to the
same findings. Hence, the simulated temporal progression of
the SMI is well represented in the hydrological model.

4.3 Soil moisture pattern classification

4.3.1 Principal component analysis

The leading 43 out of 1945 PCs are significantly different
from a random field explaining 97.66 % of the total variance.
The leading four PCs and their corresponding eigenvectors
are displayed in Fig. 4. The eigenvectors indicate geographic
regions of simultaneous anomalies in the SMI. The minimum

and maximum values of the PCs correspond to the parameter
uncertainty introduced by the rainfall-runoff model.

The first PC explains 75.71 % of the total variance and has
a seasonal behavior. The influence of the parameter uncer-
tainty on the PC is small. The corresponding loadings show
a low spatial variability across the catchment (Fig. 4, top).
The subsequent PCs have a damped and lagged seasonal be-
havior and their loadings are spatially heterogeneous. The
second PC explains 8.60 % of the total variance, seasonality
is still visible. Compared to the first PC, the influence of the
parameter uncertainty on the PC increased, although the gen-
eral behavior is the same. Its corresponding loadings show a
north-south partition. The German part of the river basin has
positive loadings excluding the upstream areas of the Saale
and Mulde, whereas the Czech part of the river basin has neg-
ative loadings. The third PC, explaining 1.87 % of the total
variability, has no apparent periodic behavior. High positive
loadings are found in the Saale region and the mountainous
area of the catchment. The fourth PC shows the highest influ-
ence of parameter uncertainty of the presented PCs. The ex-
plained variance is 1.49 %. The loadings are positive in large
parts of Saale region, slightly positive in the central Czech
part of the catchment and highly negative in the downstream
Havel region.

4.3.2 Cluster analysis

Up to 15 of the leading PCs were chosen as variables in
the cluster analysis to identify days of similar soil moisture
patterns. This implies that between 75.71 % (first PC) and
94.10 % (all leading 15 PCs) of explained variance are in-
volved in the clustering. Applying the variance criteria of
Ward (Eq. 7), the weight assigned to a particular PC depends
on its explained variance, as the individual PCs are not stan-
dardized, i.e. the first PC has the highest weight.

The probability of cluster membershippt (Eq. 9), which
evaluates the influence of model parameterization, was used
to select an optimum PC-cluster combination. Figure 5 (left)
displays the medianpt of different PC-cluster combinations.
A division in two clusters leads in the median to well dis-
tinguishable clusters independent of model parameterization
(medianpt ∼ 1). The medianpt decreases up to a division
in approximately 12 clusters and remains stable for a higher
number of clusters. In general, the medianpt is independent
of the number of PCs in the cluster analysis. An exception is
the clustering of three or less PCs. In this case, the included
variability is insufficient to derive a high number of distin-
guishable clusters as indicated by a low medianpt . In the
following, the number of PCs in the cluster analysis is fixed
to four since the variability (86.67 % of explained variance)
is sufficient to derive a high number of distinguishable clus-
ters.

Henceforward, clustering the leading four PCs, Fig. 5
(right) displays the distribution ofpt for different cluster
numbers. In almost all cases, clusters with a very highpt
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Fig. 4. Eigenvectors (left) and their corresponding PCs (right) of the leading four PCs. PCs are displayed for the sub-period 1982–1991.
Minimum and maximum values correspond to the parameter uncertainty introduced by the rainfall-runoff model.

and thus independent of model parameterization and clusters
with low pt (< 0.5) and thus dependent on model parame-
terization can be found. In a subsequent step, the analysis is
restricted to ten clusters, since the medianpt peaks for ten
clusters (0.74) and decays for more clusters.

The SMI patterns of the cluster centroids, when separating
the leading four PCs into ten clusters, are presented in Fig. 6.
Cluster one, seven and eight show the driest soil moisture

patterns. Between 87.8 % and 97.5 % of the catchment area
has an SMI below 0.6. Clusters two and ten have intermedi-
ate SMI. Around 72 % of the catchment area has an SMI be-
low 0.6. High SMI values are mainly restricted to the moun-
tainous areas. Around 4 % of the catchment area has an SMI
above 0.8. The remaining clusters change consecutively into
highly saturated soil moisture patterns. Initially, a high SMI
is restricted to the mountainous areas and intermediate values
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Fig. 5.Median probability of cluster membershippt of different PC-cluster combinations (left). PC-cluster combinations with a small median
pt are strongly influenced by model parameterization. Distribution ofpt for different numbers of clusters when clustering the leading four
PCs (right).

dominate in the mid- and lowlands (pattern six). The SMI
rises in the upstream part of the basin (pattern five). The
northern part of the basin gets wetter (pattern four) and the
SMI in the upstream part of the basin increases additionally
(pattern three). Here, 28.4 % of the catchment area has an
SMI above 0.8. Finally, cluster nine shows high SMI over the
entire basin. 43.8 % of the catchment area has an SMI above
0.8 and 90.1 % of the catchment area has an SMI above 0.6.

Table 2 displays the statistics of the ten clusters. Each day
is represented 38 times, corresponding to the number of be-
havioral parameter sets. Cluster nine is the biggest cluster,
containing 24.1 % of total days. Clusters two and seven are
the smallest clusters, containing around 5 % of total days.
The probability of cluster membershippt ranges between 1.0
and 0.58. Cluster nine has the highestpt . Clusters two and
six have the lowestpt . Here, in the median 22 out of 38 pa-
rameter sets assign a respective day to the clusters. In order
to indicate the day-to-day variability of the classification, the
median persistence of each pattern type/cluster is calculated.
Cluster nine has the highest persistence. In the median, the
pattern persists for eleven days (average of 43 days). With a
median duration of seven days, clusters three and seven have
the second highest persistence. The other pattern types have a
median duration of either four or five days. The monthly fre-
quencies of the different pattern types are presented in Fig. 7
(top). The frequencies express the relative occurrence of a
particular pattern type in each month. Seasonal differences
between the pattern types are visible. For instance, cluster
three and nine are winter patterns. Cluster seven occurs in

summer. Cluster four predominates in April, whereas cluster
one predominates in June. In winter and in particular at the
beginning of the year, clusters three and nine are the domi-
nant patterns, whereas in summer/autumn the occurring clus-
ters are more various.

4.4 Soil moisture patterns and their relationship to
flood initiation

In the following, the soil moisture pattern types are charac-
terized according to their relationship with flood initiation.
Since the flood start days are considered for all parameter
sets separately, 38 times 94 flood start days are included in
the analysis. Cluster nine comprises the highest percentage
(52.9 %) of flood start days (Table 2). Clusters eight and
ten contain less than 2 % of flood start days each. Cluster
seven contains nearly no flood start days. The frequency of
the flood start days within each cluster expresses how often
the respective pattern type can be related to flood initiation.
Cluster nine has the highest frequency of flood start days.
The frequency of flood initiation is 1.08 %. The frequency
of flood start days in cluster eight is one order of magnitude
lower. In comparison with no clustering, flood start days are
accumulated in cluster nine and the remaining clusters ac-
count for relatively few flood start days.

The relative frequency of flood start days within a respec-
tive month and pattern type are presented in Fig. 7 (bottom).
In summer, the highest relative frequencies of flood start days
can be found and a multiplicity of pattern types are related to
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Table 2.Cluster statistics.

Cluster no
# 1 2 3 4 5 6 7 8 9 10 clustering

Days [%] 7.3 5.3 13.6 9.3 7.9 10.4 5.2 8.0 24.1 8.9 100
pt [–] 0.82 0.58 0.68 0.71 0.68 0.58 0.79 0.82 1.0 0.76 1.0
Median persistence [days] 5 4 7 5 5 4 7 5 11 5 1
Flood start days [%] 4.8 4.8 11.0 8.2 6.7 8.2 0.2 1.9 52.9 1.3 100

(172) (172) (393) (292) (241) (293) (7) (69) (1888) (45) (38× 94)
Frequency of flood start days [%] 0.33 0.45 0.40 0.44 0.43 0.39 0.02 0.12 1.08 0.07 0.49
Median flood severity [–] 1.9 4.6 37.1 27.5 20.8 7.4 1.0 21.7 46.1 4.6 25.68

flood initiation. In winter, cluster three and in particular clus-
ter nine, both characterized by high soil moisture across the
entire basin, are related to flooding. Here, the relative fre-
quency of flood start days is approximately constant from
January until April/May. Although the two clusters have ap-
proximately the same seasonal distribution (Fig. 7, top), clus-
ter nine is primarily relevant for flood initiation in winter,
whereas cluster three is of primary importance in summer-
time flood initiation. In June, cluster three has the highest
relative frequency of flood start days of all clusters. This sea-
sonality shift between pattern frequency in general (Fig. 7,
top) and pattern flood initiation (Fig. 7, bottom) also occurs
in the case of clusters four and two.

Beside the pattern type frequency and relationship to flood
initiation, the pattern type persistence three days in advance
and after the flood start date was investigated (not shown). On
the one hand, the patterns after the flood start date are more
persistent than in the days ahead of the flood start date. On
the other hand, there is a clear difference in the pattern per-
sistence between summer and winter events. In wintertime,
the soil moisture pattern types are persistent both in advance
and after the flood start date. Occasionally, the patterns shift
from cluster three into cluster nine and vice versa in the days
ahead of the flood start date. In summer, either pattern type
three is persistent in advance of the flood start date or a con-
tinuous wetting (transformation from pattern six, five or four)
occurred. The summer patterns of low SMI are either persis-
tent or transform into wetter patterns after the flood start date.

Finally, the relationship between the soil moisture patterns
types and flood severity is analyzed (Table 2). For high SMI
(patterns three, four and nine) the median flood severity in-
creases with the degree of saturation. For dry soil moisture
conditions this is not the case. Cluster eight has a median
flood severity of 21.7, whereas the wetter pattern six has a
median flood severity of 7.4.

5 Discussion

5.1 Soil moisture pattern classification

Large-scale soil moisture dynamics were simulated with a
hydrologic model. As the model was calibrated on discharge,
an integrated measure of catchment processes, the spatially
distributed processes within the gauged catchment may not
be well represented and small-scale patterns may be a cali-
bration artifact. In the present study, especially the temporal
SMI progression was of relevance since the PCA was based
on the spatial correlation matrix (Eq. 3). The validation of
the simulated SMI with the remotely sensed SWI proved the
basin-wide reliability of the temporal SMI progression. As
there is no obvious difference in the correlations between the
Czech and the German part of the basin, an impact of the dif-
ferent soil maps and climate station densities on the tempo-
ral progression of simulated soil moisture can be excluded.
Applying a different hydrologic model in Austria, Parajka
et al. (2006) obtained considerably lower correlation coef-
ficients of root zone soil moisture (median of 0.07 (1991–
1995) and 0.12 (1996–2000)). As soil and land use proper-
ties are included in the model, there is a physical meaning
behind the soil moisture patterns. For this reason, we did not
interpolate the SMI on a regular grid as done by other stud-
ies (e.g. Perry and Niemann, 2007; Kim and Barros, 2002).
Rather, we conducted the PCA at the subbasin scale with the
drainage divides as natural boundaries.

The large amount of total variability explained by the first
PC indicates that there is one dominant mode controlling the
temporal soil moisture variability. This temporal mode has a
seasonal behavior with maximum values in winter and spring
and minimum values in summer (Fig. 4, top right). These
seasonal soil moisture changes are mainly attributable to sea-
sonal changes in evapotranspiration, leading to soil moisture
depletion in summer and rise in winter and spring (Parajka
et al., 2010). Additionally, snowmelt may have an impact.
All subbasins respond in the same direction in terms of sea-
sonality, indicating considerable similarity in the processes
controlling soil moisture variability (Fig. 4, top left). Hetero-
geneous hydrological processes and catchment properties are
overruled by seasonality. Perry and Niemann (2007) reported
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Fig. 6.Soil moisture index (SMI) patterns of cluster centroids.

similar findings for the leading PC. Limiting the analysis
to a smaller area receiving evenly distributed precipitation
would possibly identify PCs attributable to single precipita-
tion events. As the loadings are not only positive across the
catchment but also approximately of the same magnitude,
the first PC is a measure of the catchment average SMI. In

Fig. 7.Frequency of occurrence per month of different soil moisture
pattern types [%] (top). Relative frequency of flood start days per
month and respective soil moisture pattern type [‰] (bottom).

contrast, the subsequent PCs are a measure of the disparity,
describing local variations departing from the regional value.
Their damped and lagged temporal progression might be at-
tributable to the antecedent soil moisture conditions, i.e. the
previous spatial distribution of precipitation.

The PCA showed that the retrieved soil moisture patterns
have a stronger signal than the parameter uncertainty intro-
duced by the rainfall-runoff model (Fig. 4, right). The first
PC has the smallest relative difference between the members
of the parameter ensemble and is least influenced by model
parameterization. The relative differences between the en-
semble members are higher for the subsequent PCs reveal-
ing a greater impact of model parameterization on spatially
heterogeneous hydrological processes, as e.g. infiltration and
soil storage, than on the seasonal progression of soil mois-
ture.

The cluster analysis identified days of similar soil moisture
patterns. Each soil moisture pattern type can be attributed to
a pattern frequency, a pattern persistence and seasonal char-
acteristics (Table 2, Fig. 7) in the same manner as in weather
type classifications (e.g. Philipp et al., 2010). The probability
of cluster membershippt yielded an objective choice of the
number of PCs as well as clusters with respect to the parame-
ter uncertainty of the rainfall-runoff model. Pattern nine char-
acterized by high soil moisture content over the entire catch-
ment is least dependent on model parameterization (highest
pt ) and most persistent. Independent of model parameteriza-
tion, any additional rainfall will be transformed into runoff
without leading to alteration of the pattern type. Dry SMI
patterns have a highpt too. Likewise, the absence of rainfall
does not lead to an alteration of the pattern type. Intermediate
SMI patterns show the lowestpt and are comparatively less
persistent, as these patterns are a transitional stage to either
wetter or dryer soil moisture conditions.
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5.2 Soil moisture patterns and their relationship to
flood initiation

In flood frequency analysis and design value estimation,
flood events are defined for one particular gauge. An extreme
value distribution is fitted to annual maxima series or a peak-
over-threshold series of observed discharge. In the present
study, the flood identification differed from this commonly
applied approach. Instead, a flood identification method that
takes into account the large-scale response has been adopted
(Uhlemann et al., 2010). This is a more suitable approach
in terms of the linkage between floods and large-scale soil
moisture pattern types. Among the 94 detected flood events,
the most severe events are well documented in terms of
hydro-meteorological conditions, e.g. the flood events of Au-
gust 2002 (Engel, 2004; Ulbrich et al., 2003a, b), July 1954
(Hauptamt f̈ur Hydrologie, 1954; Boer et al., 1959), or De-
cember 1974/January 1975 (Schirpke et al., 1978). Neverthe-
less, the flood event set may be incomplete due to ungauged
small catchments receiving convective rainfall, as well as the
requirement of an observed 10-yr flood. Furthermore, the
flood event set may be biased towards flooding in the German
part of the Elbe catchment, as only six gauges were available
in the Czech Republic.

Previously, Uhlemann et al. (2010) highlighted the occur-
rence of summer flooding in the Elbe Basin. However, when
analyzing trans-basin German floods, they found that the se-
vere events were limited to the winter period. Our study,
which is limited to flood identification in the Elbe, results in
events of high severity (s > 100) both in winter and summer.
Analyzing annual maximum flood series in Austria, Merz
and Bl̈oschl (2009) did not detect a dependence between the
flood moments and seasonality. Instead, mean annual flood
flows were positively correlated with average antecedent
rainfall as a surrogate for the catchment soil moisture state
(Merz and Bl̈oschl, 2009). Comparing the soil moisture pat-
tern types and their respective median flood severity (Ta-
ble 2), the results are heterogeneous and reflect different
flood-generating processes. On the one hand, the median
flood severity increased for patterns of high SMI. In this
case, the catchment storage capacity is exceeded, e.g. due
to long-term low-intensity rainfall, and any additional rain-
fall results in a runoff increase. In addition, if most parts of
the catchment are saturated, a larger number of gauges may
be flood affected in case of synoptic rainfall, as shown on
the pan-European scale by Prudhomme and Genevier (2011).
In their regional flood typology, Merz and Blöschl (2003)
termed this type long-rain flood. On the other hand, the rel-
atively dry soil moisture pattern eight shows high median
severity too. This is attributable to high-intensity rainfall on
relatively dry catchment conditions, which may lead to flash
floods (Merz and Bl̈oschl, 2003). The flood-generating pro-
cesses are revealed in the seasonality of the soil moisture
pattern types. In winter, flooding is related to high soil mois-
ture content in the entire basin (cluster nine). The respective

soil moisture pattern is persistent before and after the flood
start date, indicating flooding either due to long-term low-
intensity rainfall (long-rain flood) or saturated soils due to
snowmelt (snowmelt flood). In summer, the flood-initiating
soil moisture patterns are more variable and less persistent.
On the one hand, large-scale flooding is observed. Long last-
ing rainfall leads to high soil moisture content over large
parts of the basin (cluster three). On the other hand, con-
vective events (flash floods) characterized by relatively dry
catchment conditions (cluster eight) occur (IKSE, 2005).

In addition to soil moisture, other patterns, in particu-
lar precipitation, are relevant for flood initiation (Merz and
Blöschl, 2008, 2009; Brocca et al., 2008; Parajka et al., 2010;
Marchi et al., 2010). This is indicated by the seasonal cluster
distribution and the deviating seasonality of the flood start
days inside the cluster (Fig. 7, e.g. cluster three). Further-
more, extending the pattern classification approach to e.g.
precipitation patterns, the role of saturated soils limited to
parts of the catchment when receiving rainfall may be pro-
nounced.

6 Conclusions

Flood generation and magnitude are the result of a com-
plex interaction between the meteorological situation and
pre-event hydrological catchment conditions. The impact of
catchment conditions on floods and flood severity is expected
to depend on various factors, such as season or flood type
(e.g. snowmelt flood, long-rain flood, flash flood) and is es-
pecially difficult to decipher in large river catchments with
catchment-internal variation in flood generation. To date, no
studies are available that attempt to understand the space-
time behavior of large-scale hydrological catchment condi-
tions and link them to flood initiation. As a step in this di-
rection, we propose classifying the hydrological catchment
conditions and link flood occurrence to large-scale catch-
ment state patterns. This approach is complementary to the
widespread classification of circulation patterns in meteorol-
ogy. As soil moisture is a key variable of hydrological catch-
ment conditions, model-simulated soil moisture was used to
answer two questions: what is the dominant space-time be-
havior of soil moisture at the regional catchment scale? Are
there soil moisture patterns that are related to large-scale
flood initiation? By applying PCA, the dimensionality of
the soil moisture data was reduced to four PCs represent-
ing 86.67 % of the total soil moisture variability. The sea-
sonally wetting and drying of the catchment represented by
the first PC is the dominant mode, whereas the successive
PCs describe spatially heterogeneous catchment processes.
Cluster analysis assessed the similarity in daily soil moisture
distribution within the catchment, and assigned each day of
the investigation period to one of ten soil moisture pattern
types. In parallel, 94 start days of large-scale flood events
were identified and enabled a probabilistic linkage between
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flood occurrence and large-scale soil moisture patterns. The
following conclusions can be drawn:

1. Different soil moisture patterns are not equally associ-
ated with flood occurrence.

2. Patterns with catchment-wide high soil moisture accu-
mulate the majority of flood start days.

3. Flood-initiating soil moisture patterns vary seasonally.

4. Seasonality of soil moisture pattern frequency and sea-
sonality of soil moisture pattern flood initiation are not
identical.

5. Occurrence of a certain soil moisture pattern does not
necessarily lead to flood initiation, but the probability
of occurrence of a large-scale flood may be increased.

While these results underline the importance of catchment
state for flood initiation and severity, (4) and (5) indicate that,
beside soil moisture, other patterns are relevant for flood ini-
tiation. Therefore, future work will extend the pattern classi-
fication approach not only to circulation patterns but also to
snow. A combination of hydro-meteorological pattern types
would enable to quantify the interaction of patterns of hydro-
logical catchment conditions and meteorological conditions
on flood initiation and magnitude.
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