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Par al deriva ves of thermodynamic state proper es for
dynamic simula on

Matthis Thorade* Ali Saadat

The thermodynamic behaviour of fluids can be accu-
rately described by equations of state (EoS) in terms of the
Helmholtz energy, with temperature and density as inde-
pendent variables. The known properties in dynamic sim-
ulations of power or refrigeration cycles are usually differ-
ent from temperature and density. Partial derivatives of
state properties with respect to the known properties of
the simulation have to be transformed into partial deriva-
tives with respect to the independent variables of the EoS.
This transformation is demonstrated step by step for the
single-phase region, along the saturation line and within
the two-phase region.

1 Introduc on

For the simulation and design of thermodynamic systems
like power or refrigeration cycles, accurate properties of
the working fluid are indispensable. For a wide variety of
working fluids, accurate equations of state (EoS) are avail-
able that have been set up in terms of Helmholtz energy.
From such EoS all thermodynamic state properties, like
pressure or specific entropy , as well as all partial deriva-
tives of thermodynamic state properties, can be calculated
by means of partial differentiation.
The independent variables of the Helmholtz energy EoS

are temperature and density ( , ), but the thermodynamic
state can also be defined by specifying any other combi-
nation of two independent state properties. In fluid cycle
simulations, the known variables are usually pressure and
specific enthalpy ( , ), pressure and temperature ( , ) or
pressure and specific entropy ( , ) (see, e. g., Wagner et al.,
2000, Table 1).
In dynamic simulations, the equations for energy, mass
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and momentum balance of a control volume are written in
terms of derivatives with respect to time . The mass bal-
ance, for example, contains the derivative of density with
respect to time. If the properties pressure and specific en-
thalpy (and their development over time) are known, the
derivative of density can be rewritten as

using the chain rule. To do so, the partial derivatives
with respect to the known variables of the simulation are
needed, in this case the partial derivatives of density with
respect to pressure and enthalpy. The time derivatives
of other properties, like specific internal energy , can
be rewritten in the same way. For a more detailed dis-
cussion of control volume balance equations in the con-
text of object-oriented dynamic simulation of thermody-
namic systems see, e. g., Bauer, 1999, Tummescheit, 2002
or Richter, 2008.
Other partial derivatives are also frequently used in

engineering applications, e. g., volume expansivity or
isothermal compressibility . Also, partial derivatives may
be used in iterative procedures like the Newton-Raphson
root finding algorithm. Typical examples of such iterative
procedures include vapour-liquid equilibrium calculations
or flash calculations, like -flash. Higher order partial
derivatives may be used for stability analysis and for ex-
trapolation or Taylor series.
The following text demonstrates, for pure fluids, how

arbitrary partial derivatives can be transformed into par-
tial derivatives with respect to the independent variables
of the EoS in the single-phase region, along the saturation
boundary, and within the two-phase region.

2 Helmholtz energy equa on of state

According to Gibbs, 1873, all thermodynamic properties of
a fluid phase can be calculated from a single fundamental
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Table 1: Thermodynamic state properties

Property Formulation

Pressure =

Specific entropy = ( ) ( )

Specific internal energy = ( )

Specific enthalpy = ( ) ( )

Specific Gibbs-energy = ( ) ( )

= , = , =

equation of state. Such an equation can be constructed
with different pairs of independent properties and their
proper characteristic functions (see, e. g., Baehr, 1998, in
German). Out of the possible functions, only two are usu-
ally used in practical applications: Gibbs energy as a func-
tion of pressure and temperature or Helmholtz energy
as a function of temperature and specific volume or
density . Even though predictive equations of state based
on theoretical considerations have been developed, em-
pirical multiparameter equations of state will today still
yield better accuracy for fluids where comprehensive ex-
perimental data are available. The following part of this
section refers to a certain type of empirical multiparame-
ter EoS in terms of theHelmholtz energy as described, e. g.,
in the overview article by Span et al., 2001.
In this work, the independent properties of the EoS,

temperature and density , are made dimensionless us-
ing their critical values. The Helmholtz energy is made
dimensionless by dividing it by the specific gas constant
and the temperature . The dimensionless Helmholtz en-
ergy is split up into an ideal gas contribution and a
residual contribution .

, ,

The functional form for ( , ) and the functional
form for ( , ) are then developed independently.
Details on the functional form, the bank of terms and the
fitting of the parameters to experimental data are given by,
e. g., Span, 2000, Wagner and Pruß, 2002 section 5.4, or
Lemmon and Jacobsen, 2005.
Once the functional form and values for the parameters

are known, all state properties can be calculated as simple
combinations of the partial derivatives of the Helmholtz
energy. Formulations are given in the literature (see, e. g.,
Baehr and Tillner-Roth, 1995; Lemmon et al., 2000; Span,
2000); an extract is shown in Table 1.
The partial derivatives of the state properties with re-

Table 2: Partial derivatives w. r. t. density and temperature

Property Formulation

( )

( )

( )

( )

( ) ( ) ( )

= , = , = , =

spect to temperature and density in the single-phase re-
gion can also be calculated directly, because temperature
and density (or their dimensionless counterparts) are the
independent variables of the Helmholtz energy equation
of state. Formulations for the calculation of the partial
derivatives with respect to temperature and density are
given in Tables 2 and 3.

3 Par al deriva ves in the single-phase
region

Partial derivatives with respect to variables other than the
independent variables of the equation of state cannot be
calculated directly. This is the case for some commonly
used derived properties, examples for such derived prop-
erties are given in Table 4. These derived properties have
to be transformed into partial derivatives with respect to
different, more favourable properties. This transformation
can be carried out using various methods.
One method is the use of tables by Bridgman, 1914.



Partial derivatives in the single-phase region 3

Table 3: Second order partial derivatives

Property Formulation

( ) ( )

( ) ( )

( ) ( )

( )

= , = , = , = , =

These tables contain formulations that allow the expres-
sion of any first order partial derivative as a combination
of , and . These properties were chosen because they
are accessible for experimental measurement, but differ-
ent base sets of three first order partial derivatives are
also possible. When all properties are calculated from
an EoS, a convenient base set would consist of derivatives
with respect to the independent variables of the EoS, e. g.,
( / ) , ( / ) and ( / ) in case of theHelmholtz en-

Table 4: Derived properties for engineering applications

Property Definition

Isochoric heat capacity =

Isothermal compressibility =

Isothermal throttling coeff. =

Volume expansivity =

Isobaric heat capacity =

Speed of sound =

Joule-Thomson coefficient =

ergy EoS. Second order partial derivatives can be reduced
to a base set of four second order partial derivatives.
Another method for partial derivative transformation is

to express the partial derivative as a Jacobian matrix (also
referred to as functional determinant) and manipulate it
using the rules for Jacobian matrix transformations as de-
scribed in the literature (see, e. g., Shaw, 1935; Crawford,
1949a; Hakala, 1964; Carroll, 1965; Somerton and Arnas,
1985). These rules are not repeated here in detail, only the
resulting mathematical relations are given that are useful
for the transformation of partial derivatives:

(Reciprocity)

(Chain rule)

(Triple product rule).

Combinations are also possible:

and finally

.
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Table 5: Transformation of partial derivatives

Definition Transformation

The last relation will reduce into the relations given before
if , and/or agreeswith and/or . It is also used by, e. g.,
Wagner and Kretzschmar, 2008. To derive it, the partial
derivative is first written as Jacobian and then expanded
(see, e. g., Crawford, 1949a; Carroll, 1965; Bauer, 1999).
As specific volume is the inverse of density , partial

derivatives involving specific volume can be transformed
using the relations

, .

Using these relations, any partial derivative with respect
to arbitrary properties can be expressed as a combination
of partial derivatives with respect to the independent vari-
ables of the equation of state, i. e., temperature and den-
sity in the case of the Helmholtz energy EoS. For the men-
tioned derived properties and some partial derivatives for
dynamic simulation, results of these transformations are
summarized in Table 5.
Second order partial derivatives can be calculated in a

two-step procedure; as an example the derivative ( / )
is given: In the first step the derivative is transformed using

Table 6: Transformation of second order partial derivatives

Definition Transformation

the same relations as before, the result is given in the last
line of Table 6. In the transformed expression, derivatives
of with respect to the independent variables of the EoS
appear, which can be derived in the second step using the
product rule and quotient rule.

4 Deriva ves along the satura on line

The stable multi-phase equilibrium system is a mixture of
two or more phases. The properties of such a system can-
not be calculated directly from the equation of state, be-
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cause the equilibrium conditions have to be taken into ac-
count. The conditions for equilibrium between the satu-
rated liquid phase ( ) and the saturated vapour phase ( )
are:

thermal equilibrium:
mechanical equilibrium:
diffusional equilibrium:

where the fugacity is considered once for each sub-
stance that is involved in the phase equilibrium (see, e. g.,
O’Connell andHaile, 2005, section 7.3). By specifying tem-
perature or pressure the equilibrium is determined and
the corresponding properties of the saturated phases can
be found by simultaneously solving the equilibrium condi-
tions. Iterative procedures for the simultaneous solution
are given in the literature, e. g., Span, 2000, Iglesias-Silva
et al., 2003, or Akasaka, 2008. Analogous conditions exist
for other equilibria, e. g., between multiple liquid or solid
phases. The following text refers to the vapour-liquid equi-
librium of pure substances only.
Once the equilibrium has been determined, the proper-

ties of the two phases, each at the saturation state, can be
calculated using the single-phase formulations with tem-
perature and the saturated densities and . The de-
rived properties change discontinously upon entering the
two-phase region. Therefore, values for the derived prop-
erties at saturation that have been calculated using the
single-phase formulations are limiting values coming from
the single-phase region.
Saturation pressure and saturation temperature

are coupled. The derivatives of pressure and tempera-
ture along the saturation line are given by the Clausius-
Clapeyron equation:

.

Using the same rules for transformation as before, further
derivatives along the saturation line can be calculated as
combinations of the partial derivatives at saturation and
the derivatives of saturation pressure and temperature,
e. g.:

.

To get the values along the saturated liquid line the partial
derivatives must be calculated using the saturated liquid
density while for derivatives along the saturated vapour
line the saturated vapour density is used.
The derivatives along the saturation line are needed to

calculate derivatives in the two-phase region and they can
be helpful in iterative procedures. Another usage example
is the saturated liquid heat capacity which is defined as

.

5 Par al deriva ves in the two-phase
region

In the stable two-phase region both saturated phases are
present simultaneously. The properties of each phase can
be calculated using the single-phase formulations. The
two-phasemixture can then be described using the vapour
mass fraction

mass of vapour
mass of liquid + mass of vapour

which becomes for states on the saturated vapour line
and for states on the saturated liquid line. Using

and / the vapour mass fraction can be rewritten
as

/ /
/ / .

Solving for yields

( ) ( ) .

In the same way specific entropy , enthalpy , internal en-
ergy and Gibbs energy of the system can be calculated.
Properties within the two-phase system will only be ho-
mogeneous if the two phases are mixed homogeneously. If
the two phases are partly or completely separated the mix-
ture is heterogeneous and the properties are also heteroge-
neous within the system. The properties calculated from
the vapour mass fraction then only represent the system
average and it depends on the application whether this av-
erage value or the properties of the two separate saturated
phases should be used.
The derived properties listed in Table 4 should be used

with care in the two-phase region. Some might show un-
expected physical behaviour in the two-phase region, e. g.
sound speed; others, e. g. isobaric heat capacity, are not
defined mathematically due to the coupling of pressure
and temperature:

, ,
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with representing an arbitrary property.
Derivatives at constant pressure or constant tempera-

ture can be calculated from the properties at saturation:

.

Derivatives with respect to pressure or temperature can
be calculated by using the two-phase definition of the
properties and deriving according to the product rule:

( )

( )

where

( )

( )

( )

( )

follows from the definition of the vapourmass fraction and
the quotient rule. Using the alternative definition of iso-
choric heat capacity gives

( ) ,

highlighting the relation between the saturated liquid heat
capacity and the isochoric heat capacity in the two-phase
region.
The same procedure can of course be applied to further

derivatives, e. g., the derivative of density with respect to
pressure at constant specific enthalpy. First, rewrite as
derivative of specific volume

then derive, as before, using the product rule

( )

where

and thus, using the quotient rule

( )

( )

( )

( ) .

6 Summary

It has been shown, for pure fluids, how arbitrary deriva-
tives of thermodynamic state properties can be calculated
from a fundamental equation of state in a systematic way
in the single-phase region, along the saturation line and
within the two-phase region. For testing and validation,
all derivatives mentioned in this article have been imple-
mented in a fluid properties computer library (Thorade
and Saadat, 2012).

Acknowledgements

The authors would like to thank Eric W. Lemmon for an-
swering an abundance of questions and for providing a
modified version of RefProp (Lemmon, Huber, andMcLin-
den, 2010) capable of outputting additional intermediate
results. The comments by Ian H. Bell and an anonymous
reviewer are also much appreciated.
This work was funded by the Federal Ministry of Educa-

tion and Research of Germany (GeoEn II, Grant 03G0767A)
and the FederalMinistry for the Environment, Nature Con-
servation and Nuclear Safety (Qualification of geothermal
technology - integration of subsurface and surface systems,
Grant 0325217).

References

Akasaka, R. (2008). “A reliable and useful method to deter-
mine the saturation state from Helmholtz energy equa-
tions of state”. In: Journal of Thermal Science and Tech-
nology 3.3, pp. 442–451. : 10.1299/jtst.3.442.

Baehr, H. D. (1998). “Thermodynamische Fundamen-
talgleichungen und charakteristische Funktionen”. In:
Forschung im Ingenieurwesen 64.1, pp. 35–43. : 10.
1007/PL00010764.

Baehr, H. D. and R. Tillner-Roth (1995). Thermodynamic
properties of environmentally acceptable refrigerants.
Springer. : 978-3-540-58693-8. : 10.1007/978-
3-642-79400-1.

http://dx.doi.org/10.1299/jtst.3.442
http://dx.doi.org/10.1007/PL00010764
http://dx.doi.org/10.1007/PL00010764
http://dx.doi.org/10.1007/978-3-642-79400-1
http://dx.doi.org/10.1007/978-3-642-79400-1


Further Reading 7

Bauer, O. (1999). “Modelling of two-phase flows with Mod-
elica”. Master’s Thesis. Department of Automatic Con-
trol, Lund University, Sweden.

Bridgman, P. W. (1914). “A complete collection of thermo-
dynamic formulas”. In: Physical Review 3.4, pp. 273–281.

: 10.1103/PhysRev.3.273.
Carroll, B. (1965). “On the use of Jacobians in thermody-
namics”. In: Journal of Chemical Education 42.4, pp. 218–
221. : 10.1021/ed042p218.

Crawford, F. H. (1949a). “Jacobian methods in thermody-
namics”. In: American Journal of Physics 17.1, pp. 1–5. :
10.1119/1.1989489.

Gibbs, J. W. (1873). “A method of geometrical representa-
tion of the thermodynamic properties of substances by
means of surfaces”. In: vol. 2. Transactions of the Con-
necticut Academy of Arts and Sciences, pp. 382–404.

Hakala, R. W. (1964). “A method for relating thermody-
namic first derivatives”. In: Journal of Chemical Educa-
tion 41.2, pp. 99–101. : 10.1021/ed041p99.

Iglesias-Silva, G. A., A. Bonilla-Petriciolet, P. T. Eubank,
J. C. Holste, and K. R. Hall (2003). “An algebraic method
that includes Gibbs minimization for performing phase
equilibrium calculations for any number of components
or phases”. In: Fluid Phase Equilibria 210.2, pp. 229–245.

: 10.1016/S0378-3812(03)00171-7.
Lemmon, E. W., M. L. Huber, and M. O. McLinden (2010).
NIST Standard Reference Database 23: Reference Fluid
Thermodynamic and Transport Properties - REFPROP.
9.0. National Institute of Standards and Technology,
Standard Reference Data Program. Gaithersburg.

Lemmon, E. W. and R. T. Jacobsen (2005). “A new func-
tional form and new fitting techniques for equations of
state with application to pentafluoroethane (HFC-125)”.
In: Journal of Physical and Chemical Reference Data 34.1,
pp. 69–108. : 10.1063/1.1797813.

Lemmon, E. W., R. T. Jacobsen, S. G. Penoncello, and
D. G. Friend (2000). “Thermodynamic properties of air
and mixtures of nitrogen, argon, and oxygen from 60 to
2000 K at pressures to 2000 MPa”. In: Journal of Physi-
cal and Chemical Reference Data 29.3, pp. 331–385. :
10.1063/1.1285884.

O’Connell, J. and J. Haile (2005). Thermodynamics:
Fundamentals for applications. Cambridge Univer-
sity Press. : 978-0-521-58206-3. : 10 . 1017 /
CBO9780511840234.

Richter, C. (2008). “Proposal of new object-oriented
equation-based model libraries for thermodynamic sys-
tems”. Dissertation. TU Braunschweig.

Shaw, A. N. (1935). “The derivation of thermodynamical
relations for a simple system”. In: Philosophical Trans-
actions of the Royal Society of London. Series A, Mathe-

matical and Physical Sciences 234.740, pp. 299–328. :
10.1098/rsta.1935.0009.

Somerton, C. W. and A. Ö. Arnas (1985). “On the use of
Jacobians to reduce thermodynamic derivatives”. In: In-
ternational Journal of Mechanical Engineering Education
13.1, pp. 9–18.

Span, R. (2000). Multiparameter equations of state: An ac-
curate source of thermodynamic property data. Springer
Verlag. : 9783540673118.

Span, R., W. Wagner, E. W. Lemmon, and R. T. Jacob-
sen (2001). “Multiparameter equations of state—Recent
trends and future challenges”. In: Fluid Phase Equilibria
183-184.1-2, pp. 1–20. : 10 . 1016 / S0378 - 3812(01 )
00416-2.

Thorade, M. and A. Saadat (2012). “HelmholtzMedia —
A fluid properties library”. In: Proceedings of the 9th
International Modelica Conference. : 10 . 3384 /
ecp1207663.

Tummescheit, H. (2002). “Design and implementation of
object-oriented model libraries using Modelica”. Disser-
tation. Lund University.

Wagner, W., J. R. Cooper, A. Dittmann, J. Kijima, H.-J.
Kretzschmar, A. Kruse, R. Mareš, K. Oguchi, H. Sato, I.
Stöcker, O. Šifner, Y. Takaishi, I. Tanishita, J. Trüben-
bach, and T. Willkommen (2000). “The IAPWS indus-
trial formulation 1997 for the thermodynamic properties
of water and steam”. In: Journal of Engineering for Gas
Turbines and Power 122.1, pp. 150–184. : 10.1115/1.
483186.

Wagner, W. and H.-J. Kretzschmar (2008). International
steam tables: Properties of water and steam based on
the industrial formulation IAPWS-IF97. Springer-Verlag
Berlin Heidelberg. : 9783540742340. : 10.1007/
978-3-540-74234-0.

Wagner, W. and A. Pruß (2002). “The IAPWS formulation
1995 for the thermodynamic properties of ordinary wa-
ter substance for general and scientific use”. In: Journal of
Physical and Chemical Reference Data 31.2, pp. 387–535.

: 10.1063/1.1461829.

Further Reading

Arnas, A. Ö. (2000). “On the physical interpretation of the
mathematics of thermodynamics”. In: International Jour-
nal of Thermal Sciences 39.5, pp. 551–555. : 10.1016/
S1290-0729(00)00249-0.

Carroll, B. and A. Lehrman (1947). “Relations between the
derivatives of the thermodynamic functions.” In: Journal
of Chemical Education 24.8, pp. 389–392. : 10.1021/
ed024p389.

http://dx.doi.org/10.1103/PhysRev.3.273
http://dx.doi.org/10.1021/ed042p218
http://dx.doi.org/10.1119/1.1989489
http://dx.doi.org/10.1021/ed041p99
http://dx.doi.org/10.1016/S0378-3812(03)00171-7
http://dx.doi.org/10.1063/1.1797813
http://dx.doi.org/10.1063/1.1285884
http://dx.doi.org/10.1017/CBO9780511840234
http://dx.doi.org/10.1017/CBO9780511840234
http://dx.doi.org/10.1098/rsta.1935.0009
http://dx.doi.org/10.1016/S0378-3812(01)00416-2
http://dx.doi.org/10.1016/S0378-3812(01)00416-2
http://dx.doi.org/10.3384/ecp1207663
http://dx.doi.org/10.3384/ecp1207663
http://dx.doi.org/10.1115/1.483186
http://dx.doi.org/10.1115/1.483186
http://dx.doi.org/10.1007/978-3-540-74234-0
http://dx.doi.org/10.1007/978-3-540-74234-0
http://dx.doi.org/10.1063/1.1461829
http://dx.doi.org/10.1016/S1290-0729(00)00249-0
http://dx.doi.org/10.1016/S1290-0729(00)00249-0
http://dx.doi.org/10.1021/ed024p389
http://dx.doi.org/10.1021/ed024p389


Further Reading 8

Crawford, F. H. (1949b). “On Jacobian methods in thermo-
dynamics”. In: American Journal of Physics 17.6, pp. 397–
397. : 10.1119/1.1989613.

Farah, N. and R. W. Missen (1986). “The computer-
derivation of thermodynamic equations — Part I. First
and second derivatives for simple systems”. In: TheCana-
dian Journal of Chemical Engineering 64.1, pp. 154–157.

: 10.1002/cjce.5450640122.
– (1987). “The computer-derivation of thermodynamic
equations — Part II. First and second derivatives for
complex unrestricted systems”. In: The Canadian Journal
of Chemical Engineering 65.1, pp. 137–141. : 10.1002/
cjce.5450650122.

Jubb, D. J. A. and R. W. Missen (1989). “The computer-
derivation of thermodynamic equations — Part III.
Chemical systems”. In: The Canadian Journal of Chemi-
cal Engineering 67.4, pp. 658–664. : 10.1002/cjce.
5450670420.

Manning, F. S. and W. P. Manning (1960). “Derivation
of thermodynamic relations for three-dimensional sys-
tems”. In: The Journal of Chemical Physics 33.5, pp. 1554–
1557. : 10.1063/1.1731441.

Pinkerton, R. C. (1952). “A Jacobian method for the rapid
evaluation of thermodynamic derivatives, without the
use of tables”. In: The Journal of Physical Chemistry 56.6,
pp. 799–800. : 10.1021/j150498a037.

Tobolsky, A. (1942). “A systematic method of obtaining the
relations between thermodynamic derivatives”. In: The
Journal of Chemical Physics 10.10, pp. 644–645. : 10.
1063/1.1723632.

http://dx.doi.org/10.1119/1.1989613
http://dx.doi.org/10.1002/cjce.5450640122
http://dx.doi.org/10.1002/cjce.5450650122
http://dx.doi.org/10.1002/cjce.5450650122
http://dx.doi.org/10.1002/cjce.5450670420
http://dx.doi.org/10.1002/cjce.5450670420
http://dx.doi.org/10.1063/1.1731441
http://dx.doi.org/10.1021/j150498a037
http://dx.doi.org/10.1063/1.1723632
http://dx.doi.org/10.1063/1.1723632

	1 Introduction
	2 Helmholtz energy equation of state
	3 Partial derivatives in the single-phase region
	4 Derivatives along the saturation line
	5 Partial derivatives in the two-phase region
	6 Summary
	References
	Further Reading

