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Abstract 14 

The structural evolution of coals during coalification from peat to the end of the 15 

high volatile bituminous coal rank (VRr = 0.22−0.81%) has been studied using a natural 16 

maturity series from New Zealand. Samples were studied using a range of standard coal 17 

analyses, Rock-Eval analysis, infrared spectroscopy (IR), X-ray photoelectron 18 

spectroscopy (XPS), and pyrolysis gas chromatography (Py-GC). The structural evolution 19 

of coal during diagenesis and moderate catagenesis is dominated by defunctionalisation 20 

reactions leading to the release of significant amounts of oxygen and thereby to an 21 

enrichment of aromatic as well as aliphatic structures within the residual organic matter. 22 

Based on the evolution of pyrolysis yields and elemental compositions with maturity it can 23 

be demonstrated that oxygen loss is the major cause for increasing Hydrogen Index values 24 

or hydrocarbon generating potentials of coals at such maturity levels. For the first time, the 25 

loss of oxygen in form of CO2 has been quantified. During maturation from peat to high 26 

volatile bituminous coal ranks ~10−105 mg CO2/g TOC has been released. This is 27 

equivalent to 2.50E−4 to 1.25E−3 mg CO2 generated from every litre of sediment per year 28 

falling into the range of deep biosphere utilisation rates. Immature coals, here New 29 

Zealand coals, therefore manifest the potential to feed deep terrestrial microbial life, in 30 

contrast to more mature coals (VRr > ~0.81%) for which defunctionalisation processes 31 

become less important.  32 

Key words: maturation, structural evolution, New Zealand coals, oxygen loss, elemental 33 

compositions, petroleum potential, feedstock, deep biosphere 34 

35 
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1. Introduction 36 

Humic coals are derived mainly from continental plants, contain identifiable 37 

vegetal debris, and are rich in humic macerals of the vitrinite group. On a molecular level, 38 

condensed aromatic and oxygen-containing structures are present in high abundance at 39 

immature maturation stages. As the organic matter in sediments is buried, its structure is 40 

no longer in equilibrium with its surroundings due to changes in both physical and 41 

chemical environment (Tissot and Welte, 1984). A large number of chemical reactions are 42 

involved in the thermal degradation of the organic matter. Many studies have been focused 43 

on the maturity range from shortly before beginning of the oil window to the end of oil 44 

expulsion to investigate the chemical changes affecting macromolecules (Marchand and 45 

Conard, 1980; Oberlin et al., 1980; Betrand, 1984; Witte et al., 1988; Levine, 1993; 46 

Landais, 1991; Requejo et al., 1992; Ibarra et al., 1996; Schenk and Horsfield, 1998; Sykes 47 

and Snowdow, 2002). However, relatively little attention has been directed to the structural 48 

evolution of organic matter during diagenesis (Kelemen et al., 2002, 2007; Salmon et al., 49 

2009).  50 

During maturation, the organic matter within coals is subjected to both cracking 51 

and aromatization/condensation mechanisms (Stach et al., 1982; Tissot and Welte, 1984; 52 

Solomon, 1988; Schenk and Horsfield, 1998; Taylor et al., 1998), which causes a 53 

progressive elimination of functional groups and linkages between nuclei, an increase in 54 

the average stacking number of aromatic sheets, and a more condensed solid residue 55 

(Requejo et al., 1992, Ibarra et al., 1996, Kelemen et al., 2007). Loss of oxygen during 56 

maturation of coals is well known and detectable by a decrease of atomic O/C ratios, a 57 

decrease in related absolute oxygen contents (wt.%) and infrared –OH, −COOH, C=O 58 

adsorption intensities, as well as an increase of water and CO/CO2 production (Tissot et al., 59 
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1974; Robin and Rouxhet, 1978; Durand and Monin, 1980; Boudou et al., 1984; Behar et 60 

al., 1995; Charpenay et al., 1996; Ibarra et al., 1996; Kelemen et al., 2002). Consequently, 61 

coals release a high amount of oxygenated compounds (CO2, H2O, and organic acids), 62 

hydrogen and hydrocarbons (Tissot and Welte, 1984; Carr and Williamson, 1990; Payne 63 

and Ortoleva, 2001). These compounds can act as a substrate for the deep biosphere (Rice 64 

and Claypool, 1981; Parkes et al., 2000; Horsfield et al., 2006), which has been detected as 65 

deep as 1km below the seafloor or 3km below continental surfaces (Horsfield and Kieft, 66 

2007; Fang and Zhang, 2011). Living at such depth, microbes are fully detached from 67 

surface processes, its energy and food supplies. It is suggested that organic-rich lithologies 68 

represent potential feeders, whereas others, such as coarse-grained sandstones, are 69 

potential hosts to microbial ecosystems (L´Haridon et al., 1995; Krumholz et al., 1997; 70 

Horsfield et al., 2006). Low rank coals appear to be essentially well suited for feeding the 71 

deep subsurface microbes (Horsfield et al., 2006; Vieth et al. 2008; Glombitza et al. 2009a, 72 

2009b, 2011). The question remains whether the approximate amount of oxygen released 73 

during maturation of coal can be quantified, thereby providing a bulk quantitative feeding 74 

potential for the deep biosphere (e.g., methanogens)? 75 

The New Zealand Coal Band was chosen because it provides an essentially 76 

continuous series of coal ranks from peat through high volatile bituminous coals with very 77 

little facies variation and a consistent richness in vitrinite (Killops et al., 1994; 1998; 78 

Newman, 1997; Norgate et al., 1997; Suggate, 2000; Sykes, 2004; Sykes et al., 2004; Vu et 79 

al., 2008; 2009). The New Zealand coals are characterised by increasing Hydrogen Index 80 

values (HI = S2×100/TOC) during early diagenesis to moderate catagenesis (Suggate and 81 

Boudou, 1993; Killops et al., 1998; Sykes and Snowdon, 2002; Vu, 2008; Vu et al., 2008). 82 

This feature is also reported for many immature coals from other parts of the world 83 

(Durand and Paratte, 1983; Marquis et al., 1992; Boreham et al., 1999), which is in 84 
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contrast to the common understanding that HI values of mature coals as well as of other 85 

mature kerogen types strongly decrease with maturation (Espitalié  et al., 1985; Hetényi 86 

and Sajgó, 1990; Requejo et al., 1992; Sykes and Snowdow, 2002; Jasper et al., 2009). 87 

Two main concepts, explaining the increase in HI during diagenesis, have been put 88 

forward. The first one, a concentration concept, claims that the release of large amounts of 89 

CO2, CO and other functionalised groups at low levels of maturity lead to an enrichment of 90 

potential hydrocarbon generating structures (Durand and Paratte, 1983; Vandenbroucke 91 

and Largeau, 2007). The second concept assumes that the increase in the petroleum 92 

generating potential of coals is rather caused by a structural rearrangement of the 93 

macromolecular matrix, which results in the formation of significant amounts of new 94 

bonds with different generation potentials (Killops et al., 1998; Schenk and Horsfield, 95 

1998; Sykes and Snowdon, 2002). Killops et al. (1996; 1998) pointed out using mass 96 

balance calculations that simple loss of CO2 could only account for an increase in HI of 97 

roughly 10 mg/g TOC, which would be less than 10% of the HI increase (up to 150 mg/g 98 

TOC) observed for New Zealand coals. Nevertheless, coals from the New Zealand Coal 99 

Band show no appreciable increase in atomic H/C ratios over the maturity range VRr = 100 

~0.35% – ~0.80% (Sykes and Snowdon, 2002; Vu, 2008).  101 

In this paper, we aim firstly to investigate the structural changes of organic matter 102 

in coal during diagenesis to early catagenesis. Secondly, this paper revisits the importance 103 

of oxygen loss for the HI increase prior to catagenesis (VRr  = 0.81%). Thirdly, we attempt 104 

to calculate the loss of oxygen released as CO2 from the decrease of Oxygen Index (OI = 105 

S3×100/TOC) values during maturation thereby providing a bulk quantitative feeding 106 

potential for the deep biosphere. 107 

 108 
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2. Material and methods 109 

A set of immature Late Cretaceous-Tertiary New Zealand coals samples (VRr  = 110 

0.22% − 0.81%) was available for studying the structural evolution of organic matter 111 

during maturation using infrared spectrometry, Rock-Eval pyrolysis and pyrolysis-gas 112 

chromatography (Table 1). X-ray photoelectron spectroscopy (XPS) data of immature New 113 

Zealand coals was compared to XPS data published in Kelement et al. (2002) for a 114 

maturity equivalent coal sample set (Argonne Premium (AP) Coal Sample Program, and 115 

DECS and PSOC coals selected from the Pennsylvania State University coal sample bank). 116 

This helps to complete the picture of organic macromolecular structure evolution during 117 

coalification and to observe the alterations of pyrolysate compositions as a function of 118 

rank.  119 

A range of standard coal analyses was performed on milled New Zealand sub-120 

samples by CRL Energy Ltd., New Zealand, following international and in-house standard 121 

procedures. These analyses included proximate analysis [moisture (M), ash (A) and 122 

volatile matter (VM)], ultimate analysis [C, H, N, S, O; dry and ash free (daf) basic], and 123 

calorific value (CV; specific energy). Adjustments of CV and VM to the dry, mineral 124 

matter and sulfur free (dmmsf) basis and atomic O/C and H/C to the mineral matter free 125 

(mmf) basis, for determination of Rank(Sr) values, were made using the formulas of 126 

Suggate (2000). Rank(Sr) was designed to accommodate variation in coal kerogen type 127 

through the use of two parameters, VM and CV or atomic H/C and O/C (Suggate, 1959, 128 

2000, 2002; Sykes et al., 1992). The investigated sample set (Group A and B) was 129 

carefully selected from the New Zealand Coal Band based on the VM vs. CV diagram for 130 

intensive studies on the changes of organic matter properties during early stages of 131 

maturation. As illustrated in Fig. 1, this sample set (especially the Group A) is a very 132 

homogenous maturation sequence, with very minor facies variations. These samples have 133 
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also been studied in previous publications (Vieth et al., 2008; Vu et al., 2008, 2009; 134 

Glombitza et al., 2009a, 2009b, 2011; Mahlstedt and Horsfield, 2012). Details on 135 

geological age, origin, maturity level, organic matter type, and depositional environment 136 

are given in these publications.  137 

Vitrinite reflectance was measured by Newman Energy Research Ltd., New 138 

Zealand, on polished grain mounts using a Zeiss MPM 400 petrological microscope. 139 

Measurements of VRr  (random) were made on 50 telovitrinite or telohuminite subjects in 140 

each sample. Although quantitative maceral group determinations have not been 141 

undertaken, observations of petrographic composition during the course of the vitrinite 142 

reflectance analyses showed that all samples are heavily dominated by vitrinite, and none 143 

of them is particularly rich in inertinite or liptinite. This is supported by the fact that at 144 

least all group A samples plot in the middle of the New Zealand Coal Band on the VM vs 145 

CV diagram (Fig. 1). 146 

For organic geochemical analyses, New Zealand samples were freeze dried (48 h) 147 

and ground to <200 mesh in a disc mill (15 s), then stored under nitrogen. Total organic 148 

carbon (TOC) contents were determined using a LECOTM-CNS-2000 elemental analyser. 149 

The Rock-Eval parameters were determined using a Rock-Eval 6 instrument. Ten of the 150 

twenty-three samples (Group A) and six samples of Group B were selected for infrared 151 

spectroscopy, which were recorded on a Perkin-Elmer 783 dispersive spectrophotometer 152 

coupled to a Spectrafile IR plus-2.00 data station at ForschungsZentrum Jülich Germany. 153 

KBr pellets with varying amounts of coal (1–2 mg) were prepared according to the 154 

published procedures in Schenk et al. (1986). The integrated infrared absorptions (cm/mg 155 

TOC) in selected spectral ranges of selected New Zealand coals are given in Table 2. 156 



 8

The same sixteen samples were further analysed using XPS, a surface sensitive 157 

technique (Kelemen and Kwiatek, 1995; Kelemen et al., 2002; 2007), which enables the 158 

direct quantification of oxygen and its functionalities as well as other elements (e.g. total 159 

aromatic carbon, sulphur and nitrogen). Samples were prepared according to the 160 

procedures published in Kelemen and Kwiatek (1995) and Kelemen et al. (2002; 2007). 161 

The relative amount of aromatic carbon was determined by the method Π and Π* of signal 162 

intensity (Kelemen et al., 1993). The amount of organic oxygen was derived from the total 163 

oxygen (1s) signal by taking into account inorganic contributions. Organic oxygen forms 164 

were determined by analysing the effect of oxygen on the XPS carbon (1s) signal of 165 

adjacent carbon atoms. Five peaks were used to curve-resolve the XPS carbon (1s) signal. 166 

These occur at 284.8, 285.3, 286.3, 287.5, and 289.0 (±0.1) eV. The 284.8 eV peak 167 

represents contributions from both aromatic and aliphatic carbon. The 286.3 eV peak 168 

represents carbon bound to one oxygen by a single bond (e.g., C−O, C−OH, etc.). The 169 

287.5 eV peak corresponds to carbon bound to oxygen by two oxygen bonds (C=O and 170 

O−C−O). The 289.0 eV peak corresponds mainly to carbon bound to oxygen by three 171 

bonds (O=C−O). The 285.3 peak will have contributions mainly from carbon adjacent to 172 

carboxyl carbon (beta peak) and carbon bound to nitrogen (i.e., pyrrole and pyridinic). The 173 

285.3 eV peak is therefore fixed to the sum of the intensity of the 289.0 eV peak and the 174 

intensity of carbon adjacent to nitrogen (i.e., twice the nitrogen level).  The XPS data are 175 

shown in Table 3. 176 

Pyrolysis gas chromatography was performed using the Quantum MSSV-2 Thermal 177 

Analysis System© for New Zealand coal samples in Group A. The thermally extracted 178 

(300°C for 10 minutes) sample was heated in a flow of helium, and products released over 179 

the temperature range 300-600°C (40K/min) were focussed using a cryogenic trap, and 180 

then analysed using a 50m x 0.32mm BP-1 capillary column equipped with a flame 181 
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ionisation detector. The GC oven temperature was programmed from 40°C to 320°C at 182 

8°C/minute. Boiling ranges (C1, C2−C5, C6−C14 and C15+) and individual compounds (n-183 

alkenes, n-alkanes, alkylaromatic hydrocarbons) were quantified by external 184 

standardisation using n-butane. Response factors for all compounds were assumed the 185 

same, except for methane whose response factor was 1.1. 186 

3. Results and discussion 187 

3.1. Structural evolution of organic matter in coals from early diagenesis to moderate 188 

catagenesis 189 

All geochemical parameters obtained from spectroscopic (IR, XPS) and pyrolytic 190 

investigations reflect a systematic change of the coal structure as a function of vitrinite 191 

reflectance, i.e. maturity level (Figs. 2−5). Significant loss of oxygen in the evolution 192 

interval 0.22−0.81% VRr is the major characteristic of diagenesis to moderate catagenesis 193 

(Figs. 2−3). A direct consequence of oxygen loss, as will be demonstrated later on in 194 

detail, is an increase in hydrocarbon generating potentials from 120 to ~260 mg HC/g TOC 195 

at VRr  ~0.80% (Fig. 4), a feature confirmed by increasing pyrolysis production yields 196 

(Fig. 5e). Natural maturation of coals at this maturity stage is further characterized by an 197 

enrichment of aromatic structures (Figs. 5b, 5d) as well as by only a slight increase in the 198 

amount of aliphatic structures with concomitant enrichment of methylene over methyl 199 

functionalities (Fig. 5c). The decrease of ali-C observable in Figure 5d is related to 200 

normalisation of aromatic and aliphatic carbon to 100 C atoms, and indicates not a loss in 201 

aliphatic carbon but a relative gain in aromatic carbon due to not only concentration but 202 

additionally “neoformation” in the course of carbon bound oxygen loss. Similar absolute 203 

aliphatic carbon contents on a cm/g TOC basis (Fig. 5c) are not in direct contrast to current 204 

models of coal maturation, which rather assume a depletion of aliphatic structures in the 205 
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residual coal as a consequence of hydrocarbon generation (Requejo et al., 1992; Ibarra et 206 

al., 1996; Kelemen et al., 2002; 2007), but demonstrates the importance to treat such 207 

models with caution at low maturity ranges. In line with those considerations, Al Sandouk 208 

et al. (2013) also report that aliphatic moieties in bulk kerogen concentrates increase with 209 

maturation (VRr = 0.450.68%). 210 

The loss of oxygen during maturation from 0.22% to 0.81% VRr  is directly 211 

revealed by a significant and log-linear decrease of O/C atomic ratios from 0.343 to 0.068 212 

(Fig. 2a), a continuous decrease of absolute oxygen contents from ~30 wt.% to 10 wt.% 213 

(Fig. 2b), a linear decrease of moisture contents from 30% to 3% (Fig. 2c), by a strong 214 

decrease of Rock-Eval OI values from 100 mg CO2/g TOC to 5 mg CO2/g TOC (Fig. 2d) 215 

and by a decrease of total organic oxygen from around 25 to 7 (amount per 100C) (Fig. 216 

2e). The relevant maturity range corresponds to the first (immature) maturation stage 217 

described in Durand and Monin (1980), where oxygen defunctionalisation reactions prevail 218 

and especially C=O functionalities (IR) rapidly disappear (also compare Fig. 2f), resulting 219 

in the formation of CO2, H2O and heavy heteroatomic products, e.g., resins, asphaltenes. A 220 

direct quantification of different oxygen functional groups (XPS) within immature New 221 

Zealand coal reveals, in comparison to XPS-data obtained by Kelemen et al. (2002) for a 222 

series of immature to highly mature coals (VRr = 0.23–5.45%) (Fig. 3), that earlier findings 223 

are still valid and in agreement with data published in Kelemen et al. (2002). A preferential 224 

loss of oxygen fixed in relatively volatile functional groups (e.g., carboxylic acids, ester) 225 

rather than of oxygen fixed in stable groups (e.g., phenolic −OH group, ethers) is indicated. 226 

As shown in Fig. 5f, pyrolysis yields of phenolic compounds are almost unchanged during 227 

diagenesis and rather slightly increase up to 0.80% VRr. Even though amounts of oxygen 228 

in both C−O single bond species (Fig. 3a) and carboxyl groups (O−C=O) (Fig. 3b) 229 

decrease from VRr  = 0.22% to VRr = 0.81%, their relative proportions change, with 230 
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O−C=O decreasing from ~40% to ~0% and C−O single bounded species increasing from 231 

~42% to ~100% (Fig. 3d). The amount of oxygen in carbonyl groups (C=O) also generally 232 

decreases (Fig. 3c), with relative proportions varying between ~25% and ~5% (Fig. 3d).  233 

A second important feature of coalification from 0.22% to 0.81% VRr is that HI 234 

values of investigated New Zealand coals strongly increase from 124 to ~260 mg HC/g 235 

TOC) with increasing maturity level (Figs. 4a, 5a), whereas H/C atomic ratios rather 236 

decrease or scatter within a narrow range of 0.901–0.778 (Figs. 2a, 4c). The relationship 237 

between elemental compositions and Rock-Eval parameters as expressed by Espitalié et al. 238 

(1977) stating that there is a good correlation between HI and H/C ratio, as well as OI and 239 

O/C ratio, is therefore too simple, which is best seen in Fig. 4c illustrating a very poor fit 240 

between H/C and measured HI values (R2 = 0.14). Interestingly, hydrocarbon generating 241 

potential does not increase with increasing atomic H/C ratios, but rather increases with 242 

atomic O/C ratios decreasing from 0.343 to 0.068 (correlation R2 = 0.84) (Fig. 4d). Orr 243 

(1981) also examined the relation between elemental compositions and pyrolytic 244 

hydrocarbon yields, using a sample set exhibiting a broad range of atomic H/C (0.71- 1.55) 245 

and a more restricted O/C (0.08- 0.19) ratio range. The author provided an equation 246 

describing a systematic relation between elemental compositions and pyrolytic 247 

hydrocarbon yields, which can be expressed as  248 

 )O/C(800)29.0H/C(694HI      (Equation 1). 249 

Applying this equation to the investigated New Zealand coal series (Group A), a very good 250 

fit (linear regression xy  93.0 with R2 = 0.92) between calculated HI values and directly 251 

measured HI values is attained (Fig. 4b). It can be concluded that there is a systematic 252 

correlation between elemental compositions (H/C, O/C) and measured HI values from 253 

Rock-Eval analysis and that the evolution of HI during diagenesis to moderate catagenesis 254 
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is strongly related to changes in O/C atomic ratios rather than to changes in H/C atomic 255 

ratios. In other words, it can be deduced that the loss of oxygen containing molecules is the 256 

major cause for the increase in HI values up to VRr ~0.80% by concentration of potential 257 

hydrocarbon generating structures (Durand and Paratte, 1983; Vandenbroucke and 258 

Largeau, 2007), and that here rearrangement of the coal structure (Schenk and Horsfield, 259 

1998) as suggested by Killops et al. (1998) and Sykes and Snowdon (2002) plays only a 260 

minor role. Furthermore, a postulated rearrangement of organic matter structures involving 261 

incorporation of hydrogen-rich volatile components into the coal matrix would result in a 262 

higher oil-proneness of mature coals compared to immature ones (Boreham et a., 1999; 263 

Sykes and Snowdon, 2002), and should thus cause a marked decrease in gas-oil-ratio 264 

(GOR) values. However, our data show relative constant pyrolysis GOR (Fig. 5h) and gas 265 

wetness values (Tab. 1) for New Zealand coals during diagenesis and moderate catagenesis 266 

rather hinting to the relevance of the concentration concept.  267 

Concentration of potential hydrocarbon generating structures within the coals 268 

organic matter by defunctionalisation of oxygen containing structures leads not only to an 269 

increase in the hydrocarbon generating potential (Fig. 5a) but consequently also to a 270 

relative enrichment of protonated aromatic carbon (Fig. 5b) and total aliphatic carbon (Fig. 271 

5c). Nevertheless, some structural changes and “rearrangements” do occur, which can be 272 

deduced from a decrease in the CH3/(CH3+CH2) ratio (Fig. 5c), from a relative increase of 273 

aromatic carbon on the costs of aliphatic carbon (Fig. 5d), and from differences in the 274 

evolution of single compounds and boiling fractions pyrolysis yields (Figs. 5e−h).  275 

The decrease in the CH3/(CH3+CH2) ratio (Fig. 5c) is related to the loss of methyl 276 

groups together with the most unstable oxygen bearing functional groups rather than to an 277 

absolute increase in methylene functionalities and thus aliphatic carbon chain length. A 278 

general decrease in the average aliphatic carbon chain length over a comparable maturity 279 
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range (VRr = 0.35−1.20%, calculated from Tmax values) was demonstrated for different 280 

coals and kerogen types in various studies using NMR (Requejo et al., 1992; Kelemen et 281 

al., 2002; 2007). In addition, based on alkaline ester cleavage experiments, Glombitza et al. 282 

(2009b) reported for the here used New Zealand coals sample set that concentrations of 283 

liberated low molecular weight compounds such as acetate, which possess a methyl group 284 

within its chemical structure, considerably decrease during early diagenesis up to maturity 285 

levels of about 0.6% VRr  indicating a continuous loss of kerogen-linked small organic 286 

acids during maturation of organic matter, whether by release from or incorporation into 287 

the residual kerogen. 288 

The increase in amount of total aromatic carbon per 100 C from ~40 to ~70 with 289 

maturity increasing from 0.22% VRr to 0.81% VRr for the New Zealand coals is, 290 

regardless of different geological regions, similar to the increase observed by Kelemen et 291 

al. (2002) for another coal sample set (Fig. 5d). It is also the strongest indication that, 292 

besides simple concentration of hydrocarbon generating structures, structural changes such 293 

as aromatisation of e.g. alicyclic ring components (Schenk and Richter, 1995) or 294 

condensation take place, as the proportion of aliphatic carbon per 100 C (Fig. 5d) 295 

mathematically decreases from maximal 40 at VRr  = 0.22% to 12 at VRr  = 0.81%. 296 

Interestingly and as mentioned before, HI values increase and so do pyrolysis gas and C6+ 297 

yields, which leads to constant GOR values (Figs. 5a, 5e and 5h respectively). However, 298 

considering generated amounts of single compounds, yields of aliphatic n-C6+ compounds 299 

increase (Fig. 5f) whereas yields of aromatic compounds such as phenols, monoaromatics 300 

or diaromatics, stay roughly constant or only slightly increase (Figs. 5f−g) leading to a 301 

slight decrease in the aromaticity (Tab. 1), defined as aromatic moieties divided by n-alkyl 302 

moieties in the C6+ pyrolysis products. It can be therefore deduced that the net increase in 303 

total aromatic carbon (Fig. 5d) is also related to an incorporation of aromatic precursor 304 
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structures into a refractory/dead or at least GC-unamenable moiety of residual organic 305 

matter.  306 

3.2. Feedstock for the deep biosphere 307 

It is known that terrigenous organic matter, especially coals, can generate high 308 

amounts of low molecular weight oxygenated compounds (e.g., CO2, organic acids) and 309 

probably hydrogen (via aromatisation reactions) during diagenesis and catagenesis (Tissot 310 

et al., 1974; Durand and Monin, 1980; Carr and Williamson, 1990; Payne and Ortoleva, 311 

2001). These compounds can be sustained in ecosystems that are fully detached from 312 

surfaces processes (Rice and Claypool, 1981; Parkes et al., 2000; Horsfield et al., 2006). 313 

Here, we aim to measure or calculate the quantitative feedstock potential of terrestrial 314 

organic matter for deep biosphere ecosystems. Therefore, the loss of oxygen as CO2 has 315 

been quantified based on the evolution of OI with maturation. This quantification is 316 

formulated in the same way in which yields of hydrocarbons were quantified by Pelet 317 

(1985). In general, the Transformation Ratio of kerogen to hydrocarbon conversion (TRHC) 318 

is calculated from the decrease of HI observed for the progressive maturation of any given 319 

source rock maturity series. Similarly, there is a significant decrease in OI values during 320 

diagenesis and moderate catagenesis, which has been discussed in Section 3.1. Therefore 321 

and with these considerations in mind, a new Transformation Ratio for kerogen to CO2 322 

conversion (TRCO2) has been expressed (Equation 2) in order to quantify the loss of 323 

oxygen as CO2: 324 

 
 










x

x
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0
2     (Equation 2) 325 

where OI0 = Oxygen Index of immature sample 326 
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 OIx = Oxygen Index of mature sample 327 

3600 represents the reciprocal (times 1000) of the carbon proportion 328 

in CO2 329 

The TRCO2 is plotted versus vitrinite reflectance in Fig. 6a, calculated values are 330 

given in Tab. 4. One can see at first sight that values do follow a rank-related trend. The 331 

TRCO2 increases as a function of maturity and reaches 95% of conversion at VRr = 0.70%. 332 

In order to calculate the amount of released oxygen during maturation, oxygen yields were 333 

renormalized to the original organic content of the original sample using Equation 3: 334 


  













x
i OI

OIOI
OI

3600

 (3600 0x

     (Equation 3) 335 

Where: OIi = Oxygen Index of mature sample normalised to original TOC 336 

OI0 = Oxygen Index of immature sample 337 

OIx = Oxygen Index of mature sample 338 

3600 represents the reciprocal (times 1000) of the carbon proportion 339 

in CO2 340 

Oxygen yields are expressed in CO2 and illustrated in Fig. 6b as a function of 341 

TRCO2. Yields range from 10 to 104 mg CO2/g TOC during maturation from peat to high 342 

volatile bituminous coal ranks. This is equivalent to 0.23 to 2.4 millimoles CO2 per gram 343 

of organic carbon. As an aside, e.g. for methanogenesis via CO2 reduction, four moles of 344 

hydrogen would be required. Thus, between 0.92 and 9.6 millimoles hydrogen would be 345 

required for complete CO2 reduction.  346 

Considering the feeding potential of the investigated New Zealand coals for deep 347 

microbial life, the released CO2 amounts are compared to CO2 respiration rates (4.40E−5 348 
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to 4.40E−2 mg per litre per year) reported for deep-aquifer systems (Tab. 5) by D´Hondt et 349 

al. (2002). The estimated yield of CO2 released from immature samples within the 350 

Pleistocene over a time span of 2 Ma is 10 mg/g TOC, whilst the estimated yield of CO2 351 

released from now mature New Zealand coal samples since the Late Cretaceous (~100 Ma) 352 

is as high as 100 mg/g TOC. Considering the case of the least mature sample (i.e. the 353 

starting point) with TOC contents of ~50%, and assuming a sediment density of 2 kg/l, 354 

approximately 2.50E−4 to 1.25E−3 mg CO2 would be generated from every litre of 355 

sediment per year for coals of peat to the end of high volatile bituminous coal rank and 356 

from Late Cretaceous to Pleistocene geological ages. This rate falls into the range of deep 357 

biosphere utilisation rates (Tab. 5). Therefore, it is concluded that during maturation, 358 

especially during early diagenesis to moderate catagenesis, the thermal alteration of 359 

organic matter in coals leads to the release of sufficient feedstock to sustain deep microbial 360 

life (e.g. methanogens).  361 

Additionally and almost completely overlooked is the fact that low rank coals 362 

exhibit high extraction yield of up to 200 mg/g TOC (Durand et al., 1977; Hvoslef et al., 363 

1988; Bechtel et al., 2005; Avramidis and Zelilidis, 2007; Vu et al., 2009). The water-364 

soluble low molecular weight organic acids (LMWOAs), such as formic acid, acetic acid 365 

and oxalic acid, are considered as a potential carbon source to feed the deep biosphere 366 

(Vieth et al., 2008). Glombitza et al. (2009b) report an obvious depletion of LMWOAs 367 

released by alkaline ester cleavage as a function of maturity using the here described New 368 

Zealand coal series. Formate, acetate and oxalate were detected in significant amounts and 369 

found to rapidly decrease during diagenesis. Ester bound components (fatty acids and 370 

alcohols) are also found to exponentially decrease during diagenesis (Glombitza et al., 371 

2009a). Kinetic parameters of proton catalysed ester cleavage reactions have been also 372 

investigated by Glombitza et al. (2011) for the here studied New Zealand coal samples set. 373 
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Although the exact values of reaction rate constants (k’), activation energy (Ea), and 374 

frequency factor (A) might be questionable due to experimental limitations, the general 375 

trends of the ester cleavage reactions are still relevant. The k’ values decrease with 376 

increasing maturation indicating a slower cleavage reaction for more mature samples. Both 377 

activation energies and frequency factors increase with maturation indicating that the 378 

structure of kerogen has changed during maturation. The ester bonds within more mature 379 

samples are sterically better protected due to a more compact structure of the organic 380 

macromolecule. A higher activation energy and number of molecule collisions is needed 381 

for the cleavage reactions to occur.  382 

4. Conclusions 383 

The structural evolution of organic matter in coals has been studied using a natural 384 

maturity series from New Zealand. The study showed that the predominant structural 385 

changes within the maturity range VRr = 0.22  0.81% are related to oxygen loss during 386 

degradation of functional groups. Using an empirical formula by Orr (1981) based on 387 

pyrolysis yields and elemental composition it could be shown that oxygen loss directly 388 

controls the increase in petroleum generating potential (i.e. HI values) of coals prior to 389 

catagenesis. For the first time, the approximate amount of oxygen loss as CO2 during 390 

maturation of coals has been calculated from decreasing OI values during coalification. 391 

This allows to quantify the feeding potential of any given coal type for deep biosphere 392 

ecosystems. In case of the studied Late Cretaceous-Pleistocene coals, about 2.50E−4 to 393 

1.25E−3 mg CO2 are potentially generated from every litre of sediment per year. This rate 394 

falls into the range of deep biosphere utilisation rates, and implies that coals, especially 395 

immature ones, e.g. New Zealand coals, provide a large enough feeding potential for deep 396 

microbial communities. 397 
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Figure and Table captions 1 

Figure 1: Plot of volatile matter (in percent) against calorific value (in British thermal units 2 

per pound) for the investigated coals showing their positions in the New Zealand 3 

Coal Band and the Rank(Sr) scale of Suggate (2000). Volatile matter and calorific 4 

values are on the dry, mineral matter and sulphur free (dmmsf) basis. 5 

Figure 2: The loss of oxygen during maturation of New Zealand coals representing as the 6 

decreases of (a) O/C atomic ratios, (b) the absolute contents of oxygen on dried ash 7 

free basic (daf, %), (c) the moisture contents, (d) the Oxygen Index, (e) the total 8 

organic oxygen (amount per 100C), and (f) the infrared C=O adsorption as function 9 

of vitrinite reflectance. 10 

Figure 3: The XPS results for carbon−oxygen single and multiply bonded species plotted 11 

as a function of the vitrinite reflectance. 12 

Figure 4: The measured HI values revealed from Rock-Eval analysis of the samples in 13 

Group A, New Zealand coal (a) as a function of maturation, (b) in comparison with 14 

the calculated HI values from the elemental atomic O/C and H/C ratios, and (c, d) 15 

in the direct correlations with the elemental atomic H/C and O/C ratios. 16 

Figure 5: The evolution of organic matter structures as revealed from (a) Rock-Eval 17 

pyrolysis, (b, c) infrared spectroscopy, (d) X-ray photoelectron spectroscopy and 18 

(eh) pyrolysis gas chromatography in course of maturation (vitrinite reflectance) 19 

for the New Zealand coals. HI = Hydrogen Index, Aro-CH = aromatic CH, ali-20 

(CH2+CH3) = aliphatic CH2 plus CH3, aro-C = total aromatic carbon, ali-C = total 21 

aliphatic carbon, C6+ = bulk C6+ pyrolysis yield, phenols = sum of phenol and 22 

cresols, nC6+ = resolved C6+ pyrolysis yield, MA = sum of monoaromatics, DA = 23 

sum of diaromatics, GOR = C1-5/ C6+. 24 
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Figure 6: The Transformation Ratio of CO2 as a function of vitrinite reflectance (a) and 25 

against the yields of CO2 released during maturation (b). 26 

 27 

Tables 28 

Table 1: List of studied samples indicating maturity parameter (VRr), bulk geochemical 29 

parameters (TOC, Moisture, Oxygen contents), Rock-Eval parameters (S1, S2, S3, 30 

HI, OI), elemental compositions (O/C, H/C), calculated HI values from the 31 

elemental compositions, gas wetness (%) and aromaticity. VRr = vitrinite 32 

reflectance; TOC = total organic carbon; Oxygen = absolute oxygen contents on 33 

dried ash free basic (daf, %); HI = Hydrogen Index; OI = Oxygen Index; wetness = 34 

C1−5/ C2−5, aromaticity = aromatic moieties/n-alkyl moieties in C6+; n.d = not 35 

detected. 36 

Table 2: Integrated infrared absorptions (cm/mg TOC) in selected spectral ranges of 37 

selected New Zealand coals. VRr = vitrinite reflectance, K 300-2700 = C-H 38 

stretching vibrations of aliphatic CH2 and CH3 groups, K 1520-1340 = asymmetric 39 

bending vibrations of aliphatic CH2 and CH3 groups, K 1390-1340 = asymmetric 40 

bending vibrations of aliphatic CH3 group, K 900-700 = out-of-plane vibrations of 41 

aromatic CH groups, K-1700 = infrared C=O adsorption, n.d = not detected. 42 

Table 3: XPS results consisting amounts of aromatic carbon, calculated aliphatic carbon, 43 

total organic oxygen, and forms of organic oxygen. 44 

Table 4: List of studied samples indicating maturity parameter (VRr), measured Oxygen 45 

Index (OI) from Rock-Eval analysis, calculated Transformation Ratio of CO2 46 

(TRCO2), Oxygen Index normalised to the original organic carbon content of the 47 

original sample, and the released CO2 yields.  48 



 3

Table 5: Calculated feedstock potential of the investigated New Zealand coals as compared 49 

with rates of deep biosphere respiration. * CO2 respiration rates from D’Hondt et al. 50 

(2002) 51 

 52 



 1

HIGHLIGHTS 

 Structural evolution of coals during diagenesis to moderate catagenesis was studied 

 Structural changes are related to oxygen loss during defunctionalisation processes 

 Oxygen loss directly causes an increase in petroleum generating potential of coals 

 CO2 generation rate (2.5E-4 to 1.25E-3 mg/l/a) was calculated from the drop of OI 

 It allows quantifying feeding potential for deep biosphere of any given coal types 

 



Sample Group VRr TOC Moisture Oxygen S1 S2 S3 HI OI O/C H/C

% % % %, daf
G001985 0,25 48,5 15,5 n.d 22,4 75,5 46,0 156 95 n.d n.d
G001988 0,27 48,6 15,7 29,9 19,6 64,8 43,5 133 89 0,343 0,901
G001979 0,25 48,9 38,4 29,5 13,8 72,6 52,3 148 107 0,338 0,868
G001987 0,26 46,9 28,5 29,1 13,0 58,0 45,4 124 97 0,328 0,855
G001986 0,27 49,9 22,5 28,4 18,7 70,3 41,4 141 83 0,318 0,863
G001976 0,29 54,4 15,9 27,3 16,4 82,6 44,5 152 82 0,304 0,838
G001978 0,28 53,7 24,1 26,0 7,5 69,3 39,4 129 73 0,281 0,820
G001975 0,29 51,6 17,3 27,0 9,8 69,6 39,5 135 77 0,292 0,860
G001983 0,41 58,5 16,7 22,3 7,3 94,0 28,4 161 49 0,230 0,809
G001977 0,39 59,5 17,0 22,1 6,2 101,3 21,4 170 36 0,227 0,784
G001982 0,40 60,0 17,8 21,3 4,0 105,2 23,3 175 39 0,218 0,811
G001984 0,45 63,9 10,6 20,1 3,7 108,5 17,0 170 27 0,202 0,803
G001981 0,45 61,2 15,1 20,6 3,0 94,5 19,9 154 32 0,208 0,778
G001992 0,49 64,9 12,7 n.d 4,5 113,9 20,5 176 32 n.d n.d
G001980 0,44 60,2 11,0 18,8 3,0 104,0 15,5 173 26 0,179 0,795
G001995 0,52 68,3 10,5 17,5 3,2 134,9 10,6 198 16 0,172 0,782
G001997 0,52 67,4 8,8 17,7 2,9 141,1 9,9 209 15 0,174 0,817
G001996 0,52 65,5 5,9 15,4 4,0 150,5 8,4 230 13 0,143 0,829
G001994 0,61 63,5 7,0 n.d 6,2 179,9 9,1 283 14 0,120 0,843
G001993 0,76 77,8 3,3 10,5 6,9 193,3 3,9 248 5 0,095 0,779
G001990 0,71 74,2 2,9 11,2 7,6 198,3 4,3 267 6 0,098 0,802
G001989 0,69 73,3 3,3 11,7 10,9 190,8 2,4 260 3 0,111 0,807
G001991 0,80 75,0 2,3 n.d 13,7 194,0 3,7 259 5 0,068 0,823
G002610 0,22 59,7 38,3 24,8 3,7 106,4 16,9 178 28 0,264 0,841
G002600 0,30 57,9 39,4 24,3 3,0 92,4 19,8 160 34 0,258 0,883
G002570 0,33 63,4 27,3 18,1 3,4 120,1 16,0 189 25 0,177 0,845
G002590 0,50 70,5 14,1 16,0 2,7 93,2 14,2 132 20 0,153 0,789
G002587 0,68 78,0 5,0 11,1 6,0 99,1 21,3 127 27 0,102 0,808
G002585 0,81 74,5 4,0 11,5 3,0 189,0 1,6 254 2 0,102 0,798

mg/g sediment mg/g TOC atomic ratios

G
ro

up
 A

G
ro

up
 B



HI Wetness Aromaticity

calculated %
n.d 52 0,20
150 50 0,22
131 48 0,27
130 50 0,25
144 49 0,21
137 48 0,29
143 44 0,30
162 45 0,29
176 49 0,32
162 48 0,30
188 49 0,26
194 49 0,29
172 47 0,27
n.d 48 0,26
207 48 0,27
203 50 0,27
226 50 0,24
260 49 0,24
287 53 0,13
264 49 0,25
276 49 0,18
270 52 0,24
315 50 0,23
n.d n.d n.d
n.d n.d n.d
n.d n.d n.d
n.d n.d n.d
n.d n.d n.d
n.d n.d n.d



Sample VRr K 3000-2700 K 1520- 1390 K 1390- 1340 K 900- 700 K-1700

%
G001988 0,27 26,08 n.d. n.d. n.d. 45,95
G001986 0,27 21,78 n.d. n.d. n.d. 55,16
G001977 0,39 24,08 6,54 1,63 5,69 36,95
G001984 0,45 22,32 7,44 1,35 18,26 49,21
G001981 0,45 18,21 6,22 1,59 3,99 43,84
G001980 0,44 19,88 6,73 1,38 3,68 42,68
G001995 0,52 22,80 10,86 1,30 7,76 40,83
G001997 0,52 21,62 9,25 1,12 5,82 39,57
G001996 0,52 21,98 9,51 0,82 4,21 42,65
G001991 0,80 31,80 14,62 0,78 10,85 16,07
G002610 0,22 19,02 n.d. n.d. n.d. 43,14
G002600 0,30 14,04 n.d. n.d. n.d. 34,00
G002570 0,33 15,59 3,69 0,78 4,22 34,56
G002590 0,50 19,03 7,30 1,03 6,46 32,24
G002587 0,68 23,49 12,09 0,87 10,85 19,53
G002585 0,81 23,89 11,61 0,57 5,68 26,09

cm/mg TOC



Sample VRr Aromatic C Aliphatic C Total organic Oxygen C-O C=O

286.3eV 287.5eV

%

G001988 0,27 39,0 41,5 15,9 6,7 3,2

G001986 0,27 38,0 32,4 20,9 11,7 3,4

G001977 0,39 47,0 34,7 14,9 6,2 3,3

G001984 0,45 53,0 27,0 14,3 7,6 3,1

G001981 0,45 56,0 19,7 17,9 8,8 4,5

G001980 0,44 55,0 27,1 13,4 7,0 1,4

G001995 0,52 61,0 23,2 10,4 6,6 1,4

G001997 0,52 68,0 14,6 12,9 6,7 1,8

G001996 0,52 61,0 24,1 9,4 6,7 0,3

G001991 0,80 70,0 18,0 6,5 5,5 1,0

G002610 0,22 47,0 30,7 18,9 7,6 2,9

G002600 0,30 46,0 34,1 15,1 7,7 1,6

G002570 0,33 54,0 28,3 13,3 6,9 1,6

G002590 0,50 68,0 12,4 12,9 7,9 2,8

G002587 0,68 63,0 23,5 7,7 6,5 0,0

G002585 0,81 73,0 14,1 6,8 6,4 0,0

a mount per 100 C a mount per 100 C
a mount per 100 



O-C=O C-O C=O O-C=O

289.0eV

%

6,0 42,0 20,2 37,9

5,8 55,9 16,3 27,8

5,4 41,4 22,2 36,4

3,6 53,0 21,8 25,3

4,6 49,0 25,2 25,8

5,0 52,2 10,4 37,3

2,4 63,5 13,5 23,1

4,4 51,9 14,0 34,1

2,4 71,3 3,2 25,5

0,0 84,6 15,4 0,0

8,4 40,2 15,3 44,4

5,8 51,0 10,6 38,4

4,8 51,7 12,1 36,2

2,2 61,1 21,8 17,1

1,2 84,3 0,0 15,7

0,4 94,1 0,0 5,9

C



Sample VRr OI TRCO2 Normalised OI CO2 yield

% (mg /g TOC) % mg/g TOC mg/g TOC

G001979 0,25 106,79 0,00 106,8 0,0

G001987 0,26 96,98 0,09 96,7 10,1

G001985 0,25 94,79 0,12 94,5 12,3

G001988 0,27 89,43 0,17 89,0 17,8

G001986 0,27 82,89 0,23 82,3 24,5

G001976 0,29 81,72 0,24 81,1 25,6

G001975 0,29 76,58 0,29 75,9 30,9

G001978 0,28 73,37 0,32 72,7 34,1

G001983 0,41 48,60 0,55 47,8 59,0

G001982 0,40 38,88 0,64 38,1 68,7

G001977 0,39 35,96 0,67 35,2 71,5

G001981 0,45 32,44 0,70 31,8 75,0

G001992 0,49 31,55 0,71 30,9 75,9

G001984 0,45 26,56 0,76 26,0 80,8

G001980 0,44 25,78 0,76 25,2 81,6

G001995 0,52 15,54 0,86 15,1 91,6

G001997 0,52 14,75 0,87 14,4 92,4

G001994 0,61 14,32 0,87 14,0 92,8

G001996 0,52 12,82 0,88 12,5 94,3

G001990 0,71 5,73 0,95 5,6 101,2

G001993 0,76 5,02 0,95 4,9 101,9

G001991 0,80 4,91 0,96 4,8 102,0

G001989 0,69 3,21 0,97 3,1 103,7



CO2 respiration rates* Minimum Maximum

mmol/l/a 1,00E-06 1,00E-03

mg/l/a 4,40E-05 4,40E-02

CO2 generation Minimum Maximum-Late Cretaceous

mg/g TOC 10 100

mmol/g TOC 0,23 2,4

Timeframe in Ma 2 100

Average density of sediment

kg/l 2 2

Feedstock Maximum Minimum

mg/kg sediment/a 2,50E-03 5,00E-04

mg/l sediment/a 1,25E-03 2,50E-04



Fig. 1
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