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ABSTRACT

The impact of climate change on three small- to medium-sized river catchments (Ammer, Mulde, and

Ruhr) in Germany is investigated for the near future (2021–50) following the Intergovernmental Panel on

Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. A 10-member en-

semble of hydrological model (HM) simulations, based on two high-resolution regional climate models

(RCMs) driven by two global climate models (GCMs), with three realizations of ECHAM5 (E5) and one

realization of the Canadian Centre for Climate Modelling and Analysis version 3 (CCCma3; C3) is estab-

lished. All GCM simulations are downscaled by the RCM Community Land Model (CLM), and one re-

alization of E5 is downscaled also with the RCM Weather Research and Forecasting Model (WRF). This

concerted 7-km, high-resolution RCM ensemble provides a sound basis for runoff simulations of small

catchments and is currently unique for Germany. The hydrology for each catchment is simulated in an

overlapping scheme, with two of the threeHMs used in the project. The resulting ensemble hence contains for

each chain link (GCM–realization–RCM–HM) at least two members and allows the investigation of quali-

tative and limited quantitative indications of the existence and uncertainty range of the change signal. The

ensemble spread in the climate change signal is large and varies with catchment and season, and the results

show thatmost of the uncertainty of the change signal arises from the natural variability in winter and from the

RCMs in summer.

1. Introduction

The Intergovernmental Panel on Climate Change

(IPCC) Fourth Assessment Report (AR4; Christensen

et al. 2007) summarizes possible effects of global climate

change for Europe. While a future warming is projected

for all of Europe, mean precipitation is projected to

decrease in the south and increase in the north. So,

projections of future precipitation in central Europe are

fraught with high uncertainties. Knowledge of the im-

pact of climate change on hydrological systems and es-

pecially flood discharges is important for the adaptation

of existing and planning for future flood management.

Whereas larger river systems in Europe and Germany

have been widely studied (e.g., Kleinn et al. 2005;

Dankers and Feyen 2008; Hurkmans et al. 2010), there is
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still a lack of information on climate change impacts on

smaller rivers. Smaller catchments require higher spatial

resolution of the driving atmospheric models, and with

decreasing spatial extent the uncertainty of any climate

change signal is likely to increase.

The uncertainties of climate projections arise from

each step of the model chain from the global, via the

regional, climate modeling to the hydrological model-

ing. On the global scale, uncertainty arises from the

choice of the global climate model (GCM), the internal

variability of the climate system, and the choice of

the future emission pathway. The variability of the

greenhouse gas emissions is not a main factor of un-

certainty for the near future (e.g., Andr�easson et al.

2004; Graham et al. 2007) and is therefore neglected

here. Thus, only the IPCC Special Report on Emissions

Scenarios (SRES) A1B scenario was used in this pro-

ject to be able to focus on other sources of uncertainty,

for example, natural variability. Also on the regional

climate model (RCM) and hydrological model (HM)

level, the models differ in their representation of the

processes and the regional characteristics. A full cov-

erage of the uncertainties at each individual model

chain level has been performed in other studies [e.g.,

the Coupled Model Intercomparison Project (CMIP)

(Meehl et al. 2000) and Ensemble-Based Predictions of

Climate Changes and their Impacts (ENSEMBLES)

(Hewitt and Griggs 2004)]. Although it would be de-

sirable to fill the matrix of possible outcomes on all

levels simultaneously, this is beyond the focus of the

study and has not even been covered by large in-

ternational programs.

This study aims at illustrating the contribution of the

different uncertainty sources to the overall uncertainty

by using at least two examples of each level of the model

chain. On the global scale this is covered by using two

different GCMs and three realizations for one of the

GCMs. The regional climate is covered by two different

RCMs, and the hydrological modeling is performedwith

three HMs applied to two catchments each. Although

the ensemble might be too small for quantitative sta-

tistical inference, qualitative insight into the sources

of uncertainty can be gained from this small but sys-

tematic ensemble.

Our high-resolution RCM ensemble is currently unique

for Germany and presents a concerted modeling effort

both for RCM simulations and hydrological modeling,

resulting in a consistent model chain for the hydro-

logical impact analysis of climate change in Germany.

The model chain was implemented for the Ammer,

Mulde, and Ruhr catchments—chosen to represent dif-

ferent flood regimes in Germany (Beurton and Thieken

2009).

The three study areas are described in section 2, and

the analysis of the climate data input is presented in

section 3. Section 4 contains the description of the ap-

plied HMs and their calibration/validation results; sec-

tion 5 presents the climate change impact on hydrology

and an analysis of the uncertainties within the model

chain. The article closes with discussion and conclusions

in section 6.

2. Study area

For this study, three small- to medium-sized river

catchments in Germany were chosen. They represent

different flood regimes in Germany as described by

Beurton and Thieken (2009): dominant winter floods in

the Ruhr catchment as typical for central and western

Germany; winter, but also spring and summer, floods in

the Mulde as typical for north and east Germany; and

summer floods in the Ammer catchment as typical for

the alpine south. The locations of the three catchments

are shown in Fig. 1, and a summary of the most impor-

tant hydrological characteristics of the three catchments

is given in Table 1.

The smallest catchment is the alpine Ammer (about

710 km2), which is part of the Danubian river sys-

tem. It is characterized by a large elevation gradient

FIG. 1. Location of the three investigated catchments (black

stipple pattern) in Germany. Flow directions: Ammer (south) and

Mulde (east) from south to north, Ruhr (west) from east to west.

The black lines indicate the borders of Germany and the states

within Germany.
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from Mount Kreuzspitze at 2185m to the outlet Lake

Ammersee (533m). The average precipitation amount is

1300mmyr21, and in the southern alpine part values up

to 2000mm occur. Land cover is mainly grassland and

forest (mostly coniferous forest), with an increasing per-

centage of forest in the southern part of the drainage

basin. Higher altitudes are snow covered for approxi-

mately 130 days yr21. The flow regime of the Ammer is

influenced by two factors: snowmelt in spring and a pre-

cipitation maximum in summer. As a result, maximum

monthly discharge values occur in May in alpine sub-

catchments and in June and July for the downstream

subcatchments (Marx et al. 2006; Kunstmann et al. 2005).

The largest analyzed catchment is the Mulde River

with about 6171 km2, located in eastern Germany. It

drains the northern part of the Ore Mountains and is

a tributary of the Elbe. The southern part of the drain-

age basin is mountainous with an elevation maximum of

1244m, and in the northern part elevations decrease to

50m. Forest areas are concentrated in the mountainous

part of the catchment, and in the lowlands the dominant

land use is agriculture. There is a north–south gradient

of mean annual precipitation with values of around

600mm in the lowlands to more than 1000mm in the

Ore Mountains, where precipitation amounts addition-

ally increase from east to west. In comparison to the

other two catchments, the Mulde is the driest inves-

tigated area. The mean monthly discharge regime is

characterized by high flows in March/April caused by

rain and snowmelt and minimum flows during the

summer months. Monthlymaximum flows show peaks in

winter and spring but can also occur during low flow

conditions in summer.

The Ruhr—the second-largest catchment with

4485 km2—is situated in western Germany and is a right

tributary (east side) of the Rhine. The headwaters of the

Ruhr are located in the northwest of the Rothaar

Mountains. The maximum elevation in the catchment is

850m. The Ruhr basin is situated in a low mountain

range, and wide parts are forest. Extensive urban areas

are located in the lower part of the catchment. The

monthly discharge regime at the Ruhr shows a typical

seasonal cycle. High flows in December to March are

caused by intensive rainfalls during the winter period.

During the summer months, distinct low flow conditions

dominate. Floods are often initiated by snowmelt in the

early spring. The Ruhr is highly regulated by abstrac-

tions and water reservoirs. Since no scenarios for future

abstractions were available and to allow for a better

comparability between different HMs, regulation was

not considered in this study as a first approximation.

The analysis shown here is based on the downstream

gauges of each catchment: Weilheim for the Ammer,

Bad D€uben for the Mulde, and Wetter for the Ruhr.

3. Climate data input

Figure 2 shows the model chain (flow diagram) of this

study. For each catchment, an ensemble of 10 members

TABLE 1. Characteristics of the three catchments investigated

and mean discharges and runoff: mean monthly discharge (MQ),

mean runoff rate (Mq), mean maximum monthly discharge

(MHQ), and mean maximum runoff rate (Mhq). The ranges of

annual precipitation sums represent the variability within the

catchment area.

Ammer Mulde Ruhr

Size (km2) 710 6171 4485

River system Danube Elbe Rhine

Elevation (m) 533–2185 50–1244 20–850

Typical land use 49%

grassland

52%

cropland

52% forest

41% forest 30% forest 32% grassland

2.4% settled 7% settled 8.7% settled

Annual mean

temperature (8C)
7 8.4 9

Annual precipitation

sum (mmyr21)

1000–2000 600–1000 800–1400

Annual mean discharge at downstream gauges

MQ (m3 s21) 15 64 68

Mq [L (s km2)21] 33 15 23

MHQ (m3 s21) 164 481 541

Mhq [L (s km2)21] 492 154 241

Degree of regulation low middle high
FIG. 2. Schematic flow chart of the ensemble strategy.
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is available with respect to the two GCMs, ECHAM5

(Roeckner et al. 2003) and Climate Modelling and

Analysis version 3 (CCCma3; Scinocca et al. 2008),

with three realizations for ECHAM5; the two RCMs,

Community Land Model (CLM; Doms and Sch€attler

2002) and Weather Research and Forecasting Model

(WRF; Skamarock et al. 2008); and the three HMs

[Precipitation Runoff Modeling System (PRMS), Soil

and Water Integrated Model (SWIM), and Water Bal-

ance Simulation Model–Eidgen€ossische Technische

Hochschule (WaSiM-ETH); see section 4], each simu-

lating two of the investigated catchments. For an over-

view of the different models and the abbreviations used,

see Table 2. For the control period the years 1971–2000

are chosen; the scenario period includes the 30 years

from 2021 to 2050. GCM simulations were provided by

the IPCC AR4 ensemble of simulations, and the RCM

and HM simulations were performed within the Center

for Disaster Management and Risk Reduction Tech-

nology (CEDIM) project ‘‘Flood Hazards in a Changing

Climate.’’

No general rules can be given for the ensemble size

required for reliable results of climate change impact

studies; it depends on region, season, projection period,

quantity, and the statistics (mean, extremes) considered.

Some indications are given in Deser et al. (2012). They

found that only one realization is needed to detect

a significant warming trend in the 2050s compared to the

2010s. But then, approximately 3–6 ensemble members

were necessary to find a significant trend of precipitation

for tropical and high latitudes, and at least 15 members

for the middle latitudes. Reifen and Toumi (2009) found

that the ensemble error decreases quickly when the

ensemble has more than about 10 members. Feldmann

et al. (2013) compared the near-future climate change

signal for heavy precipitation obtained from a

17-member ensemble with the results of a larger en-

semble and found that the essential information was

already contained in the small ensemble. The restricted

number of suitable GCMs and the computational de-

mands of the simulations inhibited a larger ensemble in

our study. However, this is one of the largest currently

available concerted RCM-based ensembles at such

a high resolution for Germany.

The global numerical models include representations

of the physical processes of the atmosphere, cryosphere,

oceans, and land surface. The model simulations follow

a procedure of an initial spinup of the full system over

several thousand years, until a quasi-stable equilibrium

between the ocean and atmosphere is reached. From

these simulations several initialization times for the

scenario simulations are selected to account for the in-

ternal variability of the climate system. Therefore, the

three realizations of ECHAM5 follow the same climate

forcing, but the different initial conditions allow for the

development of unique internal variabilities.

Owing to high computational demands, theGCMs use

horizontal resolutions of several hundred kilometers,

which is too coarse to drive a high-resolution hydro-

logical model. A dynamical downscaling procedure us-

ing regional climate models is therefore applied. The

RCMs run offline with boundary fields from GCMs,

which is called one-way nesting. To bridge the resolution

gap, with a factor of ;30 between the needs of the hy-

drological models and the grid spacing of the GCMs,

a double nesting procedure is used. First, the RCM

downscales the GCM data to the coarse nest resolution

of;50 km for all of Europe. In a second step, the RCM

is nested within the first nest and downscales the model

fields further to a 7-km resolution for all of Germany

and its near surroundings (Berg et al. 2013;Wagner et al.

2013). The high spatial resolution provides clear added

value to both spatial patterns and the intensity distri-

bution of precipitation, in comparison to coarser models

(Berg et al. 2013). The need of high-resolution RCM

data (,10 km) for good performance of precipitation

and temperature within small investigation areas was

shown, for example, by Smiatek et al. (2009).

Both GCMs and RCMs produce biases in their sim-

ulations, which may impair their applicability for hy-

drological modeling (Wilby et al. 2000). A wet bias in

annual precipitation could, for example, force the hy-

drological model into a constantly wet regime, which

would have a large influence on the simulated flood

characteristics. Hence, the Bias Correction Histogram

Equalization - Linear (BCHE-L) bias correction method

TABLE 2. Naming conventions for the applied model chain

members.

Model Name Abbreviation

GCMs ECHAM5 E5

CCCma3 C3

Realizations 1,2,3 R1, R2, R3

RCMs CLM CLM

WRF WRF

HMs PRMS PRMS

SWIM SWIM

WaSiM-ETH WaSiM

In combination:

ECHAM5 (1. realization)

1 WRF

WRF-E5R1

ECHAM5 (1. realization)

1 CLM

CLM-E5R1

ECHAM5 (2. realization)

1 CLM

CLM-E5R2

ECHAM5 (3. realization)

1 CLM

CLM-E5R3

CCCma3 1 CLM CLM-C3
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was applied to the temperature and precipitation results

of the fine-nest RCM data for each of the three catch-

ments (Berg et al. 2012). BCHE-L takes into account the

complete distribution of precipitation and temperature

values, separately, and calculates a transfer function that

maps the model distribution onto that observed. The

transfer function is well approximated by a linear fit,

which means that changes in the mean and variance are

corrected. Monthly correction factors were calculated for

the period 1971–2000 for each GCM-RCM simulation,

using observational data from Regionalisierung von

Niederschlagsh€ohen [REGNIE; GermanMeteorological

Service (DWD)] and the ENSEMBLES Observational

Gridded Dataset (E-OBS) (Haylock et al. 2008) for

precipitation and temperature, respectively. Both data-

sets were interpolated to the RCM grids before calcu-

lations were carried out. For WRF-E5R1 and CLM-C3,

the corrections were applied directly, but for the three

ECHAM5 realizations downscaled with CLM (CLM-

E5R1-3) a different approach was used. Although the

three downscaled realizations have slightly different

bias, this is not because of differences in the ‘‘true’’

RCM and GCM biases, but a result of natural variabil-

ity. If individual corrections were carried out for each

CLM-E5 realization, the natural variability in the con-

trol period would be removed. To retain this variability,

an average of the three sets of correction factors was cal-

culated and applied to each of the CLM-E5 simulations.

In the following sections, the observed and simulated

meteorological data (for precipitation and temperature

bias-corrected values) as well as the future projections

are discussed.

a. Meteorological forcing data for the three
catchments from 1971 to 2000

Table 3 gives an overview of the meteorological

forcing data for the three investigated catchments.

Shown are observational datasets [DWD/Potsdam In-

stitute for Climate Impact Research (PIK) contains

quality controlled and, if necessary, amended weather

data from climate stations of the DWD ( €Osterle et al.

2006) and REGNIE data] as well as the range of the

forcing RCM data ensemble within each catchment for

annual, winter, and summer precipitation, temperature,

relative humidity, and shortwave downward radiation.

For precipitation, the REGNIE dataset in theAmmer

catchment has considerably higher values than the

DWD/PIK data. The average difference for the catch-

ment amounts to almost 200mmyr21. For the alpine re-

gions in the south, the differences rise up to 330mmyr21.

Possible reasons for differences between two datasets

based on observations are the number of stations con-

sidered and their topographical location as well as the

applied interpolation method. Also, the REGNIE

method (described in Berg et al. 2012) can impact the

amounts. That different observational datasets can

have large discrepancies was also found by Lorenz and

Kunstmann (2012). As RCM precipitation results are

TABLE 3. Mean meteorological forcing data (1971–2000) for the three catchments investigated during the winter half-year (WH) and

summer half-year (SH).

Precipitation (mm month21) Temperature (8C) RH (%) SW radiation (Wm22)

Annual WH SH Annual WH SH Annual WH SH Annual WH SH

Ammer

DWD/PIK 104 77 132 7 1 13 80 82 78 128 82 173
REGNIE 120 91 149 NA NA NA NA NA NA NA NA NA

RCMs mean 122 92 151 7 1 12 81 82 79 111 77 145

range from 119 89 148 6 0 11 69 75 63 101 72 127

to 125 95 154 7 1 12 84 85 84 145 90 200

Mulde

DWD/PIK 59 52 66 8 3 14 78 82 75 116 66 165

REGNIE 62 55 69 NA NA NA NA NA NA NA NA NA

RCMs mean 64 55 72 8 3 14 84 87 82 99 64 133

range from 63 55 71 8 2 14 73 82 64 91 61 120

to 64 57 73 8 3 14 87 88 86 124 71 177

Ruhr

DWD/PIK 90 94 86 9 4 14 79 82 77 111 64 158

REGNIE 91 95 86 NA NA NA NA NA NA NA NA NA

RCMs mean 93 99 88 8 3 13 87 89 85 90 56 124

range from 92 97 87 8 3 13 78 85 71 82 54 110

to 96 103 89 9 3 14 90 91 89 113 63 163
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bias corrected to the REGNIE data, the resulting RCM

precipitation sums fit better to the REGNIE than to

DWD/PIK data. For the other two catchments, there

are no distinct differences between the observed pre-

cipitation datasets. After bias correction, the RCMs are

able to describe the seasonal cycle of precipitation well,

and the remaining spread between the models after bias

correction is mainly due to the natural variability as

sampled by the CLM-E5R1-3 simulations.

The bias correction for temperature performs well in

all three catchments. Relative humidity, which is not

corrected, differs significantly. In theMulde andAmmer

catchments, the RCM WRF underestimates mean an-

nual humidity by up to 214%. The underestimation is

more pronounced in summer than in winter. Further-

more, differences between summer and winter half-years

are overestimated. In contrast, all Community Land

Model (CLM) results overestimate humidity, which is

most pronounced in summer at Mulde and Ruhr by up

to 115%. The summer 2 winter differences are smaller

than for WRF.

The mean annually accumulated shortwave radiation

is underestimated by all single CLM simulations pri-

marily in summer by at least222%. WRF simulates the

solar radiation at the Ruhr catchment well, but for

Ammer and Mulde overestimations up to 115% occur,

most pronounced in summer.

b. Projected future change of the meteorological
forcing data

Figure 3 shows the projected change of the meteoro-

logical variables for the scenario period 2021–50 for

FIG. 3. Projected RCM future changes (2021–50 to 1971–2000) for precipitation, temperature, relative humidity

(RH), and shortwave (SW) downward radiation.
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each catchment. The projected precipitation change is

the most uncertain variable (Fig. 3). Here, the different

ensemble members span a wide range. While WRF

predicts for all catchments and both half-years an in-

crease of precipitation between 6.3% and 12%, CLM

simulates positive and negative trends. This is both due

to the different GCMs used and to the different re-

alizations of ECHAM5. Note also that CLM and WRF

do not necessarily agree on the sign of projected changes

although driven by the same GCM (Wagner et al. 2013).

Especially for the summer half-year in the Ammer

catchment, all CLM simulations show decreasing rainfall

tendencies, but WRF projects increasing precipitation.

Considering the ensemble means, for the Ammer catch-

ment increasing precipitation in winter and slightly de-

creasing rainfall during summer are projected. Also, for

Mulde and Ruhr precipitation in winter is projected to

increase. During summer precipitation amounts seem

fairly stable for the two northern catchments.

For temperature an increase of about 18C is projected

for all catchments, with small variations over the year.

While relative humidity values are projected to stay at

the current level (range from 21% to 1%), shortwave

incoming radiation will be reduced in the scenario pe-

riod, more pronounced in winter possibly owing to in-

creased cloudiness.

4. Hydrological models and their calibration/
validation results

The three applied hydrological models are the Pre-

cipitation Runoff Modeling System (PRMS; Leavesley

et al. 1983) for simulating Ammer and Ruhr, Soil and

Water Integrated Model (SWIM; Krysanova et al. 1998)

for Mulde and Ruhr, and Water Balance Simulation

Model–Eidgen€ossischeTechnischeHochschule (WaSiM-

ETH; Schulla and Jasper 2007) for Ammer and Mulde.

All three are deterministic models, where PRMS and

SWIM have a semidistributed approach by dividing the

watershed into areas with common hydrological proper-

ties [hydrological response units (HRUs)] and WaSiM-

ETH is fully distributed with equally sized grid cells,

determined by the user. The complexities of the models

differ with respect to the required input data, the calcu-

lation of terrestrial water balance variables (e.g., evapo-

transpiration, interception, and infiltration), and the

spatial and temporal resolution. Driving meteorolog-

ical input parameters for each HM and their applied

temporal and spatial resolution are shown in Table 4.

WaSiM-ETH uses daily and hourly input data; SWIM

and PRMS simulate discharge only in daily resolu-

tion. For the SWIM model observed precipitation data

were corrected for undercatch errors depending on

wind speed and the aggregation state of the precip-

itation (Yang et al. 1999). This procedure is called

undercatch correction, resulting in higher precipita-

tion values. PRMS and WaSiM-ETH make use of the

observed precipitation data as was applied in its usual

way in each model. All three models have a modular

structure with components for, for example, evapo-

transpiration, infiltration, and groundwater modeling.

However, they have different calculation schemes.

For example, potential evaporation is calculated after

Haude (Haude 1952) by PRMS, Priestley–Taylor

(Priestley and Taylor 1972) by SWIM, or Penman–

Monteith (Monteith 1975) by WaSiM-ETH. For each

hydrological model and catchment, an individual setting

of parameters, methods, and calculation schemes was

developed to assure reasonable and trustable HM cali-

bration results.

TABLE 4.Meteorological input variables for the hydrological models and their applied spatial and temporal resolutions in theAmmer (A),

Mulde (M), and Ruhr (R). Shown are subcatchments (SC) and hydrological response units (HRU).

PRMS SWIM WaSiM

Precipitation Sum x x x

Temperature Min. x x

Max. x x

Mean x x x

RH Mean x x

Value at 1400 LT x

Solar radiation Sum x x

Wind speed Mean x

Temporal resolution daily (R,A) daily (M,R) daily (M) and hourly (A)

Spatial resolution 51 HRUs (R) 5218 HRUs (M) 100 3 100m (A)

30 SC (R) 221 SC (M) 10 SC (A)

29 HRUs (A) 5270 HRUs (R) 400 3 400m (M)

10 SC (A) 85 SC (R) 11 SC (M)
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Calibrations of the hydrological models were per-

formed by means of shuffled complex evolution algo-

rithms (Duan et al. 1992; Pakosch 2011) and/or manually.

The performances of the models were evaluated visually

with respect to daily/hourly flows, mean (MQ) and

maximum monthly (MHQ) flow regimes, mean and

maximum annual discharges, as well as using efficiency

criteria. The applied performance criteria are the Nash–

Sutcliffe efficiency (NSE; Nash and Sutcliffe 1970),

a modified Nash–Sutcliffe coefficient (modNSE) with a

stronger focus on high flows, and the volume bias (VB).

The criteria are defined as follows:
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in which Qo is observed discharge, Qs simulated dis-

charge, and t is time. The range of NSE and modNSE is

(2‘, 1), where 1 represents the perfect accordance of

the simulated with the observed data, 0 means that the

simulations are as accurate as the mean of the obser-

vations, and negative values imply that the observed

mean is a better predictor than the HM; VB indicates

over- and underestimations.

The hydrological models were calibrated to ob-

served discharge data at several gauges in each catch-

ment, driven by observational meteorological data. The

principally applied database for calibration is DWD/PIK

(see Table 5). This set of data—containing precipitation,

temperature, relative humidity, solar radiation, and wind

speed—provides the best background for a robust and

consistent calibration at all three catchments. A combi-

nation of the REGNIE precipitation data—used for the

RCM bias correction—and the DWD/PIK data would

lead to inconsistent HM calibration results, in particular

for the most southern subcatchments of the Ammer

catchment owing to overestimations of precipitation by

the REGNIE data.

For the calibration and validation process, the split-

sample test method was applied for all models. Using

different temporal parts of a dataset for calibration and

validation allows one to assess the transferability of the

calibration results to other time periods. The HMs run,

in general, on a daily time step. For the Ammer catch-

ment, WaSiM-ETH simulations performed much better

on an hourly simulation time step compared to a daily

time step because of the small catchment size and the

alpine character. Meteorological data on an hourly time

step were only available for the years 2002–09, which

restricted the calibration and validation to this time

period. The following RCM simulations were then also

made in the hourly resolution.

Figure 4 displays the mean monthly discharge (MQ)

and mean maximum monthly discharge (MHQ) flow

characteristics for measured runoff data and simulations

based on observed meteorological data (SimObs), used

for calibration and validation. Figures 4a and 4e show

the results of the hourly Ammer simulation from 2002 to

2009, as Figs. 4b and 4f show the simulations with daily

Ammer data simulated by PRMS for the control period

from 1971 to 2000. Both HMs simulate the annual cycle

of MQ well with a slight overestimation in April, more

pronounced by the daily PRMS simulation in Fig. 4b.

The MHQ is also well simulated by both models: the

high flood peak in August of the measured data in Fig.

4e is the result of a severe flood event in 2005. Figures 4c

and 4g illustrate the results of the Mulde calibration by

SWIM and WaSiM-ETH. While SWIM overestimates

TABLE 5. Observational meteorological variables for HM calibration: temperature (T), precipitation (P), relative humidity (RH),

downward shortwave radiation (SW), and wind speed (W ).

Catchment HM Variables Source

Ammer WaSiM Hourly data of T, P, SW, RH, W (2002–09) DWD

PRMS Daily data of T, P, RH (1971–2000) DWD/PIK

Mulde SWIM Daily data of T, P, SW, RH (1971–2000) DWD/PIK

WaSiM Daily data of T, P, SW, RH, W (1971–2000) DWD/PIK

Ruhr PRMS Daily data of T, P, RH (1971–2000) DWD/PIK

Daily, hourly/8-hourly data of T, P, RH (1961–96) DWD/Ruhrverband

SWIM Daily data of T, P, SW, RH (1971–2000) DWD/PIK
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MQ during winter and underestimates it in summer,

WaSiM-ETH underestimates the runoff over the en-

tire year. The MHQ discharge, however, is over-

estimated by WaSiM-ETH and underestimated by

SWIM. The hydrological cycle for the Ruhr is shown in

Figs. 4d and 4h. Both PRMS and SWIM overestimate

MQ during winter, and PRMS also for summer. The

MHQs are well simulated with a slight overestimation

during summer by PRMS.

Table 6 gives an overview of the performance criteria

within the calibration and validation periods for the

downstream gauges Weilheim, Bad D€uben, and Wetter

of the three catchments investigated. The HMs attain

for the calibration periods (cal) NSE values between

0.77 and 0.88, and modNSE reaches high values from

0.86 to 0.96. The volume bias indicates general over-

and underestimations. In the case of gauge Weilheim

in the Ammer catchment, there are nearly no volume

differences between observations and simulations for

the calibration periods. SWIM simulates the runoff

volume of the Mulde better than WaSiM-ETH, and

the volume for gauge Wetter of the Ruhr is over-

estimated by both HMs. The stronger overestimations

in the Ruhr catchment are at least partly due to water

abstractions that were not considered in the simula-

tions. The comparison of the calibration with the

validation periods shows that for most cases no large

impairments occur for the Mulde and Ruhr catch-

ments, but the small alpine Ammer catchment shows

less transferability of the calibrated parameters to other

time periods.

5. Climate change impact on hydrology

This section discusses the impact of climate change on

the hydrology of the three catchments. First, the hy-

drological simulations driven by observed meteorolog-

ical data are compared to the simulations driven by the

bias-corrected RCM input with 7-km spatial resolution

for the 30-yr control period from 1971 to 2000. This al-

lows evaluation of the RCM data as input for the HMs.

Second, the resulting discharges of the high-resolution

RCM input for the control period 1971–2000 and the

FIG. 4. Mean (MQ) and mean maximum monthly (MHQ) flows

of observed runoff and HM simulations based on meteorological

station data (SimObs).

TABLE 6. Calibration performance of the HMs for the Ammer,

Mulde, and Ruhr catchments. The Nash–Sutcliffe efficiency

(NSE), modified Nash–Sutcliffe coefficient (MmodNSE), and

volume bias (VB) are shown for the calibration (Cal) and valida-

tion (Val) periods.

NSE ModNSE VB

Gauge Model Cal Val Cal Val Cal Val

Ammer

Weilheim WaSiM 0.87 0.72 0.95 0.90 22% 11%

PRMS 0.78 0.68 0.90 0.71 21% 3%

Mulde

Bad D€uben SWIM 0.77 0.79 0.90 0.85 7% 4%

WaSiM 0.79 0.82 0.86 0.94 212% 210%

Ruhr

Wetter PRMS 0.82 0.71 0.91 0.91 15% 24%

SWIM 0.88 0.80 0.96 0.94 16% 15%
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scenario period 2021–50 are compared to assess the

impact of climate change on hydrology.

a. Control period

Figure 5 shows theMQ (left) andMHQ (right) results

of the simulations driven by observed meteorological

data and the RCM simulation results for the control

period 1971–2000.

1) AMMER

Precipitation is overestimated by the RCMs at the

Ammer catchment throughout the year. In winter the

discharge is not directly affected by these precipitation

overestimations, as precipitation contributes mainly

to snow storage. Thus, the simulated runoff at gauge

Weilheim based on RCM input from November until

March is close to the simulations with observed meteo-

rological data (SimObs) (see Fig. 5, top). However, the

RCM precipitation causes an overestimation of the

snow storage which is 2–3 times larger than the sim-

ulated one for SimObs (not shown). For the rest of the

year, discharge in the Ammer is overestimated by the

CLM-driven simulations owing to higher precipitation

amounts and the additional snowmelt in spring and early

summer. For example inMay, around 20%of total runoff

of the SimObs simulations originates from snowmelt,

whereas for the RCM-driven simulations the portion of

the snow storage on total runoff is still 45%–60%. The

WRF-driven simulation generates considerably lower

discharges than the CLM ones. This is because, first,

a minor overestimation of precipitation and, thus, less

overestimation of snow storage in winter and, second,

the underestimated relative humidity causes high evap-

oration rates leading to amarkedly reduced runoff during

summer.

A sensitivity test of relative humidity (RH) with CLM

and WRF-RH input data is presented in Fig. 6. When

the original WRF-RH data is replaced by the CLM-RH

and all other input variables like precipitation and

temperature are unchanged (red), MQdraws near to the

original CLM simulation (green), but keeps its charac-

teristic peak flow inMay from theWRF simulation. The

contrary behavior occurs when the relative humidity of

WRF replaces the CLM-RH (blue). This indicates the

large influence of RH and partly explains the differ-

ences of up to 15m3 s21 during summer and autumn in

the simulations of the Ammer catchment with WaSiM-

ETH. PRMS does not react as strongly to the input

parameter of humidity at gauge Weilheim. While the

overestimation of the CLM-driven simulations for

both HMs, WaSiM-ETH, and PRMS are similar for

mean monthly discharges, maximum monthly dis-

charges shown in Fig. 5 (top right) are, in particular,

overestimated more in summer by WaSiM-ETH than

by PRMS.

2) MULDE

At the downstream gauge Bad D€uben in the Mulde

catchment (Fig. 5, middle), the individual RCM simu-

lations for the control period also differ. The simulations

driven by WRF induce the lowest mean monthly dis-

charges. The climate input from CLM mostly results in

an overestimation. This overestimation is more pro-

nounced in summer and stronger for the WaSiM-ETH

simulations. That also applies to the mean maximum

monthly discharge. There are several reasons for the

deviations between the simulations with observations

and climate input from the RCMs: The undercatch-

corrected precipitation data used during calibration of

the SWIMmodel are higher than for the REGNIE data,

which were applied for bias correction of the RCM

precipitation. This is more pronounced during winter

when the measurement errors of snow are adjusted. The

underestimation of discharge by WaSiM-ETH with

WRF climate input in summer is comparable with the

situation in the Ammer catchment, likely owing to

the underestimation of humidity by WRF in summer.

The overestimation of discharge in the simulations

with CLM climate input can be attributed to the over-

estimation of humidity and underestimation of radiation

by CLM. The overestimation is stronger in the simula-

tions with WaSiM-ETH. In the simulations with SWIM,

the factors resulting in a lower discharge (lower pre-

cipitation input than for calibration) and higher discharge

(higher humidity and lower radiation) partly compen-

sate and, thus, lead to more moderate discharge over-

estimations. The overestimation of discharge driven by

CLM climate input is larger during the summer than the

winter months. This is probably due to the effect of

evapotranspiration (which is reduced by the lower ra-

diation and higher humidity) that is stronger during the

summer months. The CLM-driven runs show a notice-

able peak in August, which cannot be explained by

the mean monthly precipitation sums, an extreme pre-

cipitation event, or the calculated evaporation rates. A

further analysis of mean 3-day maximum precipitation

sums showed that the peak most likely results from

higher precipitation intensities than in the observed data

(analysis not shown here).

3) RUHR

Figure 5 (bottom) shows theMQandMHQ results for

the gauge Wetter. While the single SWIM simulations

are comparable and fit the seasonal cycle, given by the

SimObs curve well, the single RCM results of PRMS

varywidely. The PRMS-WRF–driven simulation conforms
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FIG. 5. (left) MQ and (right) MHQ flows for the control period 1971–2000. Simulations are based on measured

meteorological data (SimObs) and RCM results for both HMs at the three investigated catchments.
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to the simulation driven by observed meteorological

data. In contrast, the CLM simulations and, in particu-

lar, the discharge resulting from the CLM-C3 combi-

nation (purple) have a too small seasonal cycle, inducing

overestimation of low flow conditions during summer,

more pronounced for MQ. The overestimation of dis-

charge in summer by PRMS is, comparable to the Ammer

simulations, induced by the overestimation of RH. SWIM

does not react as strongly to RH in summer at gauge

Wetter.

b. Scenario period

To investigate possible future changes in discharge

and flood hazard, the percentage changes in MQ and

MHQ between the scenario (2021–50) and control

period (1971–2000) are shown in Fig. 7 for all three

catchments.

1) AMMER

The Ammer catchment shows tendencies of in-

creasing mean monthly discharge in winter and de-

creasing discharge during summer for the scenario

period (see Fig. 7, top left). WaSiM-ETH predicts a

more pronounced trend in winter than PRMS. The

spread of the single ensemble members is large for both

hydrological models, so a reliable statement about a

future change in discharge is not possible. The WRF-

PRMS simulation is the only one that reacts in the

opposite way to the other RCMs in winter. The reason

for this exceptional reaction in PRMS could not be

fully explained. At this point the WaSiM-ETH results

are more plausible, reflecting the change in WRF-

precipitation input with increasing values over the entire

year except for December, January, and June. To detect

a trend for MHQ is even more difficult (see Fig. 7, top

right), as the differences of the ensemble members are

larger than forMQ. The single ensemblemembers show,

in most cases, the same discharge tendencies as for the

mean monthly discharge. For the ensemble mean, in-

creasing tendencies of peak flows are projected in

winter, while decreasing trends can be found in August

and September. The projected mean changes would in-

duce a flattening of the annual discharge cycle at the

alpine Ammer catchment. The combination of higher

temperatures and, thus, more precipitation falling as rain

in winter will increase discharge and also induce an earlier

beginning of the snowmelt season. In summer, reduced

projected rainfall (exceptWRF) and higher temperatures,

hence higher evaporation, leads to lower runoffs.

2) MULDE

The projected slight future increase of precipitation in

the Mulde catchment almost throughout the whole year

is reflected by changes in simulated discharge between

the scenario and control period for the different en-

semble members (Fig. 7, middle). The simulation with

the WRF-E5 climate input shows an increase in dis-

charge in nearly all months, consistent with the change

in precipitation for this ensemble member. The CLM

simulation results cause heterogeneous future change

signals. In August, the CLM results show the most no-

table decline of runoff, most likely owing to lower pre-

cipitation intensities than in the control period. For

example, for CLM-C3, the intensities in August are

higher than in July for the control run, despite compa-

rable mean precipitation sums. In the scenario period,

the difference between July and August precipitation

intensities are smaller than for the control period (con-

trol: 15%, scenario: 9%), and the total intensities are

also lower (decrease of 6% in July and 12% in August);

thus, the discharge peak in August is absent in the future

period (analysis not shown here).

3) RUHR

For the Ruhr catchment, the ensemble spread of MQ

andMHQ is large at gaugeWetter (Fig. 7, bottom). The

ensemblemean projects an increase of runoff formost of

the year except for August, October (MQ and MHQ),

and January (MQ). In contrast to the Ammer catch-

ment, the annual cycle of the Ruhr will be intensified.

PRMS and SWIM show a comparable and consistent

picture for the single RCM results. Similar to the Ammer

and Mulde catchments, WRF results in increasing dis-

charges and flood tendencies in summer for the scenario

period. The simulations based on the Community Land

Model show signals of increasing and decreasing mean

and maximum monthly discharge values.

FIG. 6. Sensitivity test of the influence of RH to the discharge

simulations with WaSiM-ETH in the Ammer catchment using

CLM and WRF input for the control period 1971–2000.
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FIG. 7. Percentage difference of (left) MQ and (right) MHQ flows between the scenario (2021–50) and control

(1971–2000) period.
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The resulting impacts of climate change on regional

hydrology, and particularly with regard to flood proba-

bility, are subject to intensive research. For the twenty-

first century, studies have shown heterogeneous results

for discharge changes and extreme flood events in

Germany, for example, for our three catchments of in-

vestigation (Menzel and Burger 2002; Kunstmann et al.

2004; Morgenschweis et al. 2007). Menzel and Burger

(2002) investigated the runoff changes of the Mulde

river in eastern Germany for the next hundred years and

ascertained a clear tendency of decreasing precipitation

and thus reduced discharges for this catchment. These

results are based on a single-model chain with one

downscaled GCM driving a single HM. Our multimodel

study gives contrary conclusions, beginning with pre-

cipitation signals that are highly different depending on

the chosen climate model in this catchment. Both in-

creasing and decreasing precipitation projections cause

slightly higher mean runoffs at the Mulde. Kunstmann

et al. (2004) made a single-model study for the alpine

Ammer catchment in the south of Germany. Increased

simulated evaporation rates in summer thereby induce

a reduction of summer runoff, and warmer winter tem-

peratures yield to higher discharge owing to a reduced

snow–rain ratio. Unlike the preceding climate change

study, the general trends found by Kunstmann et al. can

be confirmed by our modeling results. Morgenschweis

et al. (2007) studied the impact of climate change on the

management of the reservoirs in the Ruhr catchment.

The impact study is based on an ensemble strategy with

one RCM, one river basin model, and three common

SRES scenarios. They found that runoff remains at

roughly the same level for the A1B scenario during the

period 2011–70 compared to their reference period

1961–95. Only for the last investigated time period

(2071–2100) did they detect decreasing runoff tenden-

cies in autumn and increased runoff during the winter

months owing to intensified rainfall. In our multimodel

study, considerably rising discharges in winter are,

however, already projected until the year 2050. Also, the

autumnal decrease of discharge with up to 40% can not

be confirmed by our results. However, our modeling

results are affected by uncertainties arising from the use

of various datasets for the HM calibration and the RCM

bias correction, individual configurations of model cal-

ibration, and the model chain by itself.

c. Uncertainties within the model chain

The large differences within the projected change

signals for all three catchments raise the question about

the sources of uncertainties within the model chain. For

this purpose, the influence of the four model chain

members (GCMs, different realizations, RCMs, and

HMs) are analyzed and compared. Our ensemble con-

sists of five RCM simulations and 10 hydrological sim-

ulations for each catchment and is therefore too small

for an extensive quantitative statistical analysis. How-

ever, it permits a qualitative estimation of the ensemble

spread and the contribution of GCMs, RCMs, and HMs

to this spread.

The relative changes in discharge for given return

periods are shown in Fig. 8. This is performed with the

plotting position method, showing the future relation

between return periods and the relative change of re-

turn values, determined by the annual, winter, and

summer maximum discharge values. The return value

changes are divided into the single RCM results and

one color represents both HMs. The wide spread of the

single simulation results, already ascertained by theMQ

and MHQ changes, is reconfirmed by the return value

changes. The variability of the change signals is most

pronounced in theMulde catchment, with a wide spread

of positive and negative signals. It is striking that the

results of one RCM are mostly close together; however,

the RCMs among each other differ considerably. This is

not only valid for different RCMs, for example, at the

Mulde catchment in the summer half-year, when WRF

(orange) andCLM (dark green) project opposite change

signals, but also for different realizations of one RCM

(e.g., first and second realizations of CLM in winter at

the Mulde and Ammer). The differences between the

three realizations of the CLM RCM also entail dis-

crepancies among the simulations driven by different

GCMs. Figure 9 shows the same method and results as

Fig. 8, but grouped according to the single hydrological

model results. The mean change signals of the HMs are

close together, and the single HMs do not show di-

vergent change signals in contrast to the climate model

results. The only exception is the winter half-year at the

Ammer, when WaSiM-ETH and PRMS do not agree

for return periods shorter than 5 yr. Analysis of Figs. 8

and 9 indicates aminor impact of theHMs on the overall

uncertainty within the applied model chain, in contrast

to the climate models.

To further estimate which model chain member cau-

ses the largest contribution to the overall variability, the

particular variabilities of the projections for the future

changes are compared. Here, the projected climate

change signals of MHQ are analyzed. The results based

on MQ (not mentioned here) show comparable results.

For the analysis, the ensemble is divided into four

groups. The first group represents the uncertainties

produced by the GCMs. The changes in MHQ between

the scenario and control period of the CLM simula-

tions driven by the GCMs ECHAM5 and CCCma3 are

examined. If the two different GCMs yield similar
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(different) change signals under the same conditions

(same gauge, realization, and HM), the range of vari-

ability and therefore the resulting uncertainty is small

(large). The second group represents the natural vari-

ability of the projections and consists of the three dif-

ferent realizations of ECHAM5, downscaled by CLM.

The uncertainties produced by the RCMs is represented

by the WRF and CLM simulations driven by the first

realization of ECHAM5, in group three. The fourth

group consists of the differences of the projected future

changes in MHQ, caused by the different HMs. To test

whether the groups differ from each other, two common

methods were applied: analysis of variance (ANOVA)

(Morrison 1967) as a parametric and Kruskal–Wallis

(K-W) (Kruskal and Wallis 1952) as a nonparametric

statistical test. The applicability of both test schemes

was assured by testing the distributions of the formed

groups (not shown). Table 7 shows the resulting

p values of the two tests. Low values indicate more

significant differences between the tested groups and,

thus, a high proportion to the uncertainty within the

model chain.

The largest contribution to the overall uncertainty in

summer results from the two different RCMs, followed

by the GCMs and their realizations together with the

three HMs. The large influence of the RCMs on the

future runoff in summer is not unexpected, as WRF and

CLM show almost always divergent future changes of

precipitation, which is the most important factor for

discharge. As seen in Wagner et al. (2013), the climate

change signals of the CLM-E5R1 andWRF-E5R1 differ

substantially over the whole region of Germany; thus,

small shifts in the patterns over the catchments is not

enough to explain this. However, there are important

differences between the two models that can have an

impact, for example, the convection parameterization,

as different parameterizations can have different soil-

moisture feedback sensitivities.

In winter, the main uncertainties result from natural

variability, depending on the statistical test, followed by

FIG. 8. Changes in discharge for given return periods based on change of the maximum annual, summer half-year

(SH) or winter half-year (WH) values (2021–50 and 1971–2000). The gray shaded areas mark the maximum range of

the single ensemble members (maximum of shaded area for Mulde/year, 153%; Mulde/SH, 286%; and Ruhr/SH,

108%). One color implies both HMs.
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the RCMs (K-W) or the GCMs (ANOVA). The un-

certainty in winter is not much affected by the HMs.

As the RCM and GCM groups are especially under-

represented in our study, the results of the applied sta-

tistical tests should not be overrated. They confirm the

already detected arrangement of uncertainty sources by

means of visual analysis of Figs. 7, 8, and 9.

However, the majority of previous studies about un-

certainties in multimodel impact studies confirm the

small contribution of the HMs to the overall variability

of results (Andr�easson et al. 2004; Wilby and Harris

2006). The latter investigated the impact of climate

change on low flows at the Thames using four GCMs,

two emission scenarios, two different statistical down-

scaling methods, and two HM structures with two dif-

ferent parameter sets. They found that the GCMs cause

the largest uncertainty, followed by the downscaling

method and emission scenarios and, finally, the HMs.

Kay et al. (2008) confirm the important role of the global

models within a multimodel impact study, investigating

changing flood frequencies in England with five GCMs,

four emission scenarios, statistically and dynamically

downscaled data, and two HMs with different calibra-

tion sets. But they also point out that natural variability

plays an important role for the uncertainty and that the

global models are as important as they are in this study

because one of the five models predicts, in contrast

to the other applied models, large increases in winter

rainfall. That natural variability can cause more un-

certainty than different climate models within a model

chain is also tested by Booij (2005), who explored

changes in flood frequency at the Meuse in western

Europe. A study by Huang et al. (2013) confirms the

FIG. 9. As in Fig. 8 but one color implies one HM and all RCMs.

TABLE 7. The p values of the statistical tests ANOVA and K-W

for the winter (WH) and summer (SH) half-year. Low values in-

dicate a high proportion to the overall uncertainty.

WH SH

ANOVA K-W ANOVA K-W

GCM 0.11 0.11 0.08 0.09

Realizations 0.00 0.00 0.19 0.22

RCM 0.37 0.08 0.00 0.00

HM 0.99 0.98 0.26 0.21
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high influence of the use of different RCMs on the

overall uncertainty. With two dynamically and one sta-

tistically downscaled RCMs and three emission sce-

narios driving the SWIM model, they investigated

climate change impacts on river flood conditions for

the five largest river basins in Germany. They were faced

with highly divergent hydrological simulation pro-

jections and assigned the major uncertainty in this study

to the use of different kinds of RCMs.

6. Discussion and conclusions

This study investigated the projected changes of dis-

charge together with the associated uncertainty of three

small- to medium-sized catchments in Germany for the

near future. The future period 2021–50 was chosen for

its planning relevance and its relative independence

from uncertain scenario assumptions about future green-

house gas emissions. However, the choice of the near-

future scenario implies a weaker climate change signal

and the 30-yr time period impedes statistical analyses

of extreme values.

The single hydrological model simulations in our

study produce varying change signals, and the range of

the different RCM-based simulations is very large and

prohibits a clear estimation about future changes of

flood discharge in Germany. The large spread of the

climate models transfers to the hydrological simulation

results. The necessity of a bias correction of the mete-

orological model input for the hydrological impact

analysis is shown in Fig. 10 for the mean monthly dis-

charge at gauge Bad D€uben (Mulde). The simulations

without bias-corrected input exceed the observed dis-

charge up to 4 times and also overestimate the seasonal

cycle. An additional possibility to counter the meteo-

rological biases could be to correct the biases of the

GCMs. Xu and Yang (2012) successfully developed an

improved dynamical downscaling method (IDD) that

corrects, after downscaling by a RCM, the climatologi-

cal means, extreme events, and probability distributions

for various variables like temperature, precipitation,

wind vectors, and moisture. Such a method could pre-

vent the introduction of additional biases within the

model chain and, for example, circumvent the over- and

underestimations of runoff in the hydrological modeling

resulting from biased humidity values. This method,

however, does not guarantee bias-free data (RCM bias

is still there), and it is unclear how climate change signals

are affected. The biases, and bias correction, can have

large impacts on the results, and it is important to work

with decreasing biases in simulations and simultaneously

with conservative bias correction as an intermediary

step (e.g., Xu and Yang 2012; Berg et al. 2012; Piani and

Haerter 2012).

Despite the relatively small size of the ensemble, our

study permits an estimation of the range of results—

especially in comparison to single-model studies—and

also an attribution of the different sources of uncertainty

in a qualitative way. Within our project, the restricted

number of suitable GCMs and the computational de-

mands of the simulations inhibited a larger ensemble.

Nevertheless, this is one of the largest currently avail-

able concerted RCM-based ensembles at such a high

resolution. The analysis of our ensemble showed that for

the climate change signal, the main uncertainties within

the model chain result from the RCMs, especially in

summer. In winter, the natural variability, represented

by the three realizations of ECHAM5, cause the highest

contribution to the uncertainty. The impact of the HMs

mostly plays a minor role. Furthermore, our study con-

firms the necessity of amultimodel approach throughout

the modeling chain. The results demonstrate that single

simulations can be quite misleading and that small en-

sembles can give qualitative and limited quantitative

indications of the existence and uncertainty range of the

change signal.
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