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S U M M A R Y
Earthquakes are commonly located by linearized inversion of discrete arrival time picks made
from signals recorded at a network of seismic stations. If mis-picks are made, these will
contribute to the location, therefore causing potential bias. For data recorded by a dense
seismic array, direct imaging methods can be applied instead. We describe the ‘coalescence
microseismic mapping’ method, which is a bridge between the two approaches and will operate
with seismic data recorded continuously on a sparse array. By continuously mapping scalar
signals derived from the envelope of seismic arrivals we derive robust estimates of the spatio-
temporal coordinates of the origins of seismic events. Noisy data are migrated away from the
correct origin, so do not contribute to errors in location. The method is rooted in a Bayesian
formulation of event location traveltime inversion, allows imaging of source locations and has
the capacity to handle errors in modelled traveltimes. It has the advantage of working with any
3-D velocity model, which therefore may include anisotropy. It also automatically incorporates
both P- and S-wave data. A multiresolution grid search leads to an efficient implementation,
with a search over a larger domain including joint inversion for location and velocity structure
possible where warranted by the data quality. We discuss the theory and implementation of
this method and illustrate it with real data from microseismic events in Iceland caused by melt
intrusion in the crust.

Key words: Numerical solutions; Inverse Theory; Probability distributions; Volcano seis-
mology.

1 I N T RO D U C T I O N

Most current techniques for locating the hypocentral coordinates
and origin times of local earthquakes first reduce the data to a series
of arrival time picks and then invert those arrival times using an
assumed velocity structure. This methodology is subject to errors
where there are mis-picks and outliers, because they all contribute
to the final location. Furthermore, where there are many events oc-
curring in close succession, such as frequently happens in volcano-
tectonic settings, it is often problematic to associate the correct P-
and S-wave arrival picks with particular individual events, leading
to possible mislocations.

An alternative approach is to image the seismic events directly
by backpropagating the data to a focus at the correct subsurface
location and origin time. This is similar to the methodology used
for imaging multichannel seismic reflection profiles. However, to
work effectively, imaging techniques require both accurate knowl-
edge of the subsurface velocity field and dense sampling of the
wavefield to ensure that it is not spatially aliased (Baker et al. 2005;
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Gajewski & Tessmer 2005). It is rare for passive earthquake mon-
itoring networks to be sufficiently dense to prevent spatial alias-
ing. Also, the radiation pattern from the source fault mechanism
needs to be taken into account to ensure constructive interference
at the correct source point because the seismic energy radiated in
different sectors will have different polarities. Furthermore, uncer-
tainties in modelled times resulting from uncertain velocity struc-
ture, which are treated explicitly in some traveltime inversion soft-
ware, have not yet been incorporated in a source location imaging
algorithm.

Here we take a hybrid approach, which uses the strengths of both
imaging and traveltime inversion to constrain the event locations
and times directly from continuous seismic data recorded across a
sparse local seismometer array. In its simplest form, the inversion
of the data can be understood as an exhaustive search over the data
and a network of trial locations on a subsurface 3-D grid, for likely
origin times and locations of seismic events (Fig. 1).

A similar approach has been suggested by Kao & Shan (2004)
in their source scanning algorithm (SSA). This performs a contin-
uous search in time and space for seismic events to produce a time
evolving image of likely source locations. The time and location of
a seismic source is identified by summing the normalized ampli-
tudes of the strongest arrivals within a time window with a dura-
tion corresponding to the estimated uncertainty in the arrival times.
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Figure 1. Schematic diagram showing 3-D grid of subsurface nodes (blue
dots) with array of surface receivers (green triangles). For each time step, the
onset functions from the seismic data are backmigrated using the velocity
model and look-up tables, from every receiver to each node point using onset
functions from both P-wave data (from vertical component) and S-wave data
(from horizontal components), and the onset functions at each node point
are then summed.

As implemented by Kao & Shan (2004) it uses just the direct S-wave
arrivals, which generally have the highest amplitudes, although in
principle it could be expanded to include other phases.

In this paper we propose a variant of their ray-based mapping.
Instead of mapping the maximum amplitudes within a window as
in the SSA, the coalescence microseismic mapping (CMM) method
computes and maps signals such that the mapped signals relate
to the statistical error in the measured times of the corresponding
arrivals. For the method implemented here, it can be shown that the
uncertainty in arrival time estimates depends linearly on the inverse
of the logarithm of the signal-to-noise ratio (SNR) of the seismic
arrival.

When the signals relate statistically to the arrival time estimates,
Bayesian theory describes how the maps can be interpreted as prob-
ability density functions (pdfs) (Tarantola & Valette 1982); essen-
tially, instead of summing the signals directly, we are summing
logarithms. Rather than reducing the data to discrete arrival time
picks, in the CMM method the signals are transformed to proba-
bility distributions for the arrival time estimates based on a short-
term-average to long-term-average (STA/LTA) ratio function. This
numerical approach can be understood as a generalization of trav-
eltime inversion, where the characterization of the measured arrival
time errors is no longer restricted to a well-known distribution, such
as the normal distribution in least-squares inversions.

2 M E T H O D

There are three main steps in the CMM location method.
First, a look-up table (LUT) of traveltimes is constructed by

forward modelling from every gridpoint in the subsurface to each
receiver station using a defined velocity model. This only has to be
done once for any given search volume and velocity model, thus
making the subsequent migration of signals fast. Traveltime LUTs
are constructed for both P and S waves. In principle the LUTs can use
known velocity fields of any complexity, including incorporating
anisotropy, variable Vp/Vs structure and 3-D variations in velocity.
Unlike many traveltime inversion methods in common use, they
can also incorporate topography and shallow velocity variations
directly, thus avoiding the need for separate statics corrections.

Where shallow velocity variations are poorly constrained, the use
of station statics can improve focussing. In Section 3.2, we describe
how station statics can be determined iteratively without recourse
to explicit traveltime residuals.

Second, the continuous digital seismic data from every seis-
mometer are input and signals representing the arrivals are derived
from them (see Section 2.1 for more details). If data come from
seismometers with different responses, these are transformed to a
common response to ensure that all stations contribute to the final
solution equally and without bias. We need to transform the input
seismic waveforms to signals carrying information about the pres-
ence and timing of the seismic arrivals to apply Bayesian methods
to these signals. The Bayesian approach also enables us to incorpo-
rate and to weight additional information, such as measured arrival
angles if they are available. A simple form of arrival identification
is the amplitude envelope, as implemented in the SSA of Kao &
Shan (2004). Instead, we implement an STA/LTA arrival detection
algorithm as the signal transform. The resultant peak amplitudes
in STA/LTA traces are proportional to the SNR of the arrivals. As
noted by Aki & Richards (1980) and Hatton et al. (1986), there
is a direct relationship between the inverse logarithm of the SNR
and the uncertainty in the estimation of the timing of an arrival.
In Fig. 2 we show the STA/LTA onset signals derived from seismic
data recorded from a shallow microearthquake under Askja volcano
in Iceland. The vertical seismometer trace contains dominantly the
P-wave arrivals while the horizontal traces record the S waves more
strongly.

We define a continuous detection function fD(t), treating the spe-
cific case of fD(t) as the STA/LTA function. If y(t) is the recorded
multicomponent signal, the requirement we place on fD(t) = f(y (t))
is that it returns a positive real scalar value. Polarization analysis of
a multicomponent signal, array beamforming and other techniques
can enhance the discrimination of specific phase arrivals such as
P, SH and SV if it is desired to use these. These could be labelled
explicitly as fDP (t), fDSH (t) and fDSV (t) and used with correspond-
ing LUTs. We then establish an empirical relationship between fD(t)
and the statistical uncertainty of the measured phase arrival time
to derive the onset function fd(t), which represents the pdf for the
phase arrival time pick.

The third and final step is to migrate the onset functions fd(t) back
to every gridpoint in turn, for every time step, using the LUTs (see
Section 2.2 for more details). Making the simplifying assumption
that the traveltime errors in the forward model are independent, we
apply a Bayesian formulation of traveltime inverse theory to develop
a smoothing filter, which transforms the detection function fD into
a phase arrival time pdf, fR, which describes both the picking and
forward-modelling error. The backmigration is done using separate
LUTs for each phase: in our case we use the vertical component
of the seismic data to identify the onset function of the P waves
and the horizontal components to map the S waves. To carry out
the backpropagation as efficiently as possible, we make use of a
multiresolution approach (described in Section 2.3). The resulting
spatio-temporal maps represent the pdfs for hypocentres and origin
times. We note that throughout most of the text we use the term
‘probability density’ loosely to refer to un-normalized probability
density distributions.

2.1 Arrival onset detection

The STA/LTA function constitutes a form of noise normalization.
Applied as an event detector, arrival detection is triggered when
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Figure 2. Vertical component (top left panel) and horizontal component (bottom left panel) waveforms and the corresponding STA/LTA onset signal (right-
hand side) for a shallow seismic event from Askja, Iceland. The STA/LTA onset functions are calculated separately for each horizontal component, and then
the S-wave onset functions are calculated from the rms summation at each time step of the two horizontal component onset functions. Note that the onset
signals shown in the right-hand panels sometimes also have maxima other than the ‘correct’ phase arrivals, such as the prominent P arrival on the horizontal
components of DYNG in the lower right panel: these do not matter because they are migrated away from the true coalescence point by the wrong look-up table
(LUT) (in this case the S-wave LUT applied to the P-wave onset signal) and so neither contribute to the coalescence, nor bias the solution.

this function exceeds a given threshold. The threshold is chosen to
achieve an acceptable number of true versus false triggers.

In the implementation used here, the STA/LTA function as the
arrival onset function fD(t) is computed for the amplitude of the
seismic signal y(t) for a short time window of length WS and a long
time window of length WL (see also Table 1 for a list of symbols)
as

fD(t) = WL

∫ WS

0 |y(t + τ )| dτ

WS

∫ 0
−WL

|y(t + τ )| dτ
. (1)

In coalescence mapping, we require the pdf for the timing of
an arrival, expressed through fd(t). A maximum occurs when the
first derivative of fd(t) is zero, corresponding to the most likely
arrival time pick. The second derivative of the logarithm of fd(t),
Ld(t) = log (fd(t)), encompasses the uncertainty. Written as a second-
order Taylor expansion at a local maximum t = td

Ld (t) = Ld (td ) + 1

2

∂2 Ld

∂t2

∣∣∣∣
t=td

(t − td )2 + · · · (2)

constitutes a Gaussian approximation at t = td, where the inverse of
the variance

σ−2
d = −∂2 Ld

∂t2
.

For the detection function fD(t) and its logarithm
LD(t) = log (fD(t)), the equivalent Taylor expansion at a local
maximum t = tD is

L D(t) = L D(tD) + 1

2

∂2 L D

∂t2

∣∣∣∣
t=tD

(t − tD)2 + · · · (3)

in the vicinity of local maxima tD. LD(t) thus has the characteristics
of a likelihood function for arrival time.

The variance estimate is dependent on the bandwidth of the sig-
nal and the choice of short window length WS; a good choice is
one to two periods of the signal. We calibrate the relationship
between the error in the observed arrival times tD, the variance
σ 2

D , and the inverse of the logarithm of the SNR LD(tD) by adding
synthetic signals to actually observed noise for a large range of
SNRs. In the example in Fig. 3, the synthetic signal was gener-
ated by filtering a delta impulse at time ta with a fourth-order
Butterworth filter with bandwidth 4–20 Hz (Fig. 3a). Only the
amplitude and timing of the arrivals change; they are otherwise
identical.

For the arrival detection, a Gaussian function (red curve in
Fig. 3b) is fitted locally to the STA/LTA function fD(t) for the max-
ima above a threshold (here SNR = 3), returning arrival time pick
tD and variance σ 2

D . Although the synthetic signals used in this
example are simplified, fD(t) looks similar for seismograms of ac-
tual earthquakes (compare with traces in Fig. 2). The logarithm of
σ 2

D shows a linear relation to the inverse of the logarithm of the
SNR (Fig. 3c), expressing the fact that the larger the maxima of
the waveform (i.e. SNR) the narrower the Gaussian that fits the
onset function. Therefore, the choice of a minimum SNR thresh-
old is equivalent to imposing a maximum picking error. Finally,
σ 2

d is computed in bins of σ 2
D for a large population of arrivals

as the variance of the picking error ta−tD. Fig. 3(d) demonstrates
the linear relationship between the picking error and the width of
the Gaussian function (Fig. 3c). In combination with Fig. 3(b) we
can thus infer a simple relation between the picking error and the
SNR, which we express in terms of a scaling factor α and the
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Table 1. List of symbols.

Univariate time-series/distributions and derived quantities:

y(t) Input time-series
fD(t) Detection function, in the implementation here, the STA/LTA filtered trace of y(t)
fd(t) Onset pdf representing the likelihood and uncertainty of traveltime picks (peaks at possible arrivals)
fr(t) Theoretical phase arrival pdf, representing uncertainties due to both picking and forward modelling
fg(t) pdf, representing the uncertainty of traveltime prediction (peaked at t = 0)

fG (t) = exp

(
−t2

2σ 2
G

)
Empirical pdf which can be convolved with fD(t) to generate fR(t)

fR(t) Empirical phase arrival pdf, the width of Gaussians is stretched by factor α with respect to fr(t)
LD(t), Ld(t), LR(t) Logarithms of above functions
tD Local maximum of detection function, generally slightly delayed with respect to first-break pick
td Local maximum of onset function, ‘pick time’
ta Actual arrival time of a phase (used for synthetic data in calibration procedure)
σ 2

D Variance of Gaussian fitting a maximum of the detection function
σ 2

d Variance of picking time due to noisy data
σ 2

g Variance resulting from forward modelling
σ 2

r = σ 2
d + σ 2

g Variance of arrival time due to combination of picking and forward modelling errors
σ 2

G = (σ 2
g − σ 2

A)/α Variance of Gaussian in fG(t)

σ 2
R ≈ σ 2

r
α

Variance of Gaussians in fR(t), determines resolution and robustness of coalescence

Multivariate distributions:

Fd (T ) = ∏
fdi (ti ) Multivariate pdf of onset times for arrivals at all stations and phase types

Fg(T |�s ) Multivariate pdf of forward modelled traveltimes for source location at �s
F̂g (T |�s ) = Fg

(
T + Tg(�s )|�s )

Multivariate pdf expressing uncertainty of theoretical predictions centred around T = 0

Location and coalescence:

tgi (�s ) Forward modelled traveltime for hypocentre at �s
Tg(�s ) Vector describing traveltimes for all stations/phase types
t0 (Putative) Earthquake origin time
fc(t, �s ) Coalescence function describing the pdf of an event at origin time t and location �s
f̂C (t) Maximum coalescence value of the spatial map at each time step
t̂0 Maximum likelihood event origin time (local maximum of f̂C (t))
fs (�s ) A posteriori pdf for location of one hypocentre (marginalization of fC over a short time window around t̂0
�trms rms of arrival time residuals, describing the scatter of detection function maxima tdi around predicted times tgi

Empirical constants:

α, σ 2
A Slope and intercept of linear function relating variance of detection function and pick uncertainty (eq. 4)

User-settable parameters or parameters directly derived from user parameters:

WS, WL Short and long time window used by STA/LTA algorithm
�t0 Window length over which the marginalization of fC is performed to generate fs
�tw Window length for maximum value filter in multiresolution search
�tx Time interval required by seismic wavefront to pass a grid cell diagonally

Notes: (i) All univariate functions can also be written with an index i enumerating all station/phase-type combinations.
(ii) pdf is used loosely to describe any un-normalized density function describing relative probabilities.

intercept σ 2
A:

σ 2
d = ασ 2

D − σ 2
A. (4)

We note that the values of α and σ 2
A in the regressions will de-

pend on the frequency contents of noise and signal as well as the
chosen short-term and long-term window lengths, WS and WL. We
will later use this relationship to transform the detection function
trace into the trace representing the phase arrival time probabil-
ity densities. However, it is not always necessary to carry out
this calibration explicitly for each new data set. Where standard
values are used for α and σ A, explicit error bounds cannot be
determined reliably, but different arrivals will still be weighted
correctly.

The maximum of fD(t), tD, is often later in time than the first
time-break, that is, the idealized arrival time td. If the time-shift is
the same for P and S detections, this does not affect the hypocen-
tre determination, since all the arrival time estimates are offset in
a similar way, but the origin time may be estimated slightly too

late. If there is a systematic difference in the bias between P and
S, then the use of station statics (see Section 3.2) is highly recom-
mended to mitigate against a systematic effect on earthquake depth
estimates.

Although the simple mapping between the width of the STA/LTA
arrival onset function and the picking error worked well for our lo-
cal and microseismic data sets, this assumption will need to be
checked when applying the algorithm to data sets with different
properties, for example, much larger-scale arrays. In any case, ex-
tension to more sophisticated detection algorithms is straightfor-
ward as long as any such mapping can be defined, even if it is
approximate.

2.2 Coalescence microseismic mapping

Following the formulation of Tarantola & Valette (1982), we con-
struct a numerical solution to the hypocentre estimate. For the arrival
time measurements T = [t1, t2, . . . , tn], where the measurements
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Figure 3. Example of model calibration for STA/LTA arrival onset function fD(t) for two arrivals. (a) Measured noise with synthetic arrivals superimposed.
The signal bandwidth is 4–20 Hz. (b) STA/LTA trace fD(t) with an STA/LTA short window length of 0.15 s: red lines are Gaussian curves fitted to arrivals and
their uncertainties σD. (c) Predicted uncertainties σ 2

D versus the inverse logarithm of the signal-to-noise ratio (SNR). (d) Observed picking error variance σ 2
d

plotted against width squared of Gaussian fits to arrivals on onset trace σ 2
D . Even at very high SNR, where the picking error is essentially zero, the finite width

of the signal results in a finite width of the Gaussian, determining the behaviour of the curve for σ 2
D <∼0.015 s2.

are independent (errors uncorrelated) the joint probability density
is the product of the individual probability densities,

Fd (T ) =
n∏

i=1

fdi (ti ). (5)

The i enumerates different stations but also different phases (P or
S). Correspondingly, the multivariate density Fg (T |�s ) describes the
probability of theoretical traveltimes for a seismic source located at
�s . This multivariate distribution Fg fully describes the forward prob-
lem and its inherent uncertainty due to uncertainty in the velocity
model.

As the expected arrival time is the theoretical traveltime added
to the origin time, the posterior pdf for the hypocentre parameters
(source location �s and origin time t0) is

pdf(�s, t0) = K

∫
Fd (T́ + t0) Fg(T́ |�s ) dT́ , (6)

where K normalizes the distribution. At this point no assumption
has been made about the type of error distribution in either ar-
rival time data or forward model. However, the integration is over a
multidimensional domain, where the number of dimensions corre-
sponds to the number of seismic traces being used for the location
problem. Therefore, this integration is generally too difficult to be
carried out explicitly. We will proceed with a number of simplifying
assumptions that make the approach tractable.

We can introduce explicit traveltimes Tg (�s ), corresponding to the
mean or maximum likelihood times of Fg for each location �s, and
define F̂g(T |�s ) = Fg(T + Tg(�s )|�s ) to represent the uncertainty of
the theoretical prediction. When the search is over a small spatial
volume with respect to the distance to stations—this assumption
will be relaxed later—this can be further simplified by assuming

that the uncertainty in predicted traveltimes is constant over the
volume, that is, F̂g(T |�s ) = F̂g(T ), such that eq. (6) simplifies to

pdf(�s, t0) = K

∫
FD

(
T́ + Tg(�s ) + t0

)
F̂g(T́ ) dT́ . (7)

If the traveltime prediction errors are assumed to be uncorrelated,
F̂g can be expressed as the product of pdfs (in the following, all
products are assumed to run from i = 1 to n):

F̂g(T ) =
∏

fgi (ti ), (8)

pdf(�s, t0) = K
∏∫

fdi

(
τ + tgi (�s ) + t0

)
fgi (τ ) dτ , (9)

where tgi (�s ) are the modelled traveltimes of individual phase ar-
rivals.

If the uncertainty in modelled times is symmetric about time
t = 0, that is, fgi (ti ) = fgi (−ti ) then the integrals in eq. (9) can
be rewritten as convolutions rather than correlations. We define the
density function fri (t), which combines the probability densities
associated with the picking error (expressed through fdi ) and the
modelling error (expressed through fgi ) in a single distribution

fri (t) =
∫

fdi (t − τ ) fgi (τ ) dτ. (10)

If fdi and fgi are described by Gaussian distributions with vari-
ances σ 2

d and σ 2
g , respectively, then fri is also a Gaussian distri-

bution with σ 2
r = σ 2

d + σ 2
g . However, we do not know the true ar-

rival pdf fdi . Instead, we have the detection function fDi which
comes directly out of the STA/LTA procedure. We now make use of
the results of the calibration procedure described in Section 2.1 to
proceed directly from fDi to estimate fri without explicit calculation
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of fdi . In Section 2.1 we have demonstrated that the measurement ar-
rival time error σ d is related to the width σ D of Gaussian fits around
peaks (arrivals) of the STA/LTA function fDi through a linear rela-
tionship of variances (σ 2

di
+ σ 2

A) = α σ 2
Di

. σ 2
A and α are parameters

that are dependent on both the data and the parameters WS, WL

of the STA/LTA function (the linear relationship breaks down for
ασ 2

D < σ 2
A, as negative values of σ d are non-sensical, but since this

occurs only for very large SNR values, and then only implies a small
absolute difference, we can safely ignore this non-linearity). Setting
σ 2

Gi
= (σ 2

gi
− σ 2

A)/α we convolve fD(t) with fGi (t) = exp( −t2

2σ 2
Gi

) to

obtain

fRi (t) =
∫

fDi (t − τ ) fGi (τ ) dτ, (11)

where fRi is the numerical equivalent to the theoretical fri in (10),
subject to an additional scaling of the width of Gaussian distribu-
tions described by σ 2

r = ασ 2
R .

In the implementation of the CMM algorithm, we drop the nor-
malization term from the expression for pdf(�s, t0) in eq. (9) and
now call it the coalescence function, which is computed as the sum
of the logarithm of fR(t) with LR(t) = log (fR(t)) as

fC (t, �s ) =
∏

fri (t + tgi (�s )) = α
∏

fRi (t + tgi (�s ))

= exp

{
α

n∑
i=1

L Ri (t + tgi (�s ))

}
(12)

(we have also replaced t0 by t to emphasize that the coalescence
function is computed continuously as a function of time).

The 4-D coalescence function can be reduced to two time-
dependent outputs: the location as the instantaneous maximum of
the spatial map ŝ(t) = �s@max ( fC (t, �s )), and the maximum value
at each time step as f̂ C (t) = fC (t, ŝ(t)).

Leaving aside the scale factor α, the n-th root of fC (t, �s ), termed
the coalescence value, is the geometric mean of SNRs of the time-
shifted individual STA/LTA traces, which have also been filtered
(smoothed) to account for the forward modelling error (due to
model uncertainties) and the error calibration. Computed contin-
uously an event is triggered when the coalescence value exceeds
a detection threshold: the time of the event t̂0 is then set to the
local maximum of the coalescence function f̂ C (t) following the
time at which the threshold is exceeded. The coalescence value pro-
vides a ranking of the events. The triggered events can be sorted
by the coalescence value (SNR), with a subset of the data selected
for subsequent analysis. The events with the best arrivals typically
have the highest coalescence values. In this way the cut-off value in
selecting events can be chosen interactively after processing, with
the detection threshold not a critically important parameter of the
algorithm.

The spatial map fC (t̂0, �s ) only describes the location probabilities
if the actual time of the event is t̂0. As the exact origin time is
unknown, the posterior probability of spatial location is estimated
as the marginalization over time of eq. (12). This is computed as

fS(�s ) =
∫ t̂0+�t0/2

t̂0−�t0/2
fC (τ, �s ) dτ. (13)

The time window �t0 should be set such that it is comparable
to a conservative estimate of the combined error

√
ασR , which

restricts the contribution of each trace to a small time window
around predicted arrival times t = tgi (�s ) + t̂0. The choice of �t0 is
not critical provided it is sufficiently large to encompass the range

of timing uncertainties for an event, and events are well separated
in time (i.e. by at least twice �t).

The resultant map fS(�s ) represents the posterior pdf for the
event hypocentre, subject to an unknown scaling factor. Estimates
of the location and the location uncertainty are obtained by fit-
ting a Gaussian function by least-squares at the local maximum
of fS(�s ). The parameters of the Gaussian function are returned
as the mean location and three vectors describing the axes of a
3-D ellipsoid. If the distribution is multimodal, or otherwise non-
Gaussian, then no simple error description is adequate and the lo-
cation uncertainty can only be appreciated by inspection of the full
map.

In the practical application of the method, it is useful to retain
some control over the station and spatial weighting. To do so, we
introduce a spatial weight wsi (�s ), where

fC (t, �s ) = exp
{∑

wsi (�s ) L Ri (t + tgi (�s ))
}

. (14)

With the application of spatial weighting we can relax our ear-
lier assumption that the search volume must be small with respect
to the distance to the stations. With no prior knowledge of the er-
rors in the forward model we might search for filtering functions
fG(t) = exp( −t2

2 σ 2
G

) such that we achieve successful focusing of the

coalescence function (see Section 2.3). Rather than searching for a
separate σgi corresponding to each station phase arrival, we instead
search for two parameters, σG P and σGS , corresponding to the com-
pressional and shear wave forward modelling errors, respectively.
The spatial weighting in eq. (14) modifies fG P (t) and fGS (t), albeit
after convolution with fDP (t) and fDS (t).

The search for filtering parameters σG P,S is in essence similar to
using the rms residual times (statistical error) as an estimate of the
error in traveltime-based location methods. In a Bayesian framework
this is only justified if no independent information about the quality
of the velocity model exists. Otherwise, more reliable uncertainty
estimates will be obtained by making use of any prior information
about the quality of the model.

2.3 Multiresolution search

The search in time and space for events is implemented in discrete
form. The required sampling is determined by the contributing sig-
nals fRi (t) and the spatial variation in modelled times, as governed
by the geometry and velocity. The sharper the arrival times are re-
solved in fRi (t) the finer the sampling required in time and space
to ensure that the solution is not missed. This assumes that the
forward-modelled errors are accounted for by convolution with fG

in eq. (11), and hence there exists a hypocentre where the signals
will coalesce. Conversely, if the traces fR are smoothed heavily
because of assumed large errors in the forward modelling or the ar-
rival time detection, then the spatial and temporal grid can be more
coarse.

Without a prior estimate of data and model misfit the algorithm
might be used to undertake a search for the parameter σ G of the
Gaussian smoothing function fG(t). For normal distributions, we
find that the value of σ 2

R = σ 2
D + σ 2

G that maximizes the coalescence
function depends only on the statistic �trms = √∑

(tD − tg)2/N ,
which is equivalent to the rms of the arrival time residuals (tDi are
the maxima of the detection function fDi and tgi the corresponding
theoretical arrival times). The coalescence function is maximized

when
√

(σ 2
D + σ 2

G) = �trms (see Fig. 4). If σ R � �trms, the con-

tributing signals fRi (t) are too sharp, and the signals no longer
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Figure 4. Synthetic data for a regular geometry of stations at 15◦ azimuthal increments. The arrival times have been perturbed by a random error with standard
deviation �trms = 63 ms. The arrival signals fR, left, are modelled as Gaussian functions with standard deviation σR = �trms/2. Right shows the coalescence
value at the event location as a function of σR. The coalescence value is maximimized when σR = �trms.

coalesce. On the other hand, if σ R 
 �trms, the coalescence region
is spread over too wide a volume of the solution space resulting in
loss of resolution. Because this increases the likelihood that unre-
lated arrivals will interfere with the solution, too large a value for
σ R can also result in biased solutions.

A possible strategy could thus be to vary σ G as an additional pa-
rameter until the coalescence is maximized. Because any reduction
in the required spatial and temporal sampling equates to an order-
four reduction in computational cost, the additional cost of carrying
out such a search on a small subset of the whole time series can be
expected to pay off.

When detecting events we are primarily interested in finding the
local maximum of fC (t, �s ) as the geometric mean SNR, eq. (14),
not in estimating �trms. As the objective function is the sum of real
scalar functions LR = log (fR), an upper bound to fC (t, �s ) over a
time–space window can be established by summing the maximum
values of LR over a time window �tw at each gridpoint. Having
determined that the upper bound of the function exceeds a threshold
within a time–space window at a given sampling, the sampling is
increased, thus constituting a form of Oct-Tree search. In applying
the maximum value windowing function, it is necessary to have
some idea of the residual times. If the search stops at too large a
�tw , in addition to the solution being under-resolved there is again
the possibility of unrelated arrivals contributing to the solution. If
the contributing signals fRi (t) are too sharp, that is, σ R ��trms, the
coalescence will be lost as �tw is reduced to �trms. In the ideal case
when σ R = �trms, the Oct-Tree search can progress until �tw = 0.

For a spatial grid with spacing �x, the maximum distance be-
tween nodes (the diagonal of a cube) is

√
3�x . The corresponding

time window along the diagonal is

�tx =
√

3�x

Vmin
, (15)

where Vmin is the slowest velocity in the vicinity of the sample point.
As we also wish to minimize the temporal sampling in the search,
the time window of the maximum value filter will need to be slightly
larger. For a temporal sampling of 0.25�tx, an appropriate value for
the initial maximum value filter width is �tw = 1.5�tx.

3 P R A C T I C A L C O N S I D E R AT I O N S

3.1 The coalescence grid

Implementation of the CMM method requires choosing parameters
that are appropriate for the dominant signal frequency, the spacing
and areal extent of the seismic array and the target depth of events.
The first step is to choose the window lengths for operation of the
STA/LTA detector on the raw seismic signals. This is critical as it
governs the successful discrimination of the arrivals. As a general
rule, a short detection length that is sufficiently long to encompass
one to two periods of the dominant signal frequency works well
with a noise (long) window length of 3–10 times the short window
length.

The second main consideration is the anticipated model and data
misfit and the related choice in spacing of node points in the sub-
surface. The optimum node spacing is such that the time taken to
travel the maximum diagonal distance between nodes is no more
than about two-thirds of the signal duration in the contributing func-
tions LR(t) used to calculate the coalescence function at each node
(eqs 12 and 15). This in turn is controlled by the data (the dominant
frequency of data and the short window length) and assumptions
regarding the model data misfit.

There exists a trade-off between memory usage and computa-
tional cost on one hand and the need for sufficiently dense spatio-
temporal sampling to represent the coalescence function and opti-
mally resolve event locations. As the search is over a 4-D space,
the sampling has a large impact on computational cost. The natu-
ral progression of the method is to first compute the coalescence
function over the entire data set assuming a large σ G, that is, nom-
inally a large forward modelling error. This initial mapping only
requires a coarse spatio-temporal sampling. Having established the
approximate origin times and locations of events, we use these data
to further refine the velocity model. Subsequent runs can be ef-
ficiently computed for a finer spatio-temporal sampling as we no
longer need to search over the entire data set but can narrow down
the spatial and temporal search to a volume that contains the events
identified in the first iteration.

Finally, the simplest measure of the goodness of fit for each
detected event is the coalescence value, that is, the geometric
mean SNR of the signals contributing to the coalescence function,
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Figure 5. Map and elevation cross-sections of the coalescence function at
the time of the event for the data from a shallow earthquake near Askja,
Iceland, shown in Fig. 2. Red triangles show seismometer locations. The
top two panels show the coalescence value at the time step corresponding
to the origin time; the maximum value of this map corresponds to the
maximum likelihood hypocentre of the event. The lower two panels show
the marginalized pdf. The contours of the lower plots label the standard
deviation of the pdf, as calculated after calibrating the input functions fD,
Fig. 3.

discussed here as the SNR of the seismic event. As we show later,
comparison of the automatic CMM locations with those calculated
from hand-picked arrivals enables a coalescence value (event SNR)
to be chosen, which gives a similar population of events to the best
that can be obtained by hand-picking arrivals.

Fig. 5 (top panel) shows the coalescence function at the time
of the event for the shallow earthquake near Askja from which
data are shown in Fig. 2. Fig. 5 (bottom panel) shows a map view
and cross-section of the 3-D location probability volume, which is

Figure 6. Expanded view of map (top panel) and elevation cross-section
(bottom panel) of the coalescence function shown in Fig. 5. The discrete
spatial grid at which coalescence functions are determined is shown as dots.

the marginalization (integration) of the coalescence function over
a time window. Although the location is constrained by only a
small number of seismometer stations, a clear coalescence signal
is formed. The depth is poorly controlled because there are no
seismometers directly above the event. Fig. 6 shows an expanded
view of the location map and cross-section and also shows the grid
of nodes at which the coalescence function was calculated. Rather
than restricting the location estimate to a discrete grid node the
best-fit hypocentral location can be derived from the maximum of
a 3-D surface fitted locally to the 3-D coalescence volume.

We have used CMM extensively for local earthquake surveys in
volcanic areas in Iceland. In Iceland, with a dominant signal fre-
quency of 8–10 Hz, we find that values for the STA/LTA detector
of 0.2 s/0.6 s work well. Using compiled Matlab code, a typical
CMM run with 15 three-component seismometers, a sampling fre-
quency of 100 sps, 400 000 nodes in the subsurface and 500 events
per day runs approximately four times faster than real time on a
single 2.67 GHz processor. So to analyse 1 yr’s worth of data the
algorithm can be run on 100 nodes of a cluster array, which takes
approximately 1 day to complete. This method could be readily
implemented as a real-time event detector on a single computer.

3.2 Station statics

Variations in near-surface structure and elevation, if not corrected
for explicitly, cause station-specific delays which prevent the max-
ima of the fRi (t) functions from coalescing properly when migrated
in the background model, limiting resolution and causing bias due
to the fact that generally each event is recorded by a different set of
stations. In traditional pick-based earthquake location algorithms,
station correction terms can be estimated from the average residual
at each station. As no explicit time picks are made in the CMM
approach, a different approach is needed.
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Figure 7. P-wave phase arrival functions for caldera events recorded at station MOFO and VIKR (upper plots), and S-wave arrival functions at these stations
(lower plots). The geometric averages of the aligned signals are shown in the bottom panels. The maxima of these correspond to the maximum likelihood
station correction terms.

We take the geometric average of the phase arrival pdfs (fR) for
all events recorded by a given station i for a given phase type,
time-shifted by the predicted arrival time, that is,

fsi (t) = exp

⎧⎨
⎩

nev∑
j=1

L Ri (t − t̂0 j − tgi (�̂s j ))

⎫⎬
⎭ , (16)

where nev is the number of events, and t̂0 j and �̂s j are the estimated
maximum likelihood origin time and hypocentre, respectively. The
maximum likelihood station correction term is then simply the max-
imum of this function (see Fig. 7 for an example). Following this
procedure, the mean of the station corrections terms should be close

to zero, but to stay consistent with traditional approaches, either the
average P static, or the P static at a reference station should be set
to zero. If hypocentres are reasonably well distributed in depth and
map view, the S statics should be determined by the data alone.
For highly clustered distributions, it might be necessary to impose
further constraints such as setting the average S static to zero inde-
pendently.

The CMM procedure should then be repeated with traces time-
shifted according to the static corrections, iterating if necessary.
Even more accurate results can sometimes be obtained by intro-
ducing source area-specific station corrections, such as for shallow
and deep events (see Lin & Shearer 2005 for this approach using
traveltime based location algorithms).
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Figure 8. Map showing locations of areas in Iceland from which examples are drawn in this paper. Brown shaded areas are rift zones (after Einarsson &
Sæmundsson 1987), and arrows show direction of plate spreading, which here is at a full rate of 20 mm a−1.

4 DATA E X A M P L E S

We show two examples of locating microseismicity produced by
the injection of molten rock into the crust beneath Iceland (Fig. 8).
The first is from a dyke injection in 2007 in the mid-crust near
Upptyppingar, central Iceland (Martens et al. 2010; White et al.
2011). The second is from seismic activity associated with magma
migration before and during the eruption of Eyjafjallajökull volcano
in southern Iceland in 2010 March–May, which caused consider-
able disruption to air travel with the cancellation of over 100 000
flights in Europe (Tarasewicz et al. 2011, 2012). In the latter case,
over 20 000 events over a period of 14 d before the eruption were
detected and located using CMM on data from an array of 14 seis-
mometers: locating these many arrivals would have been unfeasible
had all the arrival times been picked manually. In both examples,
we carefully refined the traveltime picks of P- and S-wave arrivals
manually for several hundred events and show the best locations us-
ing those arrival picks and double-difference relocations. We show
that although there is some improvement in the manually relocated
events, the main picture is produced from the automated CMM lo-
cations provided suitable event SNR cut-offs are used to remove the
poorer locations.

4.1 Upptyppingar dyke injection

The Upptyppingar dyke intrusion lasted almost a year during 2007–
2008 and produced over 10 000 recorded microearthquakes, with
local magnitudes mostly in the range 0–1 (Jakobsdóttir et al. 2008).
A local network of 27 three-component seismometers was used
for making hypocentral locations and fault-plane solutions. The
fault-plane solutions show that the failure planes are subparallel to
the macroscopic dip of the dyke. They are interpreted as due to
the fracture of plugs of solidified melt in the dyke, or as breaking
a previously intruded dyke in the same location with the same
orientation (White et al. 2011).

Hypocentral locations of a subset of 540 microearthquakes with
an average local magnitude of 0.9 generated during 2007 July 6–24
are shown in Fig. 9. They were chosen to be the set of earthquakes
recorded by the permanent Icelandic SIL seismometer array main-
tained by the Icelandic Meteorological Office (Fig. 9a). The SIL

array is much sparser in this region than was our temporary local
array, although the SIL array does have eight seismometers within
50 km of Upptyppingar, so records earthquakes with a magnitude of
completeness of 0.8. The manually refined and relatively relocated
hypocentres from the SIL network define the plane of the dyke,
dipping at 50◦, with an rms misfit of 240 m to a single plane.

Automated CMM locations from the same set of 540 events are
shown viewed along the strike of the dyke in Fig. 9(b). The rms mis-
fit to a plane through the hypocentres is 166 m. Fig. 9(c) shows the
same events, after we had made manual refinements of all the P- and
S-wave arrival time picks. Hypocentres were first located using Hy-
poinverse (Klein 2002), and then their relative positions improved
using a double-difference relative-relocation program (Waldhauser
2001). This reduced the rms misfit from a single plane to 114 m. Of
course, we do not know whether this dyke did actually intrude along
a single plane, or whether the seismic events were accurately located
on the plane of the dyke. There is some reason to believe that the
seismicity does indeed lie within the dyke because at these depths
the Icelandic crust is normally ductile and aseismic. Seismicity is
only produced by the high strain rates associated with melt intru-
sion. The melt intrusion itself would be along the dyke, and fluid
mechanical and thermal considerations suggest that the dyke has
a maximum thickness here of only about 1 m (White et al. 2011).
So the improvement in fit between CMM and the double-difference
relocations is probably a real improvement in hypocentral locations.

However, the CMM locations themselves are already sufficiently
good to constrain the dip of the dyke well, and the improvement
after considerable manual intervention and relocation is relatively
minor. To this extent, the CMM method is strongly validated.

4.2 Eyjafjallajökull eruption seismicity

Microseismic activity recorded during the 2 weeks before the erup-
tion of Eyjafjallajökull began on 2010 March 20 was concentrated
at depths of 3–6 km and was associated with the inflation of a mag-
matic intrusion beneath the east flank of the volcano (Tarasewicz
et al. 2012). Over 20 000 events during this period of intense ac-
tivity were detected and located using CMM, and these provide a
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Figure 9. Map at top shows location of the earthquake swarm (yellow star)
and seismometer stations (red triangles) near Upptyppingar, Iceland (see
Fig. 8 for location). Panels show cross-sections looking along strike of the
dyke intrusion with no vertical exaggeration of 540 microearthquakes during
2007 July 6–24: (a) after manual refinement and double-difference reloca-
tions of the SIL network data from eight stations; (b) located by automated
CMM using local network of 27 stations; (c) after manual refinement of
the traveltimes from local network of 27 stations, locations using Hypoin-
verse (Klein 2002), followed by double-difference relocation using HypoDD
(Waldhauser 2001; White et al. 2011). Assuming that the events lie in a sin-
gle plane, the rms misfit to the plane is reduced from 166 m for CMM to
114 m after manual phase picking and double-difference relocation.

Figure 10. (Top panel) Map showing the closest seismometer locations
(red triangles) around Eyjafjallajökull (see Fig. 8 for location); more distant
stations were also used. Box shows outline of bottom map. (Bottom panel)
Map view of over 20 000 CMM earthquake locations recorded during 2010
March 5–20 before the eruption of Eyjafjallajökull volcano in Iceland began
on 2010 March 20. Events are colour coded by signal-to-noise ratio (SNR)
for this parameter set in CMM: yellow events have 2.0 ≤ SNR ≤ 2.5; red
2.5 < SNR ≤ 3.5; blue SNR > 3.5. Grid-node spacing was 400 m. STA/LTA
window lengths were 0.2 and 0.6 s, respectively. The data were bandpass
filtered between 4 and 25 Hz. Yellow star shows location of fissure eruption
on 2010 March 20, which preceded the main eruption from the summit
crater (tick-marked outline) that began on 2010 April 14.

good demonstration of how the apparent scatter in locations varies
with the event SNR (Fig. 10).

An appropriate event SNR (coalescence value) threshold must be
chosen for any particular data set such that as many real events as
possible are detected without large numbers of false ‘events’ being
triggered. The actual value of the appropriate event SNR threshold
may vary between data sets and between different parameter sets
used. This is because the event SNR varies as a function of grid-
node spacing, frequency filtering and choice of STA/LTA window
lengths. An earthquake of the same magnitude may have different
SNR depending on where it is located within the search grid: deeper
earthquakes or those in sparser zones of the network may have
lower coalescence values than if the same magnitude of earthquake
occurred at shallow depths or in a denser part of the network.

In Fig. 10, the colour coding of the earthquake locations forms a
concentric epicentral pattern with the highest-SNR events (blue) in
the centre, radiating out to lower SNR values (red to yellow). In this
case, is likely that all the blue earthquakes are well-located hypocen-
tres, representing the largest-magnitude events. Red and yellow lo-
cations are likely to have smaller magnitudes or be less well located
by comparison, with a higher incidence of false ‘events’ probable
among the yellow locations. The concentric pattern suggests that it
may even be the case that almost all events actually occurred in the
region occupied by the blue, highest-SNR events, with the greater
spread in red and yellow epicentres caused by location inaccuracy
for smaller events.
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Figure 11. (a) Map view and east–west cross-section showing CMM earthquake hypocentres compared to Hypoinverse locations. Red dots are Hypoinverse
(Klein 2002) locations for the same events whose CMM locations are shown in dark grey; blue dots are Hypoinverse locations for the same events with CMM
locations shown in light grey. Dark grey/red events occurred before the flank eruption on 2010 March 20 (yellow star); these are a subset of the events in Fig. 10.
Light grey/blue events were later, during the larger eruption from the summit crater (tick-marked outline) in April–May. The red/blue colouring differentiates
in map view between the shallow, pre-eruption (red) events and the later, deep (blue) events. (b) Same as in (a), except red and blue events have been relatively
relocated using HypoDD (Waldhauser 2001), which tightens the clusters.

In this example of tens of thousands of events, CMM’s practi-
cal use was to give an overview of seismic activity and to produce
rapidly a catalogue of earthquakes. CMM locations and event SNR
values were then used to guide the selection of events for manual re-
finement and relative relocation. P and S arrival times were manually
picked for a subset of 1400 earthquakes recorded at Eyjafjalljökull
and located first in Hypoinverse (Klein 2002), then relatively re-
located using HypoDD (Waldhauser 2001; Fig. 11). Comparison
between CMM and Hypoinverse locations is a like-for-like compar-
ison in the sense that both obtain single-event locations. HypoDD,
which obtains relative relocations, should be expected to produce

more tightly defined clusters (if indeed the seismicity was clustered)
and is shown here as a ‘best-case’ set of locations.

To first order, CMM produces the same distribution of seismicity
as manual single-event locations obtained in Hypoinverse (Fig. 11a).
This is particularly the case for deeper events in this example. Mis-
matches in hypocentre locations are more pronounced in the shallow
(<6 km) pre-eruption activity (red and dark grey in Fig. 11a). How-
ever, this is likely to be due in large part to Hypoinverse’s treatment
of station elevations using static corrections and the exclusion of
some data in Hypoinverse where clear, discrete, arrival picks were
not possible. These differences are exacerbated at shallow depths
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by the suboptimal geometry of the seismic monitoring network at
Eyjafjallajökull (Tarasewicz et al. 2011).

The relatively relocated hypocentres are generally more tightly
clustered than the CMM and Hypoinverse picks (Fig. 11b). This is
clearest in the clusters at >10 km depth (blue dots). This is not a
fair comparison against CMM’s single-event locations, but, as in
the previous example, highlights the fact that our final ‘best’ set
of manually refined and relatively relocated events is not radically
different from the CMM locations obtained automatically.

5 C O N C LU S I O N S

The CMM method has proven to be a useful tool for locating
hypocentres and origin times of local earthquakes. It is particu-
larly helpful in regions of intense seismicity such as those that
occur in volcanically active areas, in geothermal regions or in mon-
itoring hydrofractures because it makes use of both P- and S-wave
data to locate events without the risk of incorrect association of P-
and S-wave picks, which can be a problem for automated schemes
based on linearized inversion of discrete traveltime picks. It is robust
against noise bursts on individual sensors because the apparent ar-
rivals from them will generally be dispersed away from coalescence
points and thus not contribute to the final location. The velocity
model is amenable to being improved through introduction of com-
plex 3-D velocity variations, of anisotropy or of variable Poisson’s
ratio.

The structure of the CMM method is such that it can be modified
to include additional arrival phases such as horizontally or vertically
polarized shear waves if they are present. It can also be extended to
phase-pair analysis, which in principle brings it to similar resolu-
tion to that achievable by double-difference relocations [see Drew
(2010) for more details]. Finally, the locations and predicted pick
times returned by CMM can be used as starting points for more ac-
curate but computationally intensive automatic pickers [e.g. MPX
(Aldersons 2004); applied in combination with CMM by Lange
et al. 2012].

A C K N OW L E D G E M E N T S

Seismic data used in this paper came from seismometers owned
by Cambridge University; from those borrowed from the Natural
Environment Research Council SEIS-UK (loan 842) (Brisbourne
2012); from the LOKI instrument pool, which is owned jointly by
the Icelandic Meteorological Office, the Institute of Earth Sciences,
University of Iceland and the Iceland GeoSurvey; and from the
Icelandic Meteorological Office. We are grateful to all those who
have worked in the field assisting in data collection, particularly
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S.S., 2011. Dynamics of dyke intrusion in the mid-crust of Iceland, Earth
planet. Sci. Lett., 304, 300–312.


