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Abstract 

 

For a long time the root mean square (RMS) error has been used in the EM community: 

 to characterize data fit for a particular model; 

 as a criterion to compare several models obtained from inversion.  

The RMS error appears to be a natural choice since we usually tackle inverse problems in a 

least-squares sense. Over the years, RMS became a customary criterion and gained ultimate 

significance. However, on the hunt for low RMS values, one often needs to introduce 

subjectivity by arbitrarily adjusting error floors or masking “bad” data without referring to the 

assumptions behind RMS. In this contribution, we revisit basic assumptions behind RMS, 

demonstrate its deficiency and propose alternative ways, which may provide more insight into 

our data and allow a more comprehensive assessment of the quality of the modelling 

result/resistivity model. 

 

Definition of RMS 

 

Let 𝜙𝑑 denote the data misfit calculated as 

𝜙𝑑 = ∑ 𝑟𝑖
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where normalized residuals r are: 
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;      𝑖 = 1 … 𝑁. 

Vectors 𝒅𝑝𝑟𝑒𝑑, 𝒅𝑜𝑏𝑠 ∈ ℝ𝑁 represent predicted and observed data, respectively, and 𝒆 is the 

vector of the estimated data errors (e.g., standard deviations). Assuming that the residuals in 

equation (2) are zero-mean normal independent random variables, 𝜙𝑑 is an asymptotically χ2-

distributed random variable with expected value 𝐸[𝜙𝑑] = N. This immediately brings us to 

the well-known expression 

RMS = √
𝜙𝑑

𝑁
. 

If the majority of the predicted data are within the data error bounds, RMS ≈ 1. 

 

Deficiency of RMS 

 

The RMS error is based on several assumptions which can be violated in real-world 

problems: we assume that (i) our error estimations in (2) are correct and (ii) the residuals are 

zero-mean Gaussian independent random variables.  

Ideally, one should be able to obtain good estimates for the standard deviations from data 

processing. In practice, however, standard deviations obtained from data processing have 

other shortcomings. For instance, a large number of observations are usually available for 
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high frequency data, but very few for low frequency measurements. Thus, data variances 

usually increase with period length. Data points can be strongly biased but with very small 

uncertainty. Normally noise affects all input- and output channels thereby violating 

underlying assumptions for our data processing. More uniform data quality can be achieved 

with artificial or arbitrary error floors, which are often used in real data inversion. Often, the 

choice of error floors is driven by the desire to achieve an RMS of ~ 1 for the recovered 

model. 

The second point, namely an assumed Gaussian distribution of the residuals, is trickier. If 

the residuals originate mainly from noise in observed data, this noise has to be normally 

distributed with zero mean in order to make the RMS measure optimal. Obviously, in reality 

residuals do not contain idealized cultural noise and measurement error. In addition the 

modelling results contain numerical errors e.g. related to a particular discretization and 

modelling. 

Furthermore, being non-robust RMS is sensitive to outliers. Few outliers may result in a 

violation of the normal distribution assumption. 

 
Figure 1: A number of artificial cases to demonstrate that RMS values can be misleading. 

Blue dots are the true response of a model with error bars corresponding to 10% of the 

original data amplitudes. The green line is a “true” response systematically shifted to fit the 

upper limit of the error bars, resulting in an RMS of one. The magenta line shows the ``true'' 

data perturbed with 1% normal noise and two outliers added at the ends of the curve, which 

results in an RMS of 2.03. The red line shows ``true'' data with three data points outside the 

error bars with a total RMS of 0.88. 

 

Comparing models (MT example) 

 

The RMS is often used as a criterion to rank a series of inversion models (when dealing 

with real data). However, being a single number the RMS cannot reliably describe a 

complicated model nor does it give any insight into structural differences between models. 

Figure 2 shows results for three MT 3D inversions runs for the same synthetic data set, but 

using different starting/prior models. Visual inspection suggests that the first inversion using a 

10 Ωm starting model recovers the underlying resistivity structure best (upper panel). If we 

judge the results only by RMS the model obtained with a starting model of 20 Ωm should be 

preferred since it results in the lowest RMS; second would be the result using a 50 Ωm half-

space. However, in both results the prominent conductive anomaly is missing. This mystery is  
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Figure 2: Top panel: Comparison of 3D MT inversion results for three different starting 

model resistivities (10, 20, 50 Ωm); data were generated for a synthetic model shown as slice 

in the back. Note, the resistivity structure is predominantly 2D with the coarse 3D bathymetry 

of the Pacific Ocean added; the coastline is located at the left edge of the profiles. The 

conductive anomaly at depth disappears only for starting resistivities above 10 Ωm.  

Middle panel: Systematic analysis of data misfits in the frequency-space domain of the 

inversion results reveals large-scale structural deviations of 3D inversion results, which are 

not reflected in the overall RMS. 

Bottom panel: Cross-plot of observed and modelled apparent resistivities for all four 

impedance components. In the ideal case, points would lie on the black line. Scattering 

around the black line is lowest for model responses obtained with 10 Ωm starting model, in 

particular for the xy-component. The plots also show that the very high apparent resistivities 

(> 1000 Ωm) of the yx-component are difficult to recover for all shown inversions. 
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solved when the RMS distribution over the array is assessed in more detail (middle panel of 

Figgure 2) . For starting models of 20 and 50 Ωm we observe systematically higher RMS 

values for the Zxy component – the component which is most sensitive to the conductive 

anomaly – at stations above the conductive anomaly; in return high resistivities of the Zyx 

component close to the ocean (left edge of the profiles) are better fit. For both components 

RMS values of the 10 Ωm inversion result show a more uniform distribution of the data 

misfit. The choice of the model obtained with a starting model of 10 Ωm can also be justified 

when comparing scatter plots of apparent resistivities for all impedance tensor components. 

They reveal that the 10 Ωm model (shown in grey) follows the observed data better and has 

smallest variance. 

 

Estimating data fit (CSEM example) 

 

Usually, we argue that a high RMS value means poor data fit and we infer that the 

inversion result is not reliable. Given the possibility to choose error floors arbitrarily in (2) 

one can artificially reduce RMS values by taking/applying larger error floors. Figure 3 shows 

a section along a profile from 3D inversion models of real CSEM data, and histograms of 

initial and final normalized residuals for a number of inversion runs with increasing error 

floors. All inversions were stopped after 30 iterations. All models are very similar. The final 

RMS shown above each model indicates that increasing the error floor results in lower RMS 

values. The histograms show that the distribution of residuals is not normal. Increasing error 

floors shrinks the starting residuals, but has little to do with actual data fit. In addition, red 

numbers in brackets indicate RMS values calculated with 10% of the most poorly fit data 

dropped. Without these data values, the RMS values are reduced by more than 40% which 

indicates the non-robust nature of the root mean square. 

 

Conclusions 

 

The aspects discussed in the previous sections suggest the following conclusions: 

 If residuals do not obey a standard normal distribution, RMS is not an optimal measure. It 

can still be used, but does not need to approach a value of 1 even for geologically 

justified models. 

 The choice of error floors and manual selection of “good” data are subjective and we 

should try to avoid such assumptions. 

 We recommend using more elaborate tools instead of a single RMS number such as 

investigation of the RMS distribution in the frequency-space domain; analysis of 

histograms of normalized residuals or scatter plots of modeled vs. observed data. 
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Figure 3. Conductivity sections along the profile line (left) and histograms of initial and 

final normalized residuals (right) for predefined error floors of (a) 2, (b) 10 and (c) 20\%. 

The final RMS is given in the title of each plot. Red numbers in brackets indicate RMS values 

calculated with 10\% of the most poorly fit data values dropped. All three inversions were 

stopped after 30 iterations. 
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