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ARTICLE

Tree height strongly affects estimates of water-use
efficiency responses to climate and CO2 using
isotopes
R.J.W. Brienen 1, E. Gloor1, S. Clerici1, R. Newton2, L. Arppe3, A. Boom4, S. Bottrell2, M. Callaghan1, T. Heaton5,

S. Helama6, G. Helle 7, M.J. Leng5,8, K. Mielikäinen9, M. Oinonen 3 & M. Timonen6

Various studies report substantial increases in intrinsic water-use efficiency (Wi), estimated

using carbon isotopes in tree rings, suggesting trees are gaining increasingly more carbon per

unit water lost due to increases in atmospheric CO2. Usually, reconstructions do not,

however, correct for the effect of intrinsic developmental changes in Wi as trees grow larger.

Here we show, by comparingWi across varying tree sizes at one CO2 level, that ignoring such

developmental effects can severely affect inferences of trees’ Wi. Wi doubled or even tripled

over a trees’ lifespan in three broadleaf species due to changes in tree height and light

availability alone, and there are also weak trends for Pine trees. Developmental trends in

broadleaf species are as large as the trends previously assigned to CO2 and climate. Credible

future tree ring isotope studies require explicit accounting for species-specific developmental

effects before CO2 and climate effects are inferred.
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The Earth’s vegetation is an integral part of both the global
hydrological cycle and the global carbon cycle, annually
transpiring more than twice the amount of water vapour in

the atmosphere1, and processing ca. 120 Gt carbon through
photosynthesis2, 3. Changes in the functioning of Earth’s
vegetation therefore affect these cycles and future climate
change4, and are also a concern on their own. There is thus great
interest in understanding plant responses to recent human-
induced changes in physical conditions at the Earth’s surface.
Recent increases in atmospheric CO2 concentrations, nitrogen
deposition and rising temperatures all potentially affect plant
growth. The increase of atmospheric CO2 in particular is expected
to benefit growth, as it facilitates the uptake of carbon, and
potentially leads to an increase in plant water use efficiency.
Water use efficiency is defined as the amount of carbon gained by
plants per unit water lost5. Such responses have indeed been
observed in CO2 enrichment experiments in greenhouses and
under natural conditions6, in ecosystem flux studies7 and in
tree ring and foliar carbon isotopes studies8–12. However, the
magnitude of measured responses varies between methods, and

thus large uncertainty remains with regard to the magnitude of
water use efficiency changes over time.

A popular method of studying plant water use efficiency is to
use the carbon isotope composition of tree rings (δ13Cplant,
see Methods section). It is attractive because it provides long-term
annual records. From tree ring δ13C and historical records of
atmospheric δ13C, plant isotope discrimination (Δ13Cplant) can
be calculated (see Methods section), which provides an estimate
of changes in the ratio between assimilation and stomatal
conductance for water vapour (A/gw). This ratio is called intrinsic
plant water use efficiency (Wi). Most studies which perform trend
analysis of past change in Wi use tree cores from large
trees, which inherently include all developmental effects within
individual trees. Typically, these studies find increases in trees’
intrinsic water-use efficiency in all biomes in the order of 10–30%
over the past 150 years5, 8, 9, 13–22.

As already mentioned, common to most of these studies is the
implicit assumption that developmental and stand level envir-
onmental effects on Wi over a trees’ lifespan are negligible.
However, various existing studies cast doubt on this assumption.
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Fig. 1 Developmental trends and time trends of intrinsic water use efficiency for four species derived from tree ring carbon isotopes. Developmental trends
(a, c, e and g) are controlled for variation in CO2 by using sub-fossil trees growing under relatively constant pre-industrial CO2 (for Pinus), or by plotting
Wi derived from the five outermost rings across a range of trees differing in tree age (for Quercus, Fagus and Cedrela). Time trends (b, d, f and h) are
reconstructed based on classic tree ring approaches, which infer past change in Wi using pooled or individual tree ring δ13C series derived from big trees
when these were younger and smaller, thus assuming negligible developmental effects. The data for Pinus consist of 10-year time series from 182 sub-fossil
trees (5630 BP–AD 1930) from northern Fennoscandia (Helama et al.39). Time trends in Wi are estimated using published trends (coloured lines),
complemented with new data collected from dominant trees in this study (grey lines, see Methods section). Black lines show mean trend estimates using
general additive mixed models (GAMM) with standard errors (broken lines). Long-term linear Wi trends were estimated using linear mixed-effects models
with weighting for sampling intensity for each study (see Methods section). Note that we excluded trees with size lower than 1 m from the age trend
analysis here (a, c, e and g) to avoid influence of soil-respired carbon. Included literature data are from Frank et al.11, red, Waterhouse et al.46, yellow,
Duquesnay et al.62, cyan, Penuelas et al.10, purple and Hietz et al.45, blue (for details see Supplementary Table 1)
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These studies show that plant isotope discrimination (and thus
Wi) changes strongly as trees grow in height (McDowell et al.23

and refs therein), giving rise to an age effect24 that may confound
the interpretation of Wi in terms of climate or CO2. This
phenomenon is also called the ‘juvenile effect’25 or ‘canopy
effect’26, and will be further referred to as ‘developmental effects’.

That there are developmental effects is not very surprising.
First, as trees grow older they increase in height, which imposes
gravitational constraints on water transport to leaves in the upper
canopy, affecting potentially stomatal conductance27–29. In
addition, trees in closed-canopy forests experience strong
increases in irradiance from the understory to the canopy,
which affect rates of photosynthesis30. These changes in stomatal
conductance and photosynthesis as trees grow both affect plant
isotope discrimination23, 31. Associated developmental changes
in tree morphology and physiology may further affect isotope
discrimination28, 32–35. Yet another factor that influences tree
δ13C, and thus estimation of Wi based on isotopes, is the uptake
of soil-respired CO2 by trees growing close to the forest floor26, 36.
As respired soil carbon is dead organic plant material, it increases
the CO2 concentration in air above the forest floor and lowers
δ13Cair of CO2 in the air37, potentially affecting the isotope signal
for small trees.

Despite the results of these studies, with obvious implications
for the interpretation of tree ring-derived time trends in Wi, not
many studies have explicitly assessed the magnitude of these
effects (but see Marshall and Monserud38). A possible method to
study developmental effects is the use of old fossil trees that grew
their entire life under more or less constant CO2 and climate39.
Unfortunately such ancient trees are rare. An alternative method
is to sample trees across all size classes at the same CO2 level at a
single site (i.e., size-stratified sampling), which in addition allows
to disentangle the specific causes behind developmental changes
in Wi. The few studies that followed this approach show that tree
ring-derived Wi increases may be strongly overestimated when
neglecting age effects38, 40. However, only a few single species
have been studied, and it is still quite unclear to what degree
developmental trends affect Wi in the majority of the species used
in isotope dendrochronology studies. It also remains unclear to
what extent these developmental effects are indeed just simply
related to tree age, or rather caused by a change in tree height, a
changing light environment of trees, or uptake of soil-respired
CO2 when growing under the canopy. We also do not know

whether developmental effects halt at a mature tree stage, an
assumption made by several studies attempting to reconstruct
historical water use efficiency41–43. Therefore, here we collect
new data using a systematic size-stratified approach that controls
for CO2 to quantify, and unravel developmental effects on Wi in
three species commonly used in temperate zone isotope studies
(Pinus sylvestris, Quercus robur and Fagus sylvatica) and
one representative of tropical species (Cedrela odorata). For
Pinus, we furthermore study the change of Wi over the lifetime of
individual trees from sub-fossil trunks from Finland. These have
been recovered from lakes and grew their entire life under more
or less constant pre-industrial CO2 levels39. Altogether, our data
set encompasses a variety of ecosystems (arctic, temperate and
tropical forests), time-scales (recent to sub-fossil, Holocene
material) and species.

The specific aims of this paper are to assess the magnitude of
changes in Wi across different life stages of trees, to identify the
drivers behind changes inWi over a trees’ life cycle, including tree
height, light, age and soil respiration effects, and to discuss the
implications of these developmental changes in Wi on estimates
of responses to atmospheric CO2. The basic method we use to
evaluate the effect of tree developmental changes on Wi is to
compare Wi of the last five rings formed under nearly the same
atmospheric CO2 conditions from a range of trees varying in age,
size and light availability. While this approach does not fully
control for each of these co-varying factors, the relatively large
sample size does allow for separation of the various effects on Wi.
To assess to what degree observed trends in Wi may be affected
by trees’ ontogeny, we juxtapose the developmental changes inWi

with observed time trends. We further use the isotope data to
discuss lifetime changes in the context of proposed strategies for
gas-exchange regulation11, 12, 17.

We find that developmental trends in Wi are very strong in the
three broadleaf species, doubling or tripling over a trees’ lifetime.
These trends are primarily caused by increases in tree height
and changes in light environment. Trends are of comparable
magnitude to observed time trends in literature questioning
the interpretation of these records as Wi responses to climate
and CO2.

Results
Age and time trends in Wi. The three broadleaf species, Quercus,
Fagus and Cedrela, exhibit strong increases in Wi, doubling

Table 1 Analysis of age- and height-related changes in Wi for different life stages

Species Wi vs. age trends ppm (100 yr−1)

Full age range Age> 25 yrs >50 yrs >75 yrs >100 yrs >200 yrs

Pinus sylvestrisa 3*** 2.9*** 2.4*** 2.2*** 2.0*** 2.6**
Quercus robur 43.1*** 27.7* 65.3*
Fagus sylvatica 69.5*** 99.4*** 185*
Cedrela odorata 39.1*** 26.1*** 14.3* 15.2NS 12.9NS

Wi vs. height trends, ppm (10m)−1

Full height range Height> 1 m >2.5 m >5m >10 m >20m

Pinus sylvestrisb −0.41NS 1.74 8.42* 9.94* 14.7
Quercus robur 17.43*** 20.22*** 20.84*** 14.94*** 13.95**
Fagus sylvatica 18.41*** 18.08*** 18.16*** 23.04*** 26.10*** 52.28**
Cedrela odorata 19.37*** 17.28*** 15.81*** 16.27*** 15.72*** 16.10**

Linear trends in Wi vs. age or height for full range of data, and excluding earlier life stages (e.g., first 25 years, 50 years, etc, or first metre, first 2.5 m, etc). Results show that age trends in Quercus and
Fagus remain strong, while Cedrela and Pinus show slight decreases in the slope of the trends with age. Trends with tree height remain strong throughout the full height range Significance levels are
indicated as follows: NS not significant; *p < 0.05; **p< 0.01; ***p< 0.001
aUsing the data set of sub-fossil pine trees from Helama et al.39
bUsing the data set of Pinus trees with height measurements from the UK (see Methods section)
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or even tripling from the youngest to the oldest trees, corre-
sponding to increases in the order of 35–70 ppm over 100 years
(Fig. 1a, c, e, g). In contrast, the only coniferous species included
in this study, Pinus, showed only a very weak trend in Wi of just
4 ppm over 100 years. In all four species the trends in Wi

persisted over the full extent of the studied age range, and
remained strong after an age of 50 years (Table 1). The only
species for which we could test the persistence of trends in Wi

for trees older than 100 years was for Pinus using sub-fossil
data from Helama et al.39, revealing that even in trees older than
100 years, Wi continued to increase with age (Table 1; Supple-
mentary Fig. 1).

We next compared the observed developmental trends in Wi

with time trends in Wi estimated based on traditional tree ring
approaches (Fig. 1b, d, f, h). As mentioned these approaches
reconstruct historical changes in Wi by looking backwards in time
using individual tree ring series of big trees. Thus they implicitly

include the full developmental trajectory for each tree growing from
seedling into a large adult tree. Time trends in Wi were collected
from the literature (coloured lines, see Supplementary Table 1 for
details) and from dominant trees from the same sites as the age
trends in Fig. 1a, c, e, g (grey lines). The comparison reveals that for
the three broadleaf species, time trends in Wi derived from
dominant trees obtained from literature (coloured lines, Fig. 1, see
Supplementary Table 1 for details) and complemented with new
data collected from the four sites in this study (grey lines, Fig. 1) are
of a similar or lesser magnitude than the observed change in Wi

with tree age. Only for Pinus we observe a much stronger increase
in Wi over time (i.e., with calendar year) than the increase with
biological age (26 vs. 4 ppm (100 yr)−1).

Causes of developmental trends inWi. To obtain insight into the
ultimate causes of the developmental change in Wi, we analysed
the relationship between the average Wi of tree rings from the
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last 5 years of growth with age, diameter, height and crown illu-
mination. While these factors are intrinsically linked, the com-
parison (Fig. 2; Table 2) does indicate that ageing per se is not the
main cause. For Pinus, Quercus and Fagus, age explains less var-
iation (lower R-squared) compared to a trees’ size (diameter,
height) or crown illumination, and in none of the four species is
age included in the most parsimonious regression models
(Table 2). Variation in Wi is most strongly related to trees’ size
and crown illumination, which together explain between 56 and
78% of the variation in Wi for the three broadleaf species
(Table 2). Similarly, the linear mixed-effects model, including data
from all four species, indicates that crown illumination and tree
height, and not age, explain the largest proportion of variation in
Wi (Table 2). In Pinus only a small portion of the total variation in
Wi (18%) is explained by any of the measured developmental
variables. Finally a comparison of trends in δ13C with age and
height shows that height trends in the three broadleaf species
converge nearly to the same magnitude of change in isotope ratios
with height (i.e., 1.58–1.77‰ (10m)−1), while age trends vary
more between species (Supplementary Fig. 2).

To assess the contribution of CO2 from soil respiration to the
observed developmental effects, we compiled δ13Cair and CO2

data for temperate and tropical forests (Supplementary Fig. 3).
The data reveal that during daytime, soil respiration affects
δ13Cair and CO2 in the first few metre(s) above the ground with
slightly larger effects for tropical forests compared to temperate
forests37, 44. We estimated the contribution of this effect on
observed trends in Wi by taking into account estimated values of
δ13Cair and [CO2] at crown height for each tree (see Methods
section and Supplementary Fig. 3). We find that inferred
increases in Wi with tree age for Fagus, Quercus and Cedrela
are rsp. 11, 14 and 20% lower when using below-canopy values of
CO2 and δ13Cair (Supplementary Fig. 4). However, an alternative
analysis in which we excluded data from small trees (e.g., lower
than 1, 2, 5 or 10 m in total tree height) demonstrates that Wi

trends with tree height remain strong, even for trees bigger than 5
or 10 m in height (Table 1). Together these results suggest that
below-canopy variation in source CO2 explains only a very small
portion of variation in Wi.

Discussion
We show here thatWi increases strongly with tree age in the three
broadleaf species Quercus, Fagus and Cedrela and weakly in
Pinus. This is an important finding as it invalidates the
assumption of most tree ring isotope studies aiming at recon-
struction of tree water use efficiency over time that developmental

trends are negligible. Using a simple, size-stratified sampling
approach we demonstrate that developmental increases in Wi in
individual tree ring series are strong for three out of four species,
and thus will be wrongly interpreted as responses of trees to
global change unless the records are corrected for these effects
(Fig. 1). For example, comparison of the increases in Wi with age
for Cedrela from our study with results from Nock et al.16 and
Hietz et al.45 shows that observed increases in their tropical tree
species (including Cedrela) are of the same order of magnitude as
the developmental effects for Cedrela. The lack of size-stratified
sampling in these studies makes it hard to unambiguously isolate
the CO2 effects. Our findings similarly question to what degree
reported increases in Wi in European Quercus and Fagus10, 11, 41,
46 are indeed due to CO2, or rather primarily the result of
developmental effects. We find that P. sylvestris is much less
affected by tree development, consistent with other indications
for this species42, 43. Reported estimates of Wi increases for this
species in, for example, the European tree ring isotope net-
works11, 41 are thus more likely to be correctly attributed to
external changes like, e.g., rising CO2 although still with a caveat
since the strength of developmental effects may vary between sites
and with local climate.

A second important finding of our study is that developmental
trends are not limited to the earliest phases of a trees’ life,
but within the maximum age limits of our sample seem to
last over the entire lifetime of trees. In P. sylvestris, Wi increases
with age even for trees older than 100 years (Supplementary
Fig. 1), reflecting earlier observations by Helama et al.39 using
δ13C. For the three broadleaf species Wi also continues with
age, even after trees have reached an age of 50 years (Table 1).
The age of 50 years is a commonly suggested cut-off to remove
developmental effects (in this connection usually dubbed ‘juvenile
effect’)24, 43, 46, 47. Our results indicate this is not a valid approach
as Wi continues to increase even in old trees.

Analysis of the relationship of Wi with various tree develop-
mental characteristics (Fig. 2; Table 2) shows that the observed
trends are not driven by age per se. Instead increases in tree height
and changing crown illumination over a trees’ life are the principal
drivers. In our analysis these two variables, tree height and crown
illumination, explain over 60% of the variation in Wi in the
broadleaf species. As tree height and crown illumination increase
simultaneously in trees over the course of their life, it is however
impossible to fully separate the effect of the two variables with our
methods. Nevertheless, for Fagus and Quercus, we collected and
analysed samples from trees that were of similar size (all small
saplings), but which differed strongly in their light environment.
Wi ‘s differed markedly revealing light exposure as an important

Table 2 Effects of tree age, diameter, height and crown illumination on intrinsic water use efficiency

Species Age Diameter Tree height Crown illumination Most parsimonious regression
model

Variance explained

Pinus sylvestris 0.005NS 0.053* 0.001NS 0.131*** Tree height, light index, diameter 18%
Quercus robur 0.353*** 0.499*** 0.476*** 0.515*** Tree height, crown illumination 68%
Fagus sylvatica 0.333*** 0.495*** 0.394** 0.541*** Crown illumination, diameter 61%
Cedrela odorata 0.611*** 0.662*** 0.762** 0.516*** Tree height, crown illumination 78%

Linear mixed-effects model (LME) outcome t-value P-value
Age −3.870 0.0001
Diameter 0.427 0.5716
Tree height 7.761 0.0000
Crown illumination 7.331 0.0000

Significance levels and coefficient of determination (R-squared) for each predictor are shown per species. To evaluate which set of predictors best fitted the data for each species, we used Akaike
Information Criterion to estimate the most parsimonious regression model77. The lower part of the table shows the outcome of linear mixed-effects model for the effects of four predictive variables on
Wi, including all four species as random effects. Note that the negative effect of tree age on Wi arises from the relationship of age with other predictor variables. Significance levels are indicated as
follows: NS not significant; *p< 0.05; **p< 0.01; ***p< 0.001

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00225-z ARTICLE

NATURE COMMUNICATIONS |8:  288 |DOI: 10.1038/s41467-017-00225-z |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


driver of variation inWi, irrespective of the trees’ size. For Cedrela
tree height plays a more important role compared to crown illu-
mination, likely via hydraulic limitation, while the combined
results for all four species suggest that variation in Wi is driven by
these two variables approximately equally.

The effect of tree height on leaf isotope discrimination is well-
known and attributed to increasing constraints on water
transport to the canopy with increasing tree height23. Irradiance
has an additive effect on the height–discrimination relationship
by increasing assimilation more than stomatal conductance for
sunlit leaves resulting in lower partial pressure of CO2 inside the
leaf, at any given height23, 48. While these two factors seem to be
the main controls of change in isotope discrimination with tree
height, various related plant physiological changes may play a role
as well. For example, change in rooting depth and water uptake49,
leaf morphology and physiology28, 32, 33, 50, leaf nitrogen through
its effect on photosynthetic capacity51, changing leaf area to
sapwood area ratios34, 35 and increases in average branch length52

as trees grow bigger are all known to affect isotope discrimina-
tion. In addition, decreases in relative humidity from lower to
upper canopy may also affect isotope discrimination when trees
grow higher53. The contribution of soil-respired carbon to
the tree height-δ13C relationship, which has been the focus of
several of the earlier isotope studies26, 36, seems to be comparably
small. In the case of Cedrela growing in dense tropical rainforests,
where these soil contributions were found to be highest37, 44, we
estimated that no more than 20% of the trend in Wi can be
explained by soil respiration, with soil respiration contributions
to Wi trends in the two temperate broadleaf species being even
lower (11 and 14%, Supplementary Fig. 4). We further find that
for all four species, Wi continues to increase with tree height
beyond the first few metres (Table 1). Thus, changes in Wi with
tree height observed in this study are mainly related to plant
physiological and environmental changes, such as tree hydraulics
and crown illumination.

Our analysis includes only four species, and thus caution
is needed with generalisation to other species and biomes.
Nonetheless while the type of tree ring studies that we performed
here are scarce, various studies have analysed variation in leaf
isotope discrimination with tree height. This raises the question

whether variation in isotope discrimination with leaf height in
the canopy can be used as an indicator for trends in wood δ13C
(i.e., for the change in tree ring δ13C with total height of the tree at
the time of ring formation). The answer is not so clear because
wood δ13C integrates the isotope signal from the entire canopy,
mixing carbohydrates produced by leaves at different height54. For
trees with deep crowns and heavy self-shading one would there-
fore expect trends in wood δ13C with tree height to be weaker than
the trends of leaves with height23, 55. On the other hand, sunlit
leaves at the top of the canopy are expected to assimilate com-
parably more carbon and contribute disproportionally to the
average isotope signal found in the main trunk54. A review of
published isotope data by McDowell et al.23 shows indeed weaker
trends with tree height for wood compared to leaves. Notwith-
standing these results, we observe that the average change in
carbon isotope discrimination in leaves with tree height (1.9 ‰
(10m)−1) from the analysis of McDowell et al.23 is quite similar to
the trends in carbon isotope discrimination in wood for the three
broadleaf species in our study, which vary between 1.6 and 1.8 ‰
(10m)−1 (Supplementary Fig. 3). Furthermore, a comparison of
height trends in tree ring δ13C in our study with leaf δ13C col-
lected at different heights in a single Fagus tree by Schleser56

shows that trends in wood δ13C are only slightly weaker compared
to foliar δ13C trends (Fig. 3). This suggests that leaf δ13C may
indeed be used as an indicator for the existence of trends in wood
δ13C, although not necessarily for the absolute magnitude of the
trends. According to the meta-analysis by McDowell et al.23 height
trends in leaf isotope discrimination are common across a wide
range of habitats and species (37 of the 38 different species showed
a decrease in leaf discrimination with tree height, or an increase in
Wi). While more investigation into wood and leaf δ13C trends
with height for a large range of species is needed, this is a strong
indication that height trends in tree ring δ13C are probably very
common and may be the rule rather than the exception.

Surprisingly, for both Fagus and Quercus, we find that time
trends in Wi for the dominant trees (by looking backwards in
time using individual tree ring series of big trees, Fig. 1b, d, f, h)
are much weaker than the increase in Wi with tree age for the
same species from the same sites (Fig. 1a, c, e, g). We attribute
this to distinctly different growing conditions for these dominant
trees when they were small, compared to current small trees from
our sample. The dominant Fagus and Quercus trees from Bishop
Wood, UK, were indeed planted and probably grew up in quite
open conditions with high light availability and low humidity.
This is in agreement with our results about the overwhelming
influence of historical growing conditions on trees’ variation
in Wi. It also calls for more investigation into the influence of
historical stand development, specifically the role of competition,
light availability and height gains on Wi trends.

Overall, our results reveal a clear need to account for
developmental effects in tree ring δ13C if the aim is to extract
long-term trends in Wi due to, for example, CO2 or climate. This
recommendation has been made in previous studies25, 40, 42, but
has rarely been followed. Recent tree ring isotope studies from the
European isotope networks do not account for developmental
effects, and rings of different ages for the same calendar year are
even commonly pooled prior to δ13C analysis11, 41. Such
approaches will inevitably obscure developmental trends, and
make it virtually impossible to separate such trends from real
changes in Wi. Developmental effects in tree ring data are
commonly removed using Regional Curve Standardisation57–59

applied to age. Our results argue instead for an approach that
removes the effect of tree size (similar as in van der Sleen et al.8),
as this is the parameter most strongly related to Wi. It should be
noted however that all of these approaches are prone to additional
biases60, 61. These biases arise because of differences in survival
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changes for fast- and slow-growing trees (which may have
different Wi), and/or due to specific stand history development.
Bias correction as described in Brienen et al.60 is needed when
these approaches are used to estimate long-term Wi changes in
response to CO2 and climate. The importance of knowing specific
stand history of the sampled trees is nicely illustrated in the
comparison of developmental and time trends for Quercus and
Fagus (Fig. 1); using the age-Wi curve in these two species to
detrend the historical time series of Wi in current dominant trees
would have resulted in negative trends in Wi over time. The very
site-specific nature of these effects means that it may be very
difficult or perhaps impossible to remove these effects from many
previously published records, but it is recommended that future
studies collect and evaluate stand history data.

It is well-known that rising CO2 affects stomatal regulation of
leaf gas exchange5. As a general framework to evaluate trees’
responses to increases in CO2, researchers have proposed three
strategies for homoeostatic gas-exchange regulation11, 12, 17, 25,
which are maintaining a constant leaf internal CO2, ci, a
constant air-to-leaf CO2 difference, ca−ci, or equivalently
Wi (≡ (ca−ci)/1.6≡ A/gw) or a constant ratio of leaf-to-air CO2,
ci/ca. These strategies have guided the interpretation of tree ring
and isotope-derived changes in leaf gas exchange to increasing
CO2. However it is largely unknown to what extent trees
follow just one of these specific gas-exchange strategies over their
lifetime, if any at all, and how they vary between species. This

question is relevant for the interpretation of long-term responses
to CO2, and is also interesting by itself. In Fig. 4, we show age
trends in ca−ci, ci and ci/ca. for Fagus and Pinus, as derived
from the developmental trends in carbon isotope discrimination
(see Methods section). Trees clearly do not adhere to a single gas
regulation strategy over their life. For example, in Fagus observed
increases in ca−ci correspond to strong decreases in ci and
decreases in ci/ca. with tree age. Thus, young Fagus trees have
significantly higher leaf internal CO2 concentrations, ci, compared
to older, and thus larger, trees, presumably due to increased
stomatal limitations on assimilation as trees grow taller. There are
also strong differences between species, as Pinus shows much
weaker change in ci and ci/ca with age. These differences may be
related to taxonomy (conifers vs. broadleaf species), difference in
shade tolerance between species or growing conditions (open sites
vs. forests). These results illustrate that trees do not adhere to a
single gas regulation strategy over their lifetime, but that strate-
gies vary between different developmental stages and species,
reminiscent of observations of gas-exchange responses to CO2

12.
Finally, we would like to emphasise that, while our results cast

doubt on interpretations of tree rings isotope trends of Wi in the
context of long-term responses to CO2, the purpose of this paper
is not to dispute the existence of beneficial CO2 effects on plant
growth. As already mentioned, various studies that do control
for developmental effects in tree ring data report relatively large
increases in Wi

8, 40, 62 (but see Marshall and Monserud38),
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consistent with ecosystem flux measurements7, and with δ13C
observations in paleo records and CO2 enrichment studies12.
However, tree ring δ13C can only be used for improving our
understanding of CO2 effects on Wi if developmental effects are
taken fully into consideration. We also would like to point out
that the identified developmental effects have similar implications
for the use of tree ring δ13C to study tree responses to,
e.g., nitrogen deposition14, air pollution63 and climate11, as well
as, for any palaeo-climate reconstructions24, 64.

In summary, we here report that some species show very strong
developmental changes in isotope discrimination with a doubling
or even tripling of Wi over a trees’ lifetime without any change
in atmospheric CO2. These effects are highly species-specific
and predominantly related to increases in tree height and
accompanying increases in light availability. In three of the four
species the effects of developmental change in Wi were of similar
magnitude as estimated time trends of Wi from tree ring δ13C
series of big trees, suggesting that these may very well just be
artefacts. We also observed that the developmental trends are not
limited to the earliest life phases, but continue all the way through
to old age. These results provide a stark warning against ignoring
developmental trends and show that existing reports on increases
in Wi need to be interpreted very cautiously, and effectively
require re-evaluation.

Methods
Study species and field sampling. In this study, we focus on four different species,
P. sylvestris (Scots pine), Q. robur (pedunculate oak), F. sylvatica (common beech)
and C. odorata (Spanish cedar) for which we present new and original data and
compiled literature data (Supplementary Table 1). Pinus, Quercus and Fagus were
chosen as these have been extensively used in European dendro-isotope studies11, 13.
Cedrela was included as a representative for tropical trees, which are increasingly
being used in tree ring isotope studies8, 16, 45. Samples for P. sylvestris (100 trees)
were collected in April 2015 from a natural Pine stand in the Cairngorms National
Park, Scotland near Loch-an-Eilein (57.13N, −3.83E). Most of the sampled Pine
trees were growing in full sunlight, but we also sampled individuals from a young
dense stand with high levels of competition. For P. sylvestris we also present sub-
fossil isotope records from 180 ancient trunks, which dated between 5630 BC to
1930 AD, and were recovered from lake sediments from Finnish Lapland (for details
see Helama et al.39). Samples of Q. robur (78 trees) and F. sylvatica (81 trees) were
collected in 2015 from Bishop Wood, which is a mixed evergreen broadleaf forest in
North Yorkshire, UK (53.79N, −1.15E) managed by the UK Forestry Commission.
The oldest Quercus and Fagus trees in this forest were planted in 1922. For Fagus we
collected additional 33 samples from small trees from a park landscape in Leeds, UK
(53.82N, −1.58E) to complement our sample with saplings from across a range of
different light environments (i.e., full sunlight to deep shade). C. odorata samples
(75 trees) were collected from two different sites of natural lowland tropical moist
forests located in the province of Pando in northern Bolivia in October 2002 in
Purissima (−11.40N, −68.72E), and in 2011 in Selva Negra (−10.08N, −66.30E). For
all sampled species, the strategy consisted of collecting cores or stem sections from
across the full size range of the existing populations, assuring an even sample
distribution across size classes. We collected increment cores from trees >5 cm in
diameter, but for saplings and seedlings with diameters that were too small to core,
we cut full stem sections. In the case of Cedrela, we also collected additional large
discs or disc sections from trees that were felled for their timber (Brienen and
Zuidema65). The tree cores were taken using a 5 or 10mm increment borer, and
generally at 1.3 m above the forest floor when trees were large, or at somewhat lower
heights of 30–50 cm above the forest floor for smaller trees. Complete stem sections
for small saplings and seedlings shorter than 2.5 m in height were generally taken at
a height between 5 and 15 cm above the forest floor. Increment cores were taken
from at least two radii for Quercus, Fagus and Pinus, and generally in three direction
for Cedrela. Tree ring analysis on discs for Cedrela always made use of at least three
radii. For all trees, we recorded the diameter at breast height, estimated the total tree
height either by eye (in the case of Cedrela) or the use of a Nikon Pro Laser
Rangefinder, and assessed light availability using the modified crown illumination
index (CII) of Clark and Clark66. We used the following CIIs classes: 1= no direct
lateral or overhead light; 2a= little direct lateral light, no overhead light; 2b= some
direct lateral light, no overhead light; 2c= substantial direct lateral light, no over-
head light; 3a= little direct overhead light; 3b= substantial direct overhead light; 4
=more than 90% of crown receives full overhead direct light; and 5= full overhead
and lateral, direct light. To perform tree ring analysis, we glued cores to wooden
bases, and prepared surfaces by sanding or using a core microtome. All four species
form clear and annual rings, including tropical Cedrela in the two sites used here67,
and tree ages were estimated by ring counting without crossdating. For cores with

missing piths we calculated the distance to the pith and used mean growth rates for
that species and diameter class to estimate the number of missing rings.

Isotope analysis. We isolated and analysed bulk samples containing the last five
rings for Fagus, Quercus and Pinus. For Cedrela, we analysed the isotope ratio for
each ring over the last 5 years, and then took the average of those years. For Cedrela
the sampling date differed by 9 years between the two sites that were used, but this
did not affect the results, as we find no difference in Wi between these periods
(data not shown). Long isotopes series from large, dominant trees were
reconstructed either by measuring δ13C for each individual ring (Cedrela), or by
measuring δ13C in ring sections of 10 years (Fagus, Quercus and Pinus). Rings or
ring sections were cut up using a scalpel, and cellulose was extracted following the
batch method of Wieloch et al.68. Cellulose was homogenised using a mixer mill
(Resch MM301) and then freeze-dried. Samples were then weighed into tin cap-
sules for isotope analysis. The isotope analysis was done at four different labs: the
British Geological Survey’s Stable isotope Facility (Part of NERC Isotope Geos-
ciences Facilities) (NIGF, Keyworth, Nottingham, UK), the School of Earth and
Environment (SEE) at the University of Leeds, the German Research Centre for
Geosciences (GFZ, Postdam and Julich, Germany) and the Laboratory of Chron-
ology at the University of Helsinki (Finland). Analysis of the Cedrela samples from
Selva Negra were performed at British Geological Survey utilising a Costech Ele-
mental Analyser (EA) online to a VG TripleTrap and Optima dual-inlet isotope
mass spectrometer (IRMS). Cedrela cellulose samples from Purissima at GFZ were
converted to CO2 in an excess of oxygen using an elemental analyser (Carlo Erba
NA 1500) coupled to an OPTIMA (Micromass Ltd, UK) IRMS. The remaining
samples for Fagus, Quercus and Pinus (Scotland) were analysed at University of
Leeds using an Elementar Vario Pyrocube coupled to a GV Isoprime mass spec-
trometer. Analysis of the sub-fossil samples from Finland was analysed in duplicate
on a DELTA Advantage isotope ratio spectrometer coupled to a CN2500 elemental
analyser at the Laboratory of Chronology at the University of Helsinki (Finland).
All laboratories used standards that included IAEA-CH7
and/or IAEA-CH3, or in-house standards calibrated against at least one of these
IAEA international standards.

Data analysis. Carbon isotope ratios (δ13C) were calculated as

δ13Cplant m vs:V� PDB½ �¼ Rsample=Rstandard � 1
� �

´ 1000 ð1Þ

with R representing the abundance ratios, 13C/12C, of the sample and the standard
(Vienna Pee Dee Belemnite (V-PDB)). The unit permille plant carbon isotope
ratios were converted to plant to air isotope discrimination (Δ, Farquhar and
Richards69),

Δ13Cplant¼ δ13Ca � δ13Cplant
� �

= 1þ δ13Cplant=1000
� � ð2Þ

with δ13Ca representing the isotopic composition of atmospheric CO2, which is
becoming depleted in heavier 13CO2 over the last two centuries due to
combustion of isotopically light fossil fuels. We used records of δ13Ca obtained
from Antarctic ice cores70, complemented with recent data from Mauna Loa from
http://www.esrl.noaa.gov/gmd/ccgg/trends/full.html. Following Farquhar et al.71,
plant discrimination is assumed to be related to the ratio of intercellular to
atmospheric [CO2] (ci/ca) by the following equation:

Δ13Cplant ¼ a ´
ca � ci
ca

� �
þ b ´

ci
ca
;

� �
ð3Þ

where a (=4.4‰) results from the slower diffusion of 13CO2 relative to 12CO2

through the stomata and b (=27‰) is the fractionation by Rubisco against 13CO2

inside the leaf. Ci can be calculated directly for each ring, or ring section using ca,
atmospheric CO2 data from http://www.esrl.noaa.gov/gmd/ccgg/trends/full.html.
This equation ignores mesophyll conductance72 and assumes that post-
photosynthetic factors beyond the formation of primary leaf sugars73, do not
change discrimination. It is well-known that this assumption is not correct, as
various environmental and physiological processes (including temperature and
tree- or leaf age) affect mesophyll conductance and post-photosynthetic dis-
crimination72, 74. However, considering current lack of knowledge on these pro-
cesses73, and specifically how they vary between species and environmental
conditions, we choose not to correct for the mesophyll conductance term or leaf-
to-wood offsets. Many studies on water use efficiency similarly ignore these effects,
or apply a fixed term to account for post-photosynthetic processes11, which does
not change the trend analysis which is the focus of our analysis.

Intrinsic water-use efficiency (Wi) is defined as the ratio of assimilation rate (A)
to stomatal conductance for water vapour (gw), and can be calculated if ci and ca are
known using Fick’s Law,

A ¼ gc ´ ca � cið Þ ð4Þ

Stomatal conductance for water (gw) is 1.6 × gc (stomatal conductance for CO2),
where 1.6 is the ratio of molecular diffusivity of water vapour and CO2 in air.
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Combining Eqs. [2], [3] and [4], we calculate Wi as follows,

Wi � A=gw ¼ A= 1:6 ´ gcð Þ ¼ ca � cið Þ=1:6 ¼ ca b� Δ13Cplant
� �

=1:6 b�að Þ ð5Þ

Note that we use the shorter parts per million (ppm) notation as units for Wi,
which is the equivalent of the mole fraction (µmol mol−1). The sub-fossil δ13C data
from Pinus from Helama et al.39 originated between 5630 BC and 1930 AD, and to
calculate Wi for these trees we assumed a constant, pre-industrial atmospheric CO2

level of 280 ppm and δ13Cair of −6.4‰ based on Francey et al.70. Slight temporal
variations in CO2 and δ13Cair during this period will not cause any systematic bias
in the calculation of development trends in Wi as the trees represent an average
from very different time periods (Helama et al.39).

To study the effect of tree age, diameter, height and light availability on carbon
isotope discrimination, we plotted Wi against each of these variable for rings that
were formed in the same calendar years thus controlling for the effect of CO2 on
Wi. We estimated developmental trends and time trends in Wi using general
additive mixed models from the gamm4 R package75. To estimate long-term linear
Wi trends we used linear mixed-effects models from lme4 R package76. In the
comparison of developmental trends with time trend in tree rings, we excluded
trees lower than 1 m in height from the developmental trend analysis (Fig. 1a, c, e,
g) to avoid influence of soil-respired carbon, and because tree ring analysis usually
does not sample trees at height lower than 1.30 m. Our estimates of time trends in
Wi included time trends from trees collected in this study complemented with
literature data. To account for differences in sampling intensity between studies, we
used weighting in the calculations of the time trends according to the number of
study sites for each Wi trend. See Supplementary Table 1 for a list of sourced
literature data and the number of sites that were included. For display purposes
(Fig. 1) we smoothed the annual Cedrela Wi series for each tree using a cubic
smoothing spline function.

Soil respiration. To estimate the contribution of soil respiration to age and
height trends in tree ring-derived estimates of Wi, we compiled literature data on
differences in CO2 concentrations and δ13C in CO2 (δ13Cair) under the forest
canopy compared to values above the canopy. We approximated the change in CO2

and δ13Cair with height above the forest floor by a negative exponential function for
temperate and tropical forests (Supplementary Fig. 4). Using total tree height data
for individual trees collected in our study, we then estimated the available CO2

concentration and δ13Cair for each tree. As total tree height is probably not the best
measure of a trees’ actual uptake of CO2, we assumed that average CO2 uptake by
the trees’ canopy occurred slightly below the top of the trees, at 0.9 × total tree
height. We then re-calculated Wi for each tree corrected for below-canopy
effects, and re-estimated Wi trends with age and height. This analysis was
done only for the three broadleaf trees, and not for Pinus as this species grew
mostly in open areas.

Data availability. All the data used in this publication are available from the
authors upon request.

Received: 16 November 2016 Accepted: 9 June 2017

References
1. Hetherington, A. M. & Woodward, F. I. The role of stomata in sensing and

driving environmental change. Nature 424, 901–908 (2003).
2. Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and

covariation with climate. Science 329, 834–838 (2010).
3. Lieth, H. in Primary Productivity of the Biosphere 237–263 (Springer, 1975).
4. Booth, B. B. B. et al. High sensitivity of future global warming to land carbon

cycle processes. Environ. Res. Lett. 7, 024002 (2012).
5. Franks, P. J. et al. Sensitivity of plants to changing atmospheric CO2

concentration: from the geological past to the next century. New Phytol. 197,
1077–1094 (2013).

6. Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air
CO2 enrichment (FACE)? A meta-analytic review of the responses of
photosynthesis, canopy. New Phytol. 165, 351–371 (2005).

7. Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon
dioxide concentrations rise. Nature 499, 324–327 (2013).

8. van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of
CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8, 4 (2015).

9. Feng, X. H. Trends in intrinsic water-use efficiency of natural trees for the past
100-200 years: a response to atmospheric CO2 concentration. Geochim.
Cosmochim. Acta 63, 1891–1903 (1999).

10. Penuelas, J., Hunt, J. M., Ogaya, R. & Jump, A. S. Twentieth century changes of
tree ringδ13C at the southern range‐edge of Fagus sylvatica: increasing water

use efficiency does not avoid the growth decline induced by warming at low
altitudes. Glob. Chang. Biol. 14, 1076–1088 (2008).

11. Frank, D. et al. Water-use efficiency and transpiration across European forests
during the Anthropocene. Nat. Clim. Chang. 5, 579–583 (2015).

12. Voelker, S. L. et al. A dynamic leaf gas‐exchange strategy is conserved in woody
plants under changing ambient CO2: evidence from carbon isotope
discrimination in paleo and CO2 enrichment studies. Glob. Chang. Biol. 22,
889–902 (2015).

13. Penuelas, J., Canadell, J. G. & Ogaya, R. Increased water-use efficiency during
the 20th century did not translate into enhanced tree growth. Glob. Ecol.
Biogeogr. 20, 597–608 (2011).

14. Leonardi, S. et al. Assessing the effects of nitrogen deposition and climate on
carbon isotope discrimination and intrinsic water use efficiency of angiosperm
and conifer trees under rising CO2 conditions. Glob. Chang. Biol. 18, 2925–44
(2012).

15. Silva, L. C. R., Anand, M., Oliveira, J. M. & Pillar, V. D. Past century changes in
Araucaria angustifolia (Bertol.) Kuntze water use efficiency and growth in
forest and grassland ecosystems of southern Brazil: implications for forest
expansion. Glob. Chang. Biol. 15, 2387–2396 (2009).

16. Nock, C. A. et al. Long-term increases in intrinsic water-use efficiency do not
lead to increased stem growth in a tropical monsoon forest in western Thailand.
Glob. Chang. Biol. 17, 1049–1063 (2010).

17. Saurer, M., Siegwolf, R. T. W. & Schweingruber, F. H. Carbon isotope
discrimination indicates improving water-use efficiency of trees in
northern Eurasia over the last 100 years. Glob. Chang. Biol. 10, 2109–2120
(2004).

18. Andreu-Hayles, L. et al. Long tree-ring chronologies reveal 20th century
increases in water-use efficiency but no enhancement of tree growth at five
Iberian pine forests. Glob. Chang. Biol. 17, 2095–2112 (2011).

19. Maseyk, K., Hemming, D., Angert, A., Leavitt, S. W. & Yakir, D. Increase in
water-use efficiency and underlying processes in pine forests across a
precipitation gradient in the dry Mediterranean region over the past 30 years.
Oecologia 167, 573–585 (2011).

20. Silva, L. C. R. & Horwath, W. R. Explaining global increases in water use
efficiency: why have we overestimated responses to rising atmospheric CO2 in
natural forest ecosystems? PLoS ONE 8, e53089 (2013).

21. Loader, N. J. et al. Recent trends in the intrinsic water-use efficiency of ringless
rainforest trees in Borneo. Philos. Trans. R. Soc. B Biol. Sci. 366, 3330–3339
(2011).

22. Gómez-Guerrero, A. et al. Growth decline and divergent tree ring isotopic
composition (δ13C and δ18O) contradict predictions of CO2 stimulation in high
altitudinal forests. Glob. Chang. Biol. 19, 1748–1758 (2013).

23. McDowell, N. G., Bond, B. J., Dickman, L. T., Ryan, M. G. & Whitehead, D. in
Size-and Age-Related Changes in Tree Structure and Function. 255–286
(Springer, 2011).

24. McCarroll, D. & Loader, N. J. Stable isotopes in tree rings. Quaternary Sci. Rev.
23, 771–801, doi:10.1016/j.quascirev.2003.06.017 (2004).

25. Francey, R. J. & Farquhar, G. D. An explanation of C-13/C-12 variations in tree
rings. Nature 297, 28–31 (1982).

26. van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and
foodwebs in Amazonia. J. Archaeol. Sci. 18, 249–259 (1991).

27. Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree
height. Nature 428, 851–854 (2004).

28. Niinemets, Ü. Stomatal conductance alone does not explain the decline in foliar
photosynthetic rates with increasing tree age and size in Picea abies and Pinus
sylvestris. Tree Physiol. 22, 515–535 (2002).

29. Ryan, M. G. & Yoder, B. J. Hydraulic limits to tree height and tree growth.
Bioscience 47, 235–242 (1997).

30. Rijkers, T., Pons, T. L. & Bongers, F. The effect of tree height and light
availability on photosynthetic leaf traits of four neotropical species differing in
shade tolerance. Funct. Ecol. 14, 77–86 (2000).

31. Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope
discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol.
40, 503–537 (1989).

32. Cavaleri, M. A., Oberbauer, S. F., Clark, D. B., Clark, D. A. & Ryan, M. G.
Height is more important than light in determining leaf morphology in a
tropical forest. Ecology 91, 1730–1739 (2010).

33. Steppe, K., Niinemets, Ü. & Teskey, R. O. in Size-and Age-Related Changes in
Tree Structure and Function 235–253 (Springer, 2011).

34. McDowell et al. The relationship between tree height and leaf area: sapwood
area ratio. Oecologia 132, 12–20 (2002).

35. Ryan, M. G., Phillips, N. & Bond, B. J. The hydraulic limitation hypothesis
revisited. Plant Cell Environ. 29, 367–381 (2006).

36. Medina, E. & Minchin, P. Stratification of δ13C values of leaves in Amazonian
rain forests. Oecologia 45, 377–378 (1980).

37. Buchmann, N., Brooks, J. & Ehleringer, J. R. Predicting daytime carbon
isotope ratios of atmospheric CO2 within forest canopies. Funct. Ecol. 16, 49–57
(2002).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00225-z ARTICLE

NATURE COMMUNICATIONS |8:  288 |DOI: 10.1038/s41467-017-00225-z |www.nature.com/naturecommunications 9

http://dx.doi.org/10.1016/j.quascirev.2003.06.017
www.nature.com/naturecommunications
www.nature.com/naturecommunications


38. Marshall, J. D. & Monserud, R. A. Homeostatic gas-exchange parameters
inferred from C-13/C-12 in tree rings of conifers. Oecologia 105, 13–21 (1996).

39. Helama, S., Arppe, L., Timonen, M., Mielikäinen, K. & Oinonen, M. Age-
related trends in subfossil tree-ring δ13C data. Chem. Geol. 416, 28–35 (2015).

40. Bert, D., Leavitt, S. W. & Dupouey, J. L. Variations of wood delta C-13 and
water-use efficiency of Abies alba during the last century. Ecology 78,
1588–1596 (1997).

41. Saurer, M. et al. Spatial variability and temporal trends in water-use efficiency
of European forests. Glob. Chang. Biol. 20, 3700–3712 (2014).

42. Esper, J. et al. Low-frequency noise in delta C-13 and delta O-18 tree ring data:
a case study of Pinus uncinata in the Spanish Pyrenees. Global Biogeochem.
Cycles 24, GB4018 (2010).

43. Gagen, M., McCarroll, D., Robertson, I., Loader, N. J. & Jalkanen, R. Do tree
ring delta C-13 series from Pinus sylvestris in northern Fennoscandia contain
long-term non-climatic trends? Chem. Geol. 252, 42–51 (2008).

44. Lloyd, J. et al. Vegetation effects on the isotopic composition of atmospheric
CO2 at local and regional scales: theoretical aspects and a comparison between
rain forest in Amazonia and a boreal forest in Siberia. Aust. J. Plant Physiol. 23,
371–399 (1996).

45. Hietz, P., Wanek, W. & Dunisch, O. Long-term trends in cellulose delta C-13
and water-use efficiency of tropical Cedrela and Swietenia from Brazil. Tree
Physiol. 25, 745–752 (2005).

46. Waterhouse, J. S. et al. Northern European trees show a progressively
diminishing response to increasing atmospheric carbon dioxide concentrations.
Quaternary Sci. Rev. 23, 803–810 (2004).

47. Young, G. et al. Central England temperature since AD 1850: the potential of
stable carbon isotopes in British oak trees to reconstruct past summer
temperatures. J. Quaternary Sci. 27, 606–614 (2012).

48. Ehleringer, J. R., Field, C., Lin, Z.-f & Kuo, C.-y Leaf carbon isotope and
mineral composition in subtropical plants along an irradiance cline. Oecologia
70, 520–526 (1986).

49. Dawson, T. E. Determining water use by trees and forests from isotopic, energy
balance and transpiration analyses: the roles of tree size and hydraulic lift. Tree
Physiol. 16, 263–272 (1996).

50. Aranda, I., Pardos, M., Puértolas, J., Jiménez, M. D. & Pardos, J. A. Water-use
efficiency in cork oak (Quercus suber) is modified by the interaction of water
and light availabilities. Tree Physiol. 27, 671–677 (2007).

51. Duursma, R. & Marshall, J. Vertical canopy gradients in δ13C correspond with
leaf nitrogen content in a mixed-species conifer forest. Trees 20, 496–506 (2006).

52. Warren, C. R. & Adams, M. A. Water availability and branch length determine
δ13C in foliage of Pinus pinaster. Tree Physiol. 20, 637–643 (2000).

53. Barbour, M. M. & Farquhar, G. D. Relative humidity- and ABA-induced
variation in carbon and oxygen isotope ratios of cotton leaves. Plant Cell
Environ. 23, 473–485 (2000).

54. Schleser, G. H. δ (13) C pattern in a forest tree as an indicator of carbon
transfer in trees. Ecology 73, 1922–1925 (1992).

55. Heaton, T. H. Spatial, species, and temporal variations in the 13 C/12 C ratios of C
3 plants: implications for palaeodiet studies. J. Archaeol. Sci. 26, 637–649 (1999).

56. Schleser, G. Investigations of the δ13C pattern in leaves of Fagus sylvatica L.
J. Exp. Bot. 41, 565–572 (1990).

57. Briffa, K. R. et al. Fennoscandian summers from Ad-500—temperature-changes
on short and long timescales. Clim. Dynam. 7, 111–119 (1992).

58. Helama, S., Melvin, T. M. & Briffa, K. R. Regional curve standardization: state
of the art. Holocene 27, 172–177 (2016).

59. Peters, R. L., Groenendijk, P., Vlam, M. & Zuidema, P. A. Detecting long‐term
growth trends using tree rings: a critical evaluation of methods. Glob. Chang.
Biol. 21, 2040–2054 (2015).

60. Brienen, R. J. W., Gloor, M. & Ziv, G. Tree demography dominates long-term
growth trends inferred from tree rings. Glob. Chang. Biol. 23, 474–484 (2016).

61. Brienen, R. J. W., Gloor, E. & Zuidema, P. A. Detecting evidence for CO2

fertilization from tree ring studies: the potential role of sampling biases. Global
Biogeochem. Cycles 26, GB1025 (2012).

62. Duquesnay, A., Breda, N., Stievenard, M. & Dupouey, J. L. Changes of tree-ring
delta C-13 and water-use efficiency of beech (Fagus sylvatica L.) in north-
eastern France during the past century. Plant Cell Environ. 21, 565–572 (1998).

63. Martin, B. & Sutherland, E. Air pollution in the past recorded in width and
stable carbon isotope composition of annual growth rings of Douglas‐fir. Plant
Cell Environ. 13, 839–844 (1990).

64. Schubert, B. A. & Jahren, A. H. Global increase in plant carbon isotope
fractionation following the last glacial maximum caused by increase in
atmospheric pCO2. Geology 43, 435–438 (2015).

65. Brienen, R. J. W. & Zuidema, P. A. Relating tree growth to rainfall in Bolivian
rain forests: a test for six species using tree ring analysis. Oecologia 146, 1–12
(2005).

66. Clark, D. A. & Clark, D. B. Life-history diversity of canopy and emergent trees
in a neotropical rain-forest. Ecol. Monogr. 62, 315–344 (1992).

67. Baker, J. C. et al. Oxygen isotopes in tree rings show good coherence between
species and sites in Bolivia. Glob. Planet. Chang. 133, 298–308 (2015).

68. Wieloch, T., Helle, G., Heinrich, I., Voigt, M., & Schyma, P. A novel device for
batch-wise isolation of α-cellulose from small-amount wholewood samples.
Dendrochronologia 29, 115–117 (2011).

69. Farquhar, G. D. & Richards, R. A. Isotopic composition of plant carbon
correlates with water-use efficiency of wheat genotypes. Funct. Plant Biol. 11,
539–552 (1984).

70. Francey, R. et al. A 1000‐year high precision record of δ13C in atmospheric
CO2. Tellus B 51, 170–193 (1999).

71. Farquhar, G. D., O’Leary, M. H. & Berry, J. A. On the relationship between
carbon isotope discrimination and the inter-cellular carbon-dioxide
concentration in leaves. Aust. J. Plant Physiol. 9, 121–137 (1982).

72. Seibt, U., Rajabi, A., Griffiths, H. & Berry, J. A. Carbon isotopes and water use
efficiency: sense and sensitivity. Oecologia 155, 441–454 (2008).

73. Cernusak, L. A. et al. Viewpoint: why are non-photosynthetic tissues generally
C-13 enriched compared with leaves in C-3 plants? Review and synthesis of
current hypotheses. Funct. Plant Biol. 36, 199–213 (2009).

74. Flexas, J., Ribas-Carbo, M., Diaz-Espejo, A., Galmes, J. & Medrano, H.
Mesophyll conductance to CO2: current knowledge and future prospects.
Plant Cell Environ. 31, 602–621 (2008).

75. Wood, S. gamm4: Generalized additive mixed models using mgcv and lme4. R
package version 0.1–2 (2011).

76. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects
models using lme4. J. Stat. Soft., 67, 48 (2015).

77. Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. in Mixed Effects
Models and Extensions in Ecology with R J. Stat. Soft. (eds Gail M., Krickeberg
K., Samet J. M., Tsiatis A. & Wong W.) (Spring Science and Business Media,
2009).

Acknowledgements
We thank Thijs Pons, Jessica Baker, Sophie Fauset and three reviewers for comments on
previous draft of the manuscript, Jessica Baker and Bruno Ladvocat for help with
fieldwork, and Rob Wilson for logistical support with the Scottish Pine trees. Chris
Kendrick performed the isotope measurements at the British Geological Survey. We
acknowledge NOAA-ESRL for making available atmospheric CO2 records. This work has
been supported by the National Environmental Research Council (UK) through a NERC
Research Fellowship (grant NE/L0211160/1), NERC standard grant (NE/K01353X/1)
and by NERC Isotope Geosciences Facilities grants (IP-1424-0514 and IP-1314-0512).

Author contributions
R.J.W.B., E.G., S.C. and R.N. conceived the study, S.C., R.N., S.B., G.H., M.J.L. and T.H.
performed and/or oversaw the isotope measurements for this study, R.J.W.B., S.C.,
M.C., L.A., M.T., K.M., M.O. collected field samples and performed standard
dendrochronological analysis, R.B. and E.G. wrote the paper and all authors provided
comments on the manuscript.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00225-z.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00225-z

10 NATURE COMMUNICATIONS |8:  288 |DOI: 10.1038/s41467-017-00225-z |www.nature.com/naturecommunications

http://dx.doi.org/10.1038/s41467-017-00225-z
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes
	Results
	Age and time trends in Wi
	Causes of developmental trends in Wi

	Discussion
	Methods
	Study species and field sampling
	Isotope analysis
	Data analysis
	Soil respiration
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




