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Application of Dual-Polarimetry SAR Images
in Multitemporal InSAR Processing

Mostafa Esmaeili, Mahdi Motagh, and Andy Hooper

Abstract— Multitemporal polarimetric synthetic aperture1

radar (SAR) data can be used to estimate the dominant scattering2

mechanism of targets in a stack of SAR data and to improve the3

performance of SAR interferometric methods for deformation4

studies. In this letter, we developed a polarimetric form of5

amplitude difference dispersion (ADD) criterion for time-series6

analysis of pixels in which interferometric noise shows negligible7

decorrelation in time and space in small baseline algorithm. The8

polarimetric form of ADD is then optimized in order to find9

the optimum scattering mechanism of the pixels, which in turn10

is used to produce new interferograms with better quality than11

single-pol SAR interferograms. The selected candidates are then12

combined with temporal coherency criterion for final phase sta-13

bility analysis in full-resolution interferograms. Our experimental14

results derived from a data set of 17 dual polarizations X-band15

SAR images (HH/VV) acquired by TerraSAR-X shows that using16

optimum scattering mechanism in the small baseline method17

improves the number of pixel candidates for deformation analysis18

by about 2.5 times in comparison with the results obtained from19

single-channel SAR data. The number of final pixels increases by20

about 1.5 times in comparison with HH and VV in small baseline21

analysis. Comparison between persistent scatterer (PS) and small22

baseline methods shows that with regards to the number of pixels23

with optimum scattering mechanism, the small baseline algorithm24

detects 10% more pixels than PS in agricultural regions. In urban25

regions, however, the PS method identifies nearly 8% more26

coherent pixels than small baseline approach.27

Index Terms— Amplitude difference dispersion (ADD), polari-28

metric optimization, slowly decorrelating filtered phase (SDFP),29

Tehran plain.30

I. INTRODUCTION31

INTERFEROMETRIC analysis of synthetic aperture32

radar (SAR) data is a powerful geodetic technique to33

measure surface deformations [1]–[4]. The accuracy achieved34

with interferometric measurements depends on a variety of35

factors including temporal and geometrical decorrelation,36

variations in atmospheric water vapor between SAR data37

acquisitions and the accuracy of orbital and digital elevation38

model used in the processing [5]. In order to address39

these limitations, multitemporal InSAR (MTI) time-series40

processing techniques such as small baseline algorithms41

and persistent scatterer InSAR (PSI) have been developed.AQ:1 42
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The main goal of these techniques is to identify pixels 43

for which the effect of the interferometric noise is small, 44

so that they remain stable over the whole period of SAR data 45

acquisition [6]–[8]. 46

The PSI technique, first proposed by Ferretti et al. [6], [7], 47

presents a solution to deal with spatiotemporal decorrelations 48

of interferometric phase using time-series analysis of single- 49

master interferograms. The technique uses amplitude disper- 50

sion index (ADI) as a proxy of phase stability to identify pixels 51

whose scattering properties are coherent between SAR image 52

acquisition with long time interval and different look angles, 53

the so-called permanent scatterer (PS). As interferograms are 54

generated with a common master, PSs are limited to those 55

pixels that show high coherence even in interferograms with 56

larger baselines than the critical baseline [6], [7]. In [8], a new 57

PS technique was proposed in which both amplitude and phase 58

criteria are assessed to determine the stability of PSs. An initial 59

set of candidate pixel based on amplitude analysis is selected 60

first and then in an iterative process, the PS probability is 61

refined using phase analysis. The method is more suitable for 62

detecting low-amplitude PS pixels in natural terrains, where 63

the relationship between ADI index and phase stability breaks 64

down. 65

Small baseline techniques use interferograms with small 66

temporal and spatial baselines to reduce decorrelation. The 67

original small baseline technique [9] uses a network of mul- 68

tilooked small baseline interferograms and the target scat- 69

terers are identified by coherence (i.e., complex correlation) 70

criterion [10], [11]. The multilooking is a limiting factor for 71

detecting local deformations. This issue was resolved in [12] 72

with an extended version of small baseline algorithm applied 73

on full-resolution SAR data set. Hooper [13] proposed another 74

new small baseline method in which full-resolution differential 75

interferograms are used to identify stable scatterers incorpo- 76

rating both amplitude and phase criterion. The filtered phase 77

of those pixels that decorrelate little over short time intervals 78

of interferograms, the so-called slowly-decorrelating filtered 79

phase (SDFP) pixels are then used for deformation analysis. 80

Polarimetric optimization of polarimetric SAR data has 81

been applied to improve classical InSAR results [14], [15] 82

in terms of both deformation estimation and target 83

classification [16], [17]. Optimization can be applied to full 84

polarimetric space-borne SAR data [18], [19], ground-based 85

fully PolSAR acquisitions [20] or compact polarimetric SAR 86

data [21]–[23]. The approach improves the results by finding 87

the scattering mechanism that minimizes decorrelation for 88

each pixel over time, using coherence stability criteria or ADI, 89

thereby maximizing the quality and number of selected 90

PS pixels [17], [22], [24]–[26]. 91

In this letter, for the first time, we have developed a 92

polarimetric optimization approach based on the small baseline 93

1545-598X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. RGB composite of study area produced by amplitude of dual-pol
TerraSAR-SX images over Tehran plain (R = HH channel, G = VV channel
and B = HH − VV channel) overlaid on Google-Earth image.

method of the Stanford method for persistent scatterers (PSs)94

and multitemporal InSAR (StaMPS/MTI) analysis presented95

in [13]. In our algorithm, instead of applying ADI criterion,96

we utilize simulated annealing (SA) optimization to minimize97

the amplitude difference dispersion (ADD) value of each pixel.98

This can be employed as a rough proxy for phase variance for99

Gaussian scatterer pixels and it is an indicator for potential100

of a pixel to be an SDFP candidate, in dual-polarimetry101

X-band SAR images, followed by projection of the polari-102

metric interferograms onto the optimized polarimetric channel103

to reproduce the interferograms with the optimum scattering104

mechanism. As proposed in [17], SDFP candidates are selected105

based on lower values of ADD in reproduced interferograms.106

In an additional step, the phase stability of each candidate is107

tested using a measure similar to coherence magnitude called108

temporal coherence [8], [13] and SDFP pixels are extracted.109

Time-series analysis and 3-D phase unwrapping are then110

carried out to retrieve the deformation parameters. We evaluate111

the method with a data set consisting of 17 dual polarization112

X-band SAR data (HH/VV) acquired by TerraSAR-X satellite113

between July 2013 and January 2014 over Tehran plain,114

Iran (Fig. 1).115

II. PIXEL SELECTION IN MULTITEMPORAL InSAR116

In the StaMPS small baseline method, a set of candi-117

date pixels for time-series analysis are first selected based118

on the amplitudes of SAR interferograms, to reduce the119

computational cost time. An index called ADD has been120

presented (D�A) to identify SDFP candidates [13]121

D�A = σ�a

ā
=

√∑N
i=1(�Ai −�A)2/N

∑N
i=1(|Mi | + |Si |)/2N

(1)122

where σ�a is the standard deviation of the difference in ampli-123

tude between master and slave images, ā is the mean ampli-124

tude, �Ai is the difference in amplitude between master (Mi )125

and slave (Si ) images, and N is the number of interferograms.126

In this method a higher value of ADD in comparison with127

ADI, e.g., 0.6 is selected for the threshold and pixels with128

ADD value less than the threshold are considered as SFDP129

candidates. The residual phase noise for SDFP candidates is130

estimated by subtracting two major components of signal:131

spatially correlated and spatially uncorrelated components.132

Finally, SDFP pixels are identified among the candidates using133

Fig. 2. Flowchart of the overall process in our study.

temporal coherence [8], [13], defined as 134

γx = 1

N

∣∣∣∣∣
N∑

i=1

exp
{

j
(
ϕx,i − ϕ̃x,i −�ϕ̂u

θ,x,i

)}
∣∣∣∣∣ (2) 135

where ϕx,i is the wrapped phase of pixel x in the i th interfer- 136

ograms, ϕ̃x,i is the estimate for the spatially correlated terms, 137

�ϕ̂u
θ,x,i is the estimate of the spatially uncorrelated look angle 138

error term, and N is the number of interferograms. 139

For dual-pol SAR data we need to extend the ADD in (1), 140

which is applicable only for single-pol data, also to include 141

dual-pol data and optimize it to increase the density of SDFP 142

pixels for the time-series analysis. We then apply temporal 143

coherence in (2) to identify the SDFP pixels. 144

Fig. 2 shows a flowchart of the overall processing strategy 145

that is implemented in this letter. The method consists of three 146

main steps: 1) InSAR processing; 2) polarimetric optimization; 147

and (3) multitemporal analysis of the optimized interfero- 148

grams. Single-pol multitemporal InSAR analysis includes only 149

InSAR processing (step 1) and time-series analysis of the 150

interferograms (step 3). Polarimetric optimization is used here 151

to improve the performance of this analysis using dual-pol 152

data. In Section III we describe in detail the methodology we 153

used in our study. 154

III. ADD OPTIMIZATION 155

In order to obtain the polarimetric form of ADD it is 156

sufficient to replace the amplitude of single-pol data in (1) 157

by the polarimetric scattering coefficient, μ defined as 158

μ = ω∗T K (3) 159

K = 1√
2
[Shh + Svv, Shh − Svv]T (4) 160

ω = [cos(α) sin(α) e jψ ]T , 0 ≤ α ≤ π/2, − π ≤ ψ ≤ π 161

(5) 162
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Fig. 3. Values of ADD for all possible values for α and ψ , for three arbitrarily
selected pixels. The red star presents the minimum value of ADD.

where K stands for the polarimetric vector, ω is the polari-163

metric projection vector, Svv and Shh are the complex values164

of the HH and VV channels, respectively, T is the transpose165

operator and ∗ denotes the conjugate operator. α and ψ are166

Pauli parameters which represent the scattering mechanism167

[17], [22], [27]. The polarimetric form of ADD in (1) can168

then be written in the following form:169

DPol
�A

=
√∑N

i=1

(
�APol

i −�APol
)2
/N

∑N
i=1

(∣∣ω∗T K M
i

∣∣ + ∣∣ω∗T K s
i

∣∣)/2N
170

�APol = |ω∗T K M | − |ω∗T K S| (6)171

where K M
i and K S

i are polarimetric vectors of master and172

slave images, respectively.173

The main objective of polarimetric optimization is to find174

the optimum scattering mechanism of the pixels and generate175

interferograms with better quality than using single-pol SAR176

images. To simplify the search of the optimum scattering177

mechanism, we parameterized the projection vector in terms of178

Pauli basis parameters. In order to build consistent time series179

of phases related to deformation we assume that the scattering180

mechanisms of the pixels remain the same during acquisition181

time, as in the case of multibaseline equal scattering mecha-182

nism. Therefore, ω would be the same for the pixel in whole183

stack of interferograms [28].184

The optimization problem is to find the projection vector185

that minimizes the value of ADD. Fig. 3 illustrates the possible186

ADD values, in terms of α and ψ , for three arbitrarily selected187

pixels in our study area. In [17] we showed that SA is188

an effective method to minimize such smooth functions as189

illustrated in Fig. 3 and to find the optimum α and ψ in their190

corresponding finite range. We define a coarse grid with a step191

size of 10° for both α and ψ and search for the values that192

give the minimum ADD. These values for α and ψ are then193

used as initial values in the SA optimization method.194

IV. EXPERIMENTAL RESULTS AND DISCUSSION195

To evaluate the method we processed 17 co-polar SAR196

images acquired by the TerraSAR-X satellite in an ascending197

mode between July 2013 and January 2014 over the Tehran198

plain, which is highly affected by subsidence [29]. We formed199

a small baseline network consisting of 44 single-look inter-200

ferograms as shown in Fig. 4. We then generated interfer-201

ograms for HH, VV and optimum channels and calculated202

the ADD value of each pixel in the single-look interfero-203

grams. To evaluate the improvement in ADD, we compared204

Fig. 4. Small baselines network used in this letter. The stars denote the
SAR images and lines present the formed interferograms for Small Baseline
processing.

Fig. 5. Histograms of ADD for HH, VV and optimum channel.

Fig. 6. Number of SDFP Candidates and SDFP pixels obtained by HH,
VV and optimum channel.

the histograms of ADD values for HH, VV and optimum 205

channel (Fig. 5). 206

As shown in Fig. 5, by applying the proposed method, the 207

histogram of ADD values in optimum channel is inclined to 208

lower values of ADD in comparison to HH and VV chan- 209

nels. Therefore, by thresholding ADD value of less than 0.6, 210

more SDFP candidates are extracted in optimum channel as 211

compared to single-pole interferograms. 212

Fig. 6 depicts the number of selected SDFP candidates 213

obtained from HH, VV and optimum channels using ADD 214

criterion and also the improvement in number of SDFP pixels 215

after utilizing temporal coherency. 216

The total number of SDFP candidates for the optimum 217

channel is about 2.5 times higher than for the HH and 218

VV channels. Considering the final selection of SDFP pixels 219

for the optimum channel, the number has increased by 220

about 1.4 times and 1.6 times in comparison to the HH and 221

VV channels, respectively. 222

In order to evaluate the efficiency of using multitemporal 223

polarimetric SAR data for different models of scattering we 224

made a comparison between urban and nonurban regions. 225

46% of our study area comprises urban region, while the 226

nonurban portion is about 54%. In urban areas, the number of 227

identified candidates using the optimum channel is increased 228

by ∼1.7 and ∼2.1 times compared to HH and VV channels, 229

respectively. In regard to the agricultural regions, the increase 230

is ∼2.1 and ∼2.2 times [Fig. 7(b)]. The number of final SDFP 231

pixels increased ∼1.4 and ∼1.5 times in urban regions and 232

∼1.48 and ∼1.65 times in agricultural regions, in comparison 233
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Fig. 7. Number of (a) identified SDFP pixels and (b) SDFP candidates
detected in urban and agricultural regions using HH, VV and optimum.

TABLE I

QUANTITATIVE COMPARISON OF IDENTIFIED SDFP PIXELS WITH

RESPECT TO PS PIXELS (EXPRESSED IN PERCENT OF PS PIXELS)

to HH and VV channels, respectively [Fig. 7(a)]. Therefore234

the proposed algorithm is slightly more successful in nonurban235

regions than in urban regions.236

As PS pixels and SDFP pixels relate to different scattering237

characteristics of the ground, we also compared the density of238

measurements for both of the methods in urban and nonurban239

regions. Table I describes the percentage of additional pixels240

identified by SDFP pixels in comparison with PS pixels for241

which the results were previously published in [17]. For the242

HH and VV channels we detect about 8% more SDFP pixels243

than PS in agricultural regions, however, over the urban area244

the number of identified SDFPs is almost 9% less than PS245

pixels.246

Similar to the HH and VV channels, in the case of the247

optimum channel, the small baseline method detects 10%248

more coherent pixels in agricultural regions, while in urban249

area the PS pixels are more numerous than SDFP pixels by250

about 8%. SDFP pixels show little loss of correlation in short251

time intervals whereas PS pixels remain stable over the whole252

period of data acquisition. Therefore, in nonurban area more253

SDFP pixels are expected to be identified than PS pixels. By254

contrast, in urban areas PS pixels are more abundant. This255

might be related to the effect of filtering in the small baseline256

method, which increases the decorrelation in pixels dominated257

by a single scatterer as a result of coarsening the resolution258

of spectra [13].259

In order to check that using the optimum channel leads260

to lower phase noise, we selected SDFP pixels approxi-261

mately every 0.001° in both directions, and calculated the262

variance of the phase differences between the selected pix-263

els and their immediate SDFP neighbors for the optimum,264

HH and VV channels. The results are shown in Fig. 8.265

The standard deviation of differences are very similar for266

HH and VV, but are generally lower for the optimum channel,267

indicating that our method leads to reduced phase noise. There268

appear to be two populations of pixels, however; those for269

which the improvement is marginal and those for which the270

improvement is more significant [indicated in Fig 8(a)]. This271

division is not apparently related to scattering mechanism, but272

does appear to correlate with spatial position (Fig. 9), with273

pixels in urban areas, plotted in red, more likely to fall in the274

population with greatest improvement.275

Fig. 8. Cross comparison of Standard deviation of phase differences
of nearby SDFP pixels for the selected SDFP pixels for (a) HH versus
Optimum channel, the two populations marked by green and red eclipse are
spatially located in Fig. 9, (b) VV versus optimum channel, and (c) HH
versus VV channel. Blue and red dots indicate odd-bounce and even-bounce
scattering mechanisms, respectively. Green and black colors indicate vertical
and horizontal dipole scattering mechanism, respectively.

Fig. 9. Spatial position of the pixels in the two populations indicated
in Fig. 8(a). Red circles depict the pixels located in the population where the
reduction in standard deviation is most significant and the other population
members are drawn in green.

Fig. 10. (a) Location of the three points which detected by our method but
not by using HH and VV. (b) Closer look of he points in (a), point 1 is located
in a farming zone and shows odd-bounce mechanism, point 2 is located in
an urban area with the dominant scattering mechanism for the pixel being
double bounce and point 3 is a dipole. (c) Time series plot of the selected
points.

Fig. 10 shows the time series for three sample SDFP 276

pixels with odd-bounce (point 1), even-bounce (point 2) 277

and dipole (point 3) scattering mechanisms, respectively, 278

mahdimotagh
Cross-Out

mahdimotagh
Inserted Text
H

mahdimotagh
Cross-Out

mahdimotagh
Inserted Text
.

mahdimotagh
Cross-Out

mahdimotagh
Inserted Text
s

mahdimotagh
Cross-Out

mahdimotagh
Inserted Text
The two populations in (a) marked by green and red eclipse are spatially located in Fig. 9. 



IEE
E P

ro
of

ESMAEILI et al.: APPLICATION OF DUAL-POLARIMETRY SAR IMAGES 5

that were selected using the optimal channel, but not when279

using HH and VV channels. The smoothness of each of the280

time series indicates that the phase values have a low con-281

tribution from noise and that our algorithm is not increasing282

the number of selected pixels simply by selecting more noisy283

pixels.284

V. CONCLUSION285

StaMPS is a powerful method for multitemporal analysis286

of single-channel SAR images [13]. In this letter, we have287

presented a small baseline method, implemented in StaMPS,288

to deal with dual polarization SAR images. The ADD index289

criterion is first minimized for dual polarimetric data to find290

the optimum scattering mechanism that lead to increase the291

number of SDFP candidates. Then the results are combined292

with temporal coherence criteria to select final coherent293

pixels for time-series analysis. Our experiment in both urban294

and agricultural regions, shows that applying our method for295

dual-pol data increased the number of SDFP pixels by 50%296

in comparison to single-pol data InSAR time-series analysis.297

In addition, the assessment between the result of our298

proposed method for small baseline algorithm with those from299

PS-InSAR polarimetric optimization [17], showed that the300

density of SDFP pixels, in small baseline approach, is more301

than PS pixels in nonurban regions, while, in urban area302

the number of PS pixels is slightly higher than the SDFP303

pixels. Future research could focus on implementing this304

type of polarimetric optimization on full/quad polarimetry305

SAR images. Also, joint optimization using the PSI approach306

[17], [22] and our new algorithm could improve the ability307

to find stable points for a large range of ground scattering308

characteristics.309
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Application of Dual-Polarimetry SAR Images
in Multitemporal InSAR Processing

Mostafa Esmaeili, Mahdi Motagh, and Andy Hooper

Abstract— Multitemporal polarimetric synthetic aperture1

radar (SAR) data can be used to estimate the dominant scattering2

mechanism of targets in a stack of SAR data and to improve the3

performance of SAR interferometric methods for deformation4

studies. In this letter, we developed a polarimetric form of5

amplitude difference dispersion (ADD) criterion for time-series6

analysis of pixels in which interferometric noise shows negligible7

decorrelation in time and space in small baseline algorithm. The8

polarimetric form of ADD is then optimized in order to find9

the optimum scattering mechanism of the pixels, which in turn10

is used to produce new interferograms with better quality than11

single-pol SAR interferograms. The selected candidates are then12

combined with temporal coherency criterion for final phase sta-13

bility analysis in full-resolution interferograms. Our experimental14

results derived from a data set of 17 dual polarizations X-band15

SAR images (HH/VV) acquired by TerraSAR-X shows that using16

optimum scattering mechanism in the small baseline method17

improves the number of pixel candidates for deformation analysis18

by about 2.5 times in comparison with the results obtained from19

single-channel SAR data. The number of final pixels increases by20

about 1.5 times in comparison with HH and VV in small baseline21

analysis. Comparison between persistent scatterer (PS) and small22

baseline methods shows that with regards to the number of pixels23

with optimum scattering mechanism, the small baseline algorithm24

detects 10% more pixels than PS in agricultural regions. In urban25

regions, however, the PS method identifies nearly 8% more26

coherent pixels than small baseline approach.27

Index Terms— Amplitude difference dispersion (ADD), polari-28

metric optimization, slowly decorrelating filtered phase (SDFP),29

Tehran plain.30

I. INTRODUCTION31

INTERFEROMETRIC analysis of synthetic aperture32

radar (SAR) data is a powerful geodetic technique to33

measure surface deformations [1]–[4]. The accuracy achieved34

with interferometric measurements depends on a variety of35

factors including temporal and geometrical decorrelation,36

variations in atmospheric water vapor between SAR data37

acquisitions and the accuracy of orbital and digital elevation38

model used in the processing [5]. In order to address39

these limitations, multitemporal InSAR (MTI) time-series40

processing techniques such as small baseline algorithms41

and persistent scatterer InSAR (PSI) have been developed.AQ:1 42
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The main goal of these techniques is to identify pixels 43

for which the effect of the interferometric noise is small, 44

so that they remain stable over the whole period of SAR data 45

acquisition [6]–[8]. 46

The PSI technique, first proposed by Ferretti et al. [6], [7], 47

presents a solution to deal with spatiotemporal decorrelations 48

of interferometric phase using time-series analysis of single- 49

master interferograms. The technique uses amplitude disper- 50

sion index (ADI) as a proxy of phase stability to identify pixels 51

whose scattering properties are coherent between SAR image 52

acquisition with long time interval and different look angles, 53

the so-called permanent scatterer (PS). As interferograms are 54

generated with a common master, PSs are limited to those 55

pixels that show high coherence even in interferograms with 56

larger baselines than the critical baseline [6], [7]. In [8], a new 57

PS technique was proposed in which both amplitude and phase 58

criteria are assessed to determine the stability of PSs. An initial 59

set of candidate pixel based on amplitude analysis is selected 60

first and then in an iterative process, the PS probability is 61

refined using phase analysis. The method is more suitable for 62

detecting low-amplitude PS pixels in natural terrains, where 63

the relationship between ADI index and phase stability breaks 64

down. 65

Small baseline techniques use interferograms with small 66

temporal and spatial baselines to reduce decorrelation. The 67

original small baseline technique [9] uses a network of mul- 68

tilooked small baseline interferograms and the target scat- 69

terers are identified by coherence (i.e., complex correlation) 70

criterion [10], [11]. The multilooking is a limiting factor for 71

detecting local deformations. This issue was resolved in [12] 72

with an extended version of small baseline algorithm applied 73

on full-resolution SAR data set. Hooper [13] proposed another 74

new small baseline method in which full-resolution differential 75

interferograms are used to identify stable scatterers incorpo- 76

rating both amplitude and phase criterion. The filtered phase 77

of those pixels that decorrelate little over short time intervals 78

of interferograms, the so-called slowly-decorrelating filtered 79

phase (SDFP) pixels are then used for deformation analysis. 80

Polarimetric optimization of polarimetric SAR data has 81

been applied to improve classical InSAR results [14], [15] 82

in terms of both deformation estimation and target 83

classification [16], [17]. Optimization can be applied to full 84

polarimetric space-borne SAR data [18], [19], ground-based 85

fully PolSAR acquisitions [20] or compact polarimetric SAR 86

data [21]–[23]. The approach improves the results by finding 87

the scattering mechanism that minimizes decorrelation for 88

each pixel over time, using coherence stability criteria or ADI, 89

thereby maximizing the quality and number of selected 90

PS pixels [17], [22], [24]–[26]. 91

In this letter, for the first time, we have developed a 92

polarimetric optimization approach based on the small baseline 93

1545-598X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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2 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

Fig. 1. RGB composite of study area produced by amplitude of dual-pol
TerraSAR-SX images over Tehran plain (R = HH channel, G = VV channel
and B = HH − VV channel) overlaid on Google-Earth image.

method of the Stanford method for persistent scatterers (PSs)94

and multitemporal InSAR (StaMPS/MTI) analysis presented95

in [13]. In our algorithm, instead of applying ADI criterion,96

we utilize simulated annealing (SA) optimization to minimize97

the amplitude difference dispersion (ADD) value of each pixel.98

This can be employed as a rough proxy for phase variance for99

Gaussian scatterer pixels and it is an indicator for potential100

of a pixel to be an SDFP candidate, in dual-polarimetry101

X-band SAR images, followed by projection of the polari-102

metric interferograms onto the optimized polarimetric channel103

to reproduce the interferograms with the optimum scattering104

mechanism. As proposed in [17], SDFP candidates are selected105

based on lower values of ADD in reproduced interferograms.106

In an additional step, the phase stability of each candidate is107

tested using a measure similar to coherence magnitude called108

temporal coherence [8], [13] and SDFP pixels are extracted.109

Time-series analysis and 3-D phase unwrapping are then110

carried out to retrieve the deformation parameters. We evaluate111

the method with a data set consisting of 17 dual polarization112

X-band SAR data (HH/VV) acquired by TerraSAR-X satellite113

between July 2013 and January 2014 over Tehran plain,114

Iran (Fig. 1).115

II. PIXEL SELECTION IN MULTITEMPORAL InSAR116

In the StaMPS small baseline method, a set of candi-117

date pixels for time-series analysis are first selected based118

on the amplitudes of SAR interferograms, to reduce the119

computational cost time. An index called ADD has been120

presented (D�A) to identify SDFP candidates [13]121

D�A = σ�a

ā
=

√∑N
i=1(�Ai −�A)2/N

∑N
i=1(|Mi | + |Si |)/2N

(1)122

where σ�a is the standard deviation of the difference in ampli-123

tude between master and slave images, ā is the mean ampli-124

tude, �Ai is the difference in amplitude between master (Mi )125

and slave (Si ) images, and N is the number of interferograms.126

In this method a higher value of ADD in comparison with127

ADI, e.g., 0.6 is selected for the threshold and pixels with128

ADD value less than the threshold are considered as SFDP129

candidates. The residual phase noise for SDFP candidates is130

estimated by subtracting two major components of signal:131

spatially correlated and spatially uncorrelated components.132

Finally, SDFP pixels are identified among the candidates using133

Fig. 2. Flowchart of the overall process in our study.

temporal coherence [8], [13], defined as 134

γx = 1

N

∣∣∣∣∣
N∑

i=1

exp
{

j
(
ϕx,i − ϕ̃x,i −�ϕ̂u

θ,x,i

)}
∣∣∣∣∣ (2) 135

where ϕx,i is the wrapped phase of pixel x in the i th interfer- 136

ograms, ϕ̃x,i is the estimate for the spatially correlated terms, 137

�ϕ̂u
θ,x,i is the estimate of the spatially uncorrelated look angle 138

error term, and N is the number of interferograms. 139

For dual-pol SAR data we need to extend the ADD in (1), 140

which is applicable only for single-pol data, also to include 141

dual-pol data and optimize it to increase the density of SDFP 142

pixels for the time-series analysis. We then apply temporal 143

coherence in (2) to identify the SDFP pixels. 144

Fig. 2 shows a flowchart of the overall processing strategy 145

that is implemented in this letter. The method consists of three 146

main steps: 1) InSAR processing; 2) polarimetric optimization; 147

and (3) multitemporal analysis of the optimized interfero- 148

grams. Single-pol multitemporal InSAR analysis includes only 149

InSAR processing (step 1) and time-series analysis of the 150

interferograms (step 3). Polarimetric optimization is used here 151

to improve the performance of this analysis using dual-pol 152

data. In Section III we describe in detail the methodology we 153

used in our study. 154

III. ADD OPTIMIZATION 155

In order to obtain the polarimetric form of ADD it is 156

sufficient to replace the amplitude of single-pol data in (1) 157

by the polarimetric scattering coefficient, μ defined as 158

μ = ω∗T K (3) 159

K = 1√
2
[Shh + Svv, Shh − Svv]T (4) 160

ω = [cos(α) sin(α) e jψ ]T , 0 ≤ α ≤ π/2, − π ≤ ψ ≤ π 161

(5) 162
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Fig. 3. Values of ADD for all possible values for α and ψ , for three arbitrarily
selected pixels. The red star presents the minimum value of ADD.

where K stands for the polarimetric vector, ω is the polari-163

metric projection vector, Svv and Shh are the complex values164

of the HH and VV channels, respectively, T is the transpose165

operator and ∗ denotes the conjugate operator. α and ψ are166

Pauli parameters which represent the scattering mechanism167

[17], [22], [27]. The polarimetric form of ADD in (1) can168

then be written in the following form:169

DPol
�A

=
√∑N

i=1

(
�APol

i −�APol
)2
/N

∑N
i=1

(∣∣ω∗T K M
i

∣∣ + ∣∣ω∗T K s
i

∣∣)/2N
170

�APol = |ω∗T K M | − |ω∗T K S| (6)171

where K M
i and K S

i are polarimetric vectors of master and172

slave images, respectively.173

The main objective of polarimetric optimization is to find174

the optimum scattering mechanism of the pixels and generate175

interferograms with better quality than using single-pol SAR176

images. To simplify the search of the optimum scattering177

mechanism, we parameterized the projection vector in terms of178

Pauli basis parameters. In order to build consistent time series179

of phases related to deformation we assume that the scattering180

mechanisms of the pixels remain the same during acquisition181

time, as in the case of multibaseline equal scattering mecha-182

nism. Therefore, ω would be the same for the pixel in whole183

stack of interferograms [28].184

The optimization problem is to find the projection vector185

that minimizes the value of ADD. Fig. 3 illustrates the possible186

ADD values, in terms of α and ψ , for three arbitrarily selected187

pixels in our study area. In [17] we showed that SA is188

an effective method to minimize such smooth functions as189

illustrated in Fig. 3 and to find the optimum α and ψ in their190

corresponding finite range. We define a coarse grid with a step191

size of 10° for both α and ψ and search for the values that192

give the minimum ADD. These values for α and ψ are then193

used as initial values in the SA optimization method.194

IV. EXPERIMENTAL RESULTS AND DISCUSSION195

To evaluate the method we processed 17 co-polar SAR196

images acquired by the TerraSAR-X satellite in an ascending197

mode between July 2013 and January 2014 over the Tehran198

plain, which is highly affected by subsidence [29]. We formed199

a small baseline network consisting of 44 single-look inter-200

ferograms as shown in Fig. 4. We then generated interfer-201

ograms for HH, VV and optimum channels and calculated202

the ADD value of each pixel in the single-look interfero-203

grams. To evaluate the improvement in ADD, we compared204

Fig. 4. Small baselines network used in this letter. The stars denote the
SAR images and lines present the formed interferograms for Small Baseline
processing.

Fig. 5. Histograms of ADD for HH, VV and optimum channel.

Fig. 6. Number of SDFP Candidates and SDFP pixels obtained by HH,
VV and optimum channel.

the histograms of ADD values for HH, VV and optimum 205

channel (Fig. 5). 206

As shown in Fig. 5, by applying the proposed method, the 207

histogram of ADD values in optimum channel is inclined to 208

lower values of ADD in comparison to HH and VV chan- 209

nels. Therefore, by thresholding ADD value of less than 0.6, 210

more SDFP candidates are extracted in optimum channel as 211

compared to single-pole interferograms. 212

Fig. 6 depicts the number of selected SDFP candidates 213

obtained from HH, VV and optimum channels using ADD 214

criterion and also the improvement in number of SDFP pixels 215

after utilizing temporal coherency. 216

The total number of SDFP candidates for the optimum 217

channel is about 2.5 times higher than for the HH and 218

VV channels. Considering the final selection of SDFP pixels 219

for the optimum channel, the number has increased by 220

about 1.4 times and 1.6 times in comparison to the HH and 221

VV channels, respectively. 222

In order to evaluate the efficiency of using multitemporal 223

polarimetric SAR data for different models of scattering we 224

made a comparison between urban and nonurban regions. 225

46% of our study area comprises urban region, while the 226

nonurban portion is about 54%. In urban areas, the number of 227

identified candidates using the optimum channel is increased 228

by ∼1.7 and ∼2.1 times compared to HH and VV channels, 229

respectively. In regard to the agricultural regions, the increase 230

is ∼2.1 and ∼2.2 times [Fig. 7(b)]. The number of final SDFP 231

pixels increased ∼1.4 and ∼1.5 times in urban regions and 232

∼1.48 and ∼1.65 times in agricultural regions, in comparison 233
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Fig. 7. Number of (a) identified SDFP pixels and (b) SDFP candidates
detected in urban and agricultural regions using HH, VV and optimum.

TABLE I

QUANTITATIVE COMPARISON OF IDENTIFIED SDFP PIXELS WITH

RESPECT TO PS PIXELS (EXPRESSED IN PERCENT OF PS PIXELS)

to HH and VV channels, respectively [Fig. 7(a)]. Therefore234

the proposed algorithm is slightly more successful in nonurban235

regions than in urban regions.236

As PS pixels and SDFP pixels relate to different scattering237

characteristics of the ground, we also compared the density of238

measurements for both of the methods in urban and nonurban239

regions. Table I describes the percentage of additional pixels240

identified by SDFP pixels in comparison with PS pixels for241

which the results were previously published in [17]. For the242

HH and VV channels we detect about 8% more SDFP pixels243

than PS in agricultural regions, however, over the urban area244

the number of identified SDFPs is almost 9% less than PS245

pixels.246

Similar to the HH and VV channels, in the case of the247

optimum channel, the small baseline method detects 10%248

more coherent pixels in agricultural regions, while in urban249

area the PS pixels are more numerous than SDFP pixels by250

about 8%. SDFP pixels show little loss of correlation in short251

time intervals whereas PS pixels remain stable over the whole252

period of data acquisition. Therefore, in nonurban area more253

SDFP pixels are expected to be identified than PS pixels. By254

contrast, in urban areas PS pixels are more abundant. This255

might be related to the effect of filtering in the small baseline256

method, which increases the decorrelation in pixels dominated257

by a single scatterer as a result of coarsening the resolution258

of spectra [13].259

In order to check that using the optimum channel leads260

to lower phase noise, we selected SDFP pixels approxi-261

mately every 0.001° in both directions, and calculated the262

variance of the phase differences between the selected pix-263

els and their immediate SDFP neighbors for the optimum,264

HH and VV channels. The results are shown in Fig. 8.265

The standard deviation of differences are very similar for266

HH and VV, but are generally lower for the optimum channel,267

indicating that our method leads to reduced phase noise. There268

appear to be two populations of pixels, however; those for269

which the improvement is marginal and those for which the270

improvement is more significant [indicated in Fig 8(a)]. This271

division is not apparently related to scattering mechanism, but272

does appear to correlate with spatial position (Fig. 9), with273

pixels in urban areas, plotted in red, more likely to fall in the274

population with greatest improvement.275

Fig. 8. Cross comparison of Standard deviation of phase differences
of nearby SDFP pixels for the selected SDFP pixels for (a) HH versus
Optimum channel, the two populations marked by green and red eclipse are
spatially located in Fig. 9, (b) VV versus optimum channel, and (c) HH
versus VV channel. Blue and red dots indicate odd-bounce and even-bounce
scattering mechanisms, respectively. Green and black colors indicate vertical
and horizontal dipole scattering mechanism, respectively.

Fig. 9. Spatial position of the pixels in the two populations indicated
in Fig. 8(a). Red circles depict the pixels located in the population where the
reduction in standard deviation is most significant and the other population
members are drawn in green.

Fig. 10. (a) Location of the three points which detected by our method but
not by using HH and VV. (b) Closer look of he points in (a), point 1 is located
in a farming zone and shows odd-bounce mechanism, point 2 is located in
an urban area with the dominant scattering mechanism for the pixel being
double bounce and point 3 is a dipole. (c) Time series plot of the selected
points.

Fig. 10 shows the time series for three sample SDFP 276

pixels with odd-bounce (point 1), even-bounce (point 2) 277

and dipole (point 3) scattering mechanisms, respectively, 278
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that were selected using the optimal channel, but not when279

using HH and VV channels. The smoothness of each of the280

time series indicates that the phase values have a low con-281

tribution from noise and that our algorithm is not increasing282

the number of selected pixels simply by selecting more noisy283

pixels.284

V. CONCLUSION285

StaMPS is a powerful method for multitemporal analysis286

of single-channel SAR images [13]. In this letter, we have287

presented a small baseline method, implemented in StaMPS,288

to deal with dual polarization SAR images. The ADD index289

criterion is first minimized for dual polarimetric data to find290

the optimum scattering mechanism that lead to increase the291

number of SDFP candidates. Then the results are combined292

with temporal coherence criteria to select final coherent293

pixels for time-series analysis. Our experiment in both urban294

and agricultural regions, shows that applying our method for295

dual-pol data increased the number of SDFP pixels by 50%296

in comparison to single-pol data InSAR time-series analysis.297

In addition, the assessment between the result of our298

proposed method for small baseline algorithm with those from299

PS-InSAR polarimetric optimization [17], showed that the300

density of SDFP pixels, in small baseline approach, is more301

than PS pixels in nonurban regions, while, in urban area302

the number of PS pixels is slightly higher than the SDFP303

pixels. Future research could focus on implementing this304

type of polarimetric optimization on full/quad polarimetry305

SAR images. Also, joint optimization using the PSI approach306

[17], [22] and our new algorithm could improve the ability307

to find stable points for a large range of ground scattering308

characteristics.309
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