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Abstract. Landscape patterns result from landscape forming processes. This link can be exploited in geomor-
phological research by reversely analyzing the geometrical content of landscapes to develop or confirm theories
of the underlying processes. Since rivers represent a dominant control on landscape formation, there is a particu-
lar interest in examining channel metrics in a quantitative and objective manner. For example, river cross-section
geometry is required to model local flow hydraulics, which in turn determine erosion and thus channel dynam-
ics. Similarly, channel geometry is crucial for engineering purposes, water resource management, and ecological
restoration efforts. These applications require a framework to capture and derive the data. In this paper we
present an open-source software tool that performs the calculation of several channel metrics (length, slope,
width, bank retreat, knickpoints, etc.) in an objective and reproducible way based on principal bank geometry
that can be measured in the field or in a GIS. Furthermore, the software provides a framework to integrate spatial
features, for example the abundance of species or the occurrence of knickpoints. The program is available at
https://github.com/AntoniusGolly/cmgo and is free to use, modify, and redistribute under the terms of the GNU
General Public License version 3 as published by the Free Software Foundation.

1 Introduction

Principal channel metrics, for example channel width or gra-
dient, convey immanent information that can be exploited
for geomorphological research (Wobus et al., 2006; Cook
et al., 2014) or engineering purposes (Pizzuto, 2008). For
example, a snapshot of the current local channel geometry
can provide an integrated picture of the processes leading
to its formation if examined in a statistically sound manner
(Ferrer-Boix et al., 2016). Repeated surveys, as time series
of channel gradients, can reveal local erosional characteris-
tics that sharpen our understanding of the underlying pro-
cesses and facilitate, inspire, and motivate further research
(Milzow et al., 2006). However, these geometrical measures
are not directly available. Typically, the measurable metrics
are limited to the position of features, such as the channel
bed or the water surface, and the water flow path or thalweg
in two- or three-dimensional coordinates. The data can either
be collected during field surveys with GPS or total stations
or through remote sensing with the need for post-processing,

for example in a GIS (geographical information system). To
effectively generate channel metrics such as channel width,
an objective and reproducible processing of the geometric
data is required, especially when analyzing the evolution of
channel metrics over time. For river scientists and engineers,
a convenient processing tool should incorporate a scale-free
approach applicable to a broad spectrum of environments.
It should be easy to access, use, and modify, and it should
generate output data that can be integrated in further statis-
tical analysis. Here, we present a new algorithm that meets
these requirements and describe its implementation in the
R package cmgo (https://github.com/AntoniusGolly/cmgo).
The package derives a reference (centerline) of one or multi-
ple given channel shapes and calculates channel length, local
and average channel widths, local and average slopes, knick-
points based on a scale-free approach (Zimmermann et al.,
2008), local and average bank retreats, and the distances from
the centerline. It also allows for the projection of additional
spatial metrics to the centerline.
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Table 1. Overview of existing products; 1 the two values indicate free use of framework (first) and plugin (second value). 2 A product is
considered free to modify if users can access and edit the source code and a license explicitly allows users to do so. 3 A product is considered
a full-stack solution if it performs all steps from the bank geometry to the derived channel metrics. 4 This publication. 5 No information
could be gathered.

Name of the tool Platform Data Last Free to Free to Configurable Full-stack Scientific Note
format updated use1 modify2 solution3 reference

cmgo (this paper) R vector Jul 2017 yes, yes yes yes yes yes4

River Width Calculator ArcMap raster Jun 2013 no, yes no no no yes – single, average value
for a stream

Perpendicular ArcMap vector Dec 2014 no, yes yes limited, no no no – weak output on non-
Transects smoothing smooth centerlines
Channel Migration ArcMap vector Oct 2014 no, yes no limited no yes – fails silently
Toolbox
RivEX ArcMap vector Feb 2017 no, no no yes no no – works only on demo

data
HEC-GeoRAS ArcMap raster Jul 2017 no, yes no yes no no – only verified until

ArcMap 10.2
Polygon to Centerline ArcMap vector Nov 2016 no, yes no limited, no no no – weak output for

smoothing high-resolution bank
geometry

Fluvial Corridor ArcMap vector Jan 2016 no, yes no yes no yes – cannot be applied on
Toolbox the raw data,

requires pre-
vectorization of
channel features

Stream Restoration ArcMap vector 5 no, yes no very limited no no – limited functionality
Toolbox – highly unstable
RivWidth IDL raster May 2013 no, yes yes 5 5 yes – limited access due to

IDL license
DSAS ArcMap vector Dec 2012 no, yes no yes no yes – primarily designed

for coastlines
AMBUR R vector Jun 2014 yes, yes yes limited no yes – no multi-temporal

analyses allowed
RivMAP MATLAB raster Apr 2017 no, yes yes yes limited yes – primarily for large-

scale river systems
– fails silently on errors

2 Literature review

Computer-aided products for studying rivers have a long tra-
dition, and solutions for standardized assessments include
many disciplines, for example for assessing the ecological
status of rivers (Asterics, 2013) or characterizing heteroge-
neous reservoirs (Lopez et al., 2009). There are also numer-
ous efforts to derive principal channel metrics from remote or
in situ measurements of topography or directly from features
such as channel banks. Available products, which we review
in detail (Table 1), are helpful for many scientific applica-
tions and are used by a large community. However, they often
do not provide the degree of independency, transparency or
functionality that is necessary to fit the versatile requirements
of academic or applied research, and thus the call for soft-
ware solutions remains present (Amit, 2015). The currently
available solutions can be separated into two groups: exten-
sions for GIS applications and extensions for statistical pro-
gramming languages. The first group incorporates programs
that are published as extensions for the proprietary GIS soft-
ware ArcMap (ESRI, 2017), which are generally not open

source and are thus lacking accessibility and often trans-
parency and modifiability. Furthermore, the individual solu-
tions lack functionality. For example, the River Width Calcu-
lator (Mir et al., 2013) calculates the average width of a given
river (single value) without providing spatially resolved in-
formation. The toolbox Perpendicular Transects (Ferreira,
2014) is capable of deriving channel transects locally, which
are generally suitable for calculating the width. However, the
required centerline to which the orthogonals are computed is
not generated within the tool itself. Thus, the tool does not
represent a full-stack solution. Similarly, the Channel Migra-
tion Toolbox (Legg et al., 2014), RivEX (Hornby, 2017), and
HEC-GeoRAS (Ackerman, 2011) require prerequisite prod-
ucts – a centerline – to compute transects and calculate the
width. A centerline could be created with the toolbox Poly-
gon to Centerline (Dilts, 2015), but manual post-processing
is required to ensure that lines connect properly. Further, the
details of the algorithm are poorly documented and interme-
diate results are not accessible, making it difficult to evaluate
the data quality. Apart from this, all of these products are de-
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pendent on commercial software, are bound to a graphical
user interface (not scriptable), and cannot be parameterized
to a high degree.

The second group of solutions represents extensions
for statistical scripting languages. The full-stack solution
RivWidth (Pavelsky and Smith, 2008) is written as a plugin
for IDL, a data language with restricted usage. The program
requires two binary raster masks, a channel mask, and a river
mask, which need to be generated in a pre-processing step us-
ing, for example, a GIS. Bank geometry obtained from direct
measurements, for example from GPS surveys, does not rep-
resent adequate input. As a result of the usage of pixel-based
data, which in the first place does not properly represent
the nature of the geometrical data, computationally intensive
transformations are necessary and result in long computation
times (the authors describe up to 1 h for their example). More
importantly, the centerline position depends on the resolution
of the input rasters and is thus scale dependent. Good results
can only be obtained when the pixel size is at least an order
of magnitude smaller than the channel width. The MATLAB
toolbox RivMAP also works with raster data. It is well docu-
mented and has a scientific reference (Schwenk et al., 2017).
However, intermediate results are not accessible. For exam-
ple, the transects used for generating the local width are not
accessible. Thus, the tool lacks an important mechanism to
validate its results. However, since RivMAP represents the
best documented and most versatile tool, we compare results
from our package with this package in Sect. 8.

To quantify channel bank retreat for repeated surveys,
tools designed for other purposes could potentially be used.
Examples are DSAS (Thieler et al., 2009) and AMBUR
(Jackson, 2009), designed for analyzing migrating shore-
lines. These tools also require a baseline that is not derived
by the program. AMBUR, scripted in the open-source envi-
ronment R (Jackson, 2009), could be adapted to channels.
However, we judge its approach to derive transects to be un-
reliable and unsuitable for rivers, as the transects do not cross
the channel orthogonally. This leads to implausible results,
especially in regions with large curvature. A further correc-
tion step is included to alleviate this problem, but the result-
ing distances of the baselines seem arbitrary. Thus, although
the tool is among the best documented and accessible solu-
tions currently available, its algorithm is not suitable for gen-
erating channel metrics in an objective manner. We conclude
that none of the available approaches combines the criteria of
being a tool for objectively deriving channel metrics, being
easy and free to use and modify, and allowing a high degree
of parameterization and fine-tuning.

3 Description of the algorithm

Our aim with this package was to develop a program that
does not have the shortcomings of previous approaches and
offers a transparent and objective algorithm. The algorithm

(full list of steps in Table 2 and visualization in Fig. 1) has
two main parts. First, a centerline of the channel defined by
the channel bank points is derived. Second, from this cen-
terline the metrics channel length, width, and gradient (the
latter only if elevation is provided) are calculated. This ref-
erence centerline allows for the projection of secondary met-
rics (for example, the occurrence of knickpoints) and the per-
forming of temporal comparisons (more information on tem-
poral analyses in Sect. 5).

A detailed description of all steps in the algorithm follows.
In step 1.1, the algorithm creates a polygon feature from the
bank points (Fig. 1b) in which the points are linearly inter-
polated (step 1.2) to increase their spatial resolution. This is
a crucial step for improving the shape of the resulting cen-
terline, even for straight channel beds (Fig. 2). From the in-
terpolated points, Voronoi polygons (also called Dirichlet or
Thiessen polygons) are calculated (2.1; Fig. 1c). In general,
Voronoi polygons are calculated around center points (here
the bank points) and denote the areas within which all points
are closest to that center point. Next, the polygons are disas-
sembled into single line segments. The segments in the cen-
ter of the channel polygon form the desired centerline (see
Fig. 1c). The algorithm then filters for these segments by
first removing all segments that do not lie entirely within the
channel banks (step 2.2; Fig. 3b). In a second step, dead ends
are removed (step 2.3; Fig. 3c). Dead ends are segments that
branch from the centerline but are not part of it, which are
identified by the number of connections of each segment. All
segments, other than the first and the last, must have exactly
two connections. The filtering ends successfully if no further
dead ends can be found. In step 2.4, the centerline segments
are chained to one consistent line, the “original” centerline.
In the final step 2.5 of the centerline calculation, the gen-
erated line is spatially smoothed (Fig. 1e) with a mean filter
with definable width (see Sect. 4.2) to correct for sharp edges
and to homogenize the resolution of the centerline points.
This calculated centerline, the “smoothed” centerline, is the
line feature representation of the channel; for example, it rep-
resents its length, which is calculated in step 2.6. If eleva-
tion data are provided with the bank point information (input
data) the program also projects the elevation to the centerline
points and calculates the slope of the centerline in step 2.7.

To calculate the channel metrics based on the centerline,
channel transects are derived (step 3.1). Transects are lines
perpendicular to a group of centerline points. In step 3.2, the
intersections of the transects with the banks are calculated
(Fig. 1g). When transects cross the banks multiple times, the
crossing point closest to the centerline is used. The distance
in the x–y plane between the intersections represents the
channel width at this transect. In addition to the width, the
distances from the centerline points to banks are stored sepa-
rately for the left and the right bank. The program also allows
for the projecting of custom geospatial features to the center-
line, such as the abundance of species or the occurrence of
knickpoints (see Sect. 4.2). Projecting means here that ele-
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Table 2. Full list of steps for the algorithm of the cmgo package and their functions.

Step Description Function

1.1 Generate polygon from bank points
CM.generatePolygon ()

1.2 Interpolate polygon points

2.1 Create Voronoi polygons and convert to paths

CM.calculateCenterline ()

2.2 Filter out paths that do not lie within channel polygon entirely
2.3 Filter out paths that are dead ends (have fewer than two connections)
2.4 Sorting of the centerline segments to generate centerline
2.5 Spatially smooth the centerline segments (mean filter)
2.6 Measure the centerline length and slope
2.7 Project elevation to the centerline points (optional)

3.1 Derive transects of the centerline

CM.processCenterline ()
3.2 Calculate intersections of the centerline with the banks
3.3 Project custom geospatial data onto centerline (optional)
3.4 Calculate knickpoints based on scale-free approach (Zimmermann et al., 2008)

4.1 Resample centerline and transect spacing (optional) CM.resampleCenterline ()

Figure 1. Visualization of the work flow of the package. (a) The channel bank points represent the data input. (b) A polygon is generated
where bank points are linearly interpolated, (c, d) the centerline is calculated via Voronoi polygons, (e) the centerline is spatially smoothed
with a mean filter, (f) transects are calculated, (g) and the channel width is derived from the transects.

vation information or other spatial variables are assigned to
the closest centerline points. Finally, a built-in function of-
fers a way to set a homogenous spacing of the centerline in
step 4.1, for example if transects should be spaced equally
every x meters.

4 Implementation and execution

The program is written as a package for the statistical pro-
gramming language R (R Development Core Team, 2011).
The program can be divided into three main parts that are
worked through during a project:

1. initialization (loading data and parameters; Sect. 4.1),

2. data processing (calculating centerline and channel met-
rics; Sect. 4.2), and

3. a review of the results (plotting or writing results to file;
Sect. 4.3).

4.1 Initialization: input data and parameters

The package cmgo requires basic geometrical information on
the points that determine a channel shape: the bank points
(Fig. 1a). In addition to the coordinates, the side of the chan-
nel must be specified for each point. In principle, a text
file with the three columns “x”, “y”, and “side” represents
the minimum input data required to run the program (Code-
box 1). The coordinates x and y can be given in any number
format representing Cartesian coordinates, and the column
“side” must contain strings (e.g., left and right) as it repre-
sents information on the bank to which the given point is
associated. Throughout this paper we refer to the left and
right of the channel in regard to these attributes. Thus, the
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Figure 2. The plot shows two digitizations (bank shapes I and II)
of the same channel stretch. They differ only in the arrangement of
bank points, which are mainly opposite (bank shape I; a, c, e) or off-
set (bank shape II; b, d, f) to each other. One can see how the offset
negatively influences the shape of the centerline (a, b). The problem
can be overcome by smoothing the centerline a posteriori (c, d) or
interpolating between the bank points a priori (e, f). A combination
of both methods is recommended and set as the default in cmgo.

user is generally free to choose which side to name “left”.
However, we recommend sticking to the convention of nam-
ing the banks looking in the downstream direction. In addi-
tion, a fourth column z can be provided to specify the eleva-
tion of the points. This allows, for example, for the calcula-
tion of the channel gradient. Note that the order of the bank
points matters. By default it is expected that the provided
list contains all bank points in the upstream direction. If one,
which can be the case when exporting the channel bed from
a polygon shape, or both banks are reversed, the parameters
bank.reverse.left and/or bank.reverse.right

Figure 3. The filtering of the centerline segments, (a) original
Voronoi segments, (b) Voronoi segments filtered for segments that
lie fully within the channel polygon, and (c) filtered for dead ends.

should be set TRUE. The units of the provided coordinates
can be specified in the parameter input.units and de-
faults to m (meters).

The data can either be collected during field surveys with
GPS or total stations or through remote sensing techniques
with further digitizing, for example in a GIS. In the latter
case, the data need to be exported accordingly. The input
can be given in any ASCII table format. By default, the pro-
gram expects a table with tab-delimited columns and one
header line with the column names POINT_X, POINT_Y,
and POINT_Z (the coordinates of the bank points), where
the z component is optional, and Name (for the side). The
tab delimiter and the expected column names can be changed
in the parameters (see the Supplement for details). The in-
put file(s) – for multiple files see also Sect. 5 – have to
be placed in the input directory specified by the parameter
input.dir (defaults to “./input”) and can have any file
extension (.txt, .csv, etc.). The data-reading function iterates
over all files in that directory and creates a data set for each
file.

All the data and parameters used during runtime are stored
in one variable of type list (see R documentation): the global
data object. Throughout the following examples this variable
is named cmgo.obj and its structure is shown in Code-
box 2. The global data object also contains the parameter list,
a list of more than 50 parameters specifying the generation
and plotting of the model results. The full list of parameters
with explanations can be found in the Supplement.

To create this object, the function CM.ini(cmgo.obj,
par) is used. Initially, the function builds a parameter object
based on the second argument par. If the par argument is
left empty, the default configuration is loaded. Alternatively,
a parameter file name can be specified (see the R documen-
tation of CM.par() for further information). Once the pa-
rameter object is built, the function fills the data object by the
following rules (if one rule was successful, the routine stops
and returns the global data object).

1. If cmgo.obj$par$workspace.read
is TRUE (default), the function looks
for an .RData workspace file named
cmgo.obj$par$workspace.filename (de-
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Name POINT_X POINT_Y 
right 401601.0819 3106437.335 
right 401586.5327 3106406.896 
right 401568.3238 3106383.586 
right 401558.4961 3106364.129 
... 
left 401621.4337 3106431.134 
left 401602.9913 3106405.991 
left 401574.6073 3106352.232 
left 401582.2671 3106323.134 

... 

Codebox 1. Example of input data table with columns for side and x, y coordinates.

 

 

 

 

 

 

 

 

 

 

 

 

 

cmgo.obj = list( 
data = list(                # the data set(s), different surveys of the channel 
    set1 = list(            # survey 1 
      filename  = "input.1.csv”,  # corresponding filename 
      channel = list(),       # input coordinates of banks 
      polygon.bank.interpolate  = TRUE,  
      polygon = list(),  # polygon object 
      polygon.bank.interpolate.max.dist = 6,  
      cl  = list(),  # centerlines (original and smoothed) 
      metrics = list()  # calculated metrics (width, etc.) 
    ),             
    set2 = list()           # survey 2 
    # ... 
  ), 
  par  = list()             # all model and plotting parameters 
) 

Codebox 2. Structure of the global data object containing data and parameters.

faults to “./user_workspace.RData”). Note: there will
be no such workspace file once a new project is
started, since it needs to be saved by the user with
CM.writeData(). If such a workspace file exists,
the global data object is created from this source;
otherwise the next source is tested.

2. If data input files are available in the directory
cmgo.obj$par$input.dir (defaults to “./input”),
the function iterates over all files in this directory and
creates the data object from this source (see the “Input
data” section above for further information on the data
format). In this case the program starts with the bank
geometry data set(s) found in the file(s). Otherwise the
next source is tested.

3. If the cmgo.obj argument is a string or NULL, the
function will check for a demo data set with the same
name or “demo” if NULL. Available demo data sets are
“demo”, “demo1”, “demo2”, and “demo3” (Sect. 7).

CM.ini() returns the global data object that
must be assigned to a variable, for example
cmgo.obj=CM.ini(). Once the object is created,
the data processing can start.

4.2 Controlling the data processing

The processing includes all steps from the input data (bank
points) to the derivation of the channel metrics (Fig. 1).
Next, we describe the parameters that are relevant during

the processing described in Sect. 3. When generating the
channel polygon, the original bank points are linearly inter-
polated (Fig. 1b). The interpolation is controlled through the
parameters cmgo.obj$par$bank.interpolate and
cmgo.obj$par$bank.interpolate.max.dist.
The first is a Boolean (TRUE/FALSE) that enables or
disables the interpolation (default TRUE). The second deter-
mines the maximum distance of the interpolated points. The
unit is the same as for the input coordinates, which means
that if input coordinates are given in meters, a value of 6
(default) means that the points have a maximum distance of
6 m to each other. These parameters have to be determined
by the user and are crucial for the centerline generation.
Guidance on how to select and test these parameters can be
found in Sect. 6.

During the filtering of the centerline paths, there is a rou-
tine that checks for dead ends. This routine is arranged in a
loop that stops when there are no further paths to remove. In
cases for which the centerline paths exhibit gaps (see Sect. 6),
this loop runs indefinitely. To prevent this, there is a parame-
ter bank.filter2.max.it (defaults to 12) that controls
the maximum number of iterations used during the filtering.

In the final step of the centerline calculation, the gen-
erated line gets spatially smoothed with a mean filter
(Fig. 1e) for which the width of smoothing in num-
bers of points can be adjusted through the parameter
cmgo.obj$par$centerline.smoothing.width
(by default equals 7). Note that the degree of smoothing
has an effect on the centerline length (e.g., a higher degree
of smoothing shortens the centerline). Similar to the coast-
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cmgo.obj$data[[set]]$features = list( 
  custom_feature_1 = list( 
    x = c(), 
    y = c() 
  ), 
  knickpoints = list( 
    x = c(), 
    y = c() 
  ) 
) 

Codebox 3. The format of secondary spatial features to be projected to the centerline.

 

$metrics$tr       # linear equations of the transects 
$metrics$cp.r     # coordinates of crossing points transects / right bank 
$metrics$cp.l     # coordinates of crossing points transects / left bank 
$metrics$d.r      # distance of reference centerline point / right bank 
$metrics$d.l      # distance of reference centerline point / left bank 
$metrics$w        # channel width 
$metrics$r.r      # direction value: -1 for right, +1 for left to the centerline 
$metrics$r.l      # direction value: -1 for right, +1 for left to the centerline 
$metrics$diff.r   # difference between right bank point of actual time series and right bank  
                  # point of reference series 
$metrics$diff.l   # difference between left bank point of actual time series and left  
                  # bank point of reference series 

Codebox 4. The calculated metrics and their variable names (stored in the global data object under cmgo.obj$data[[set]]).

line paradox (Mandelbrot, 1967), the length of a channel
depends on the scale of the observations. Technically, the
length diverges to a maximum length at an infinitely high
resolution of the bank points. However, practically there
is an appropriate choice of a minimum feature size for
which more detail in the bank geometry only increases the
computational costs without adding meaningful information.
The user has to determine this scale individually and should
be aware of this choice. To check the consequences of
this choice, the decrease in length due to smoothing is
saved as fraction value in the global data object under
cmgo.obj$data[[set]]$cl$length.factor.
A value of 0.95 means that the length of the smoothed
centerline is 95 % of the length of the original centerline
paths. For the further calculations of transects and channel
metrics, the smoothed version of the centerline is used by
default.

The program will automatically project the elevation of
the bank points to the centerline if elevation information
is provided in the input files (z component of bank points;
see Sect. 4.1). Also, additional custom geospatial features, if
available to the user, can be projected to the centerline, such
as the abundance of species or the occurrence of knickpoints.
Additional features are required to be stored in the global
data object as lists with x, y coordinates (Codebox 3) to
be automatically projected to the centerline. Projecting here
means that features with x, y coordinates are assigned to the
closest centerline point. The distance and the index of the
corresponding centerline point are stored within the global
data object.

To calculate the channel metrics based on the center-
line, channel transects are derived. Transects are lines per-

Figure 4. (a) The smoothed centerline; (b) transects are calculated
by taking a group of centerline points, creating a line through the
outer points and calculating the perpendicular to that line, (c) and
calculating the intersections of the transects with the channel banks.

pendicular to a group of n centerline points, where n –
also called the transect span – is defined by the parame-
ter cmgo.obj$par$transects.span. By default this
span equals 3, which means that for each group of three cen-
terline points a line is created through the outer points of that
group to which the perpendicular – the transect – is calcu-
lated (see Fig. 4b). The number of resulting transects equals
the number of centerline points, and for each centerline point
the width w and further metrics are calculated (see Code-
box 4). The distances of the centerline points to the banks
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Figure 5. (a) Plan view of a short channel reach showing two channel surveys, 2014a (dashed channel outline) and 2017a (solid channel
outline). A centerline is calculated for both, but due to an enabled reference mode, the centerline of 2014a is used for both surveys. This
allows for the calculation of bank shift in panel (b). The two stars mark two random locations to compare the calculated metrics to each other.

are stored separately for the left and the right bank (d.r and
d.l) and a factor (r.r and r.l) representing the side of the
bank with regard to the centerline. Normally, looking down-
stream the right bank is always right to the centerline (value
of−1) and the left bank is always left to the centerline (value
of +1). However, when using a reference centerline to com-
pare different channel surveys, the centerline can be outside
the channel banks for which the metrics are calculated. To
resolve the real position of the banks for tracing their long-
term evolution (e.g., bank erosion and aggradation), the fac-
tors of r.r and r.l must be considered for further calcula-
tions (see also the “Reference centerline” section). A sample
result for a reach of a natural channel is provided in Fig. 5.

4.3 Review results: plotting and writing of the outputs

After the metrics are calculated and stored within the global
data object, the results can be plotted or written to data
files. The plotting functions include a map-like type plan
view plot (CM.plotPlanView()), a plot of the spatial
evolution of the channel width (CM.plotWidth()), and

a plot of the spatial and temporal evolution of the bank shift
(CM.plotMetrics()). All plotting functions require a
data set to be specified that is plotted (by default “set1”).
Additionally, all plotting functions offer ways to specify
the plot extent to zoom to a portion of the stream for
detailed analyses. In the plan view plot, there are multiple
ways to define the plot region (also called extent), which
is determined by a center coordinate (x, y coordinate) and
the range on the x and y axes (zoom length). The zoom
length is given via the function parameter zoom.length
or, if left empty, is taken from the global parameter
cmgo.obj$par$plot.zoom.extent.length
(140 m by default). There are multiple ways to determine
the center coordinate: via a predefined plot extent, via a
centerline point index, or directly by x, y coordinates.
Predefined plot extents allow for quick access to frequently
considered reaches of the stream and are stored in the
parameter list (see Codebox 5). The list contains named
vectors, each with one x and one y coordinate. To apply a
predefined extent, the name of the vector has to be passed to
the plot function as in CM.plotPlanView(cmgo.obj,
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plot.zoom.extents = list(       # presets (customizable list) of plot regions 
  e1  = c(400480,  3103130),      # plot region definition e1 with x/y center coordinate 
  e2  = c(399445,  3096220), 
  e3  = c(401623,  3105925), 
  all = NULL 
) 

Codebox 5. Definition of predefined plot extents that allow for the quick plotting of frequently used map regions. The names, here “e1”,
“e2”, and “e3”, contain a vector of two elements, the x and y coordinates at which the plot is centered. To plot a predefined region, call for
example CM.plotPlanView(cmgo.obj, extent= “e2”).

cmgo.obj$par$centerline.use.reference = TRUE 
cmgo.obj$par$centerline.reference     = "set1" 

Codebox 6. The parameters to enable the reference mode for channel metrics calculations (only necessary for time series analyses).

extent=”extent_name”). Another way of speci-
fying the plot region is via a centerline point index, for
example CM.plotPlanView(cmgo.obj, cl=268).
This method guarantees that the plot gets centered on
the channel. To find out the index of a desired center-
line point, centerline text labels can be enabled with
cmgo.obj$par$plot.planview.cl.tx=TRUE.
Finally, the plot center coordinate can be given directly by
specifying either an x or y coordinate or both. If either an
x or y coordinate is provided, the plot centers at that coor-
dinate and the corresponding coordinate will be determined
automatically by checking where the centerline crosses this
coordinate (if it crosses the coordinate multiple times, the
minimum is taken). If both x and y coordinates are provided,
the plot centers at these coordinates.

A plot of the width of the whole channel (default)
or for a portion (via cl argument) can be created with
CM.plotWidth(). Two data sets with the same reference
centerline can also be compared. The cl argument accepts
the range of centerline points to be plotted; if NULL (de-
fault), the full channel length is plotted. If a vector of two
elements is provided (e.g., c(200, 500)), this cl range is
plotted. If a string is provided (e.g., “cl1”), the range defined
in cmgo.obj$par$plot.cl.ranges$cl1 is plotted.
Alternatively to the range of centerline indices, a range of
centerline lengths can be provided with argument d. If a sin-
gle value (e.g., 500) is given, 50 m around this distance is
plotted. If a vector with two elements is given (e.g., c(280,
620)), this distance range is plotted.

The third plot function creates a plot of the bank shift
(bank erosion and aggradation). This plot is only available
when using multiple channel observations in the reference
centerline mode (see the “Reference centerline” section). The
arguments of the function regarding the definition of the plot
region are the same as of the function CM.plotWidth().

In addition to the plotting, the results can be writ-
ten to output files and to an R workspace file with the
function CM.writeData(). The outputs written by
the function depend on the settings in the parameter ob-

ject. If cmgo.obj$par$workspace.write=TRUE
(default is FALSE), a workspace file is written con-
taining the global data object. The file name is de-
fined in cmgo.obj$par$workspace.filename.
Further, ASCII tables can be written containing the
centerline geometry and the calculated metrics. If
cmgo.obj$par$output.write=TRUE (default
is FALSE), an output file for each data set is written to the
output folder specified in cmgo.obj$par$output.dir.
The file names are the same as the input file names with the
prefixes cl_* and metrics_*. All parameters regard-
ing the output generation can be accessed with ?CM.par
executed in the R console or can be found in the Supplement.

5 Temporal analysis of multiple surveys

The program can perform analyses on time series of channel
shapes. To do this, multiple input files have to be stored in
the input directory (see Sect. 4.1). A data set for each file will
be created in global data object and mapped to the sub-lists
“set1”, “set2”, etc. (see Codebox 1). The program automati-
cally iterates over all data sets, processing each set separately.
The order of the data sets is determined by the file names.
Thus, the files need to be named according to their tempo-
ral progression, e.g., “channelsurvey_2017.csv”, “channel-
survey_2018.csv”, etc. The mapping of the file names to data
sets is printed to the console and stored in each data set under
cmgo.obj$data[[set]]$filename.

Reference centerline

The channel metrics are calculated based on the centerline,
which exists for every river bed geometry. When there are
multiple temporal surveys of a river geometry, there is also
a centerline for each data set. Multiple centerlines prevent
a direct comparison of the channel metrics as they can be
seen as individual channels. Thus, there are two modes for
temporal comparisons of the channel metrics. Metrics can
be calculated for each channel geometry individually. In this
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1 

 

 

# installation of dependencies (required only once) 
install.packages(c("spatstat", "zoo", "sp", "stringr", "rgl", "shapefiles")) 
 
# installation (required only once) 
install.packages("cmgo", repos="https://raw.githubusercontent.com/AntoniusGolly/repos/master", 
type="source") 
 
# include the package (required for every start of an R session) 
library(cmgo) 

Codebox 7. Installation and embedding of the package in R.

Figure 6. Two consecutive channel geometries (surveys I and II)
with a profound reorganization of the channel bed. In the reference
mode a centerline of one survey is used to build transects. Here,
using the centerline of the first survey (blue line) as a reference is
not suitable to capture the channel width correctly for the second
survey (dashed line) as the exemplary transect (dashed orange line)
suggests.

mode, the channel metrics are the most accurate representa-
tion for that channel observation; for example, channel width
is most accurately measured, but does not allow for a direct
comparison of consecutive surveys. In a second approach, a
reference centerline for all metrics calculations can be de-
termined. In this approach, all metrics for the various bank
surveys are calculated based on the centerline of the data set
defined in cmgo.obj$par$centerline.reference
(default “set1”). This mode must be enabled manually (see
Codebox 6) but should be used only if the bank surveys dif-
fer slightly. If there is profound channel migration or a fun-
damental change in the bed geometry, the calculated chan-
nel metrics might not be representative (shown in Fig. 6). To
compare channel geometries for which the individual cen-
terlines are not nearly parallel, we recommend calculating
the metrics based on individual centerlines and developing a
proper spatial projection for temporal comparisons.

Figure 7. (a) A gap in the centerline occurs when the spacing of
the bank points is too large compared to the channel width; (b) the
gap fixed by increasing the resolution of the bank points through the
parameter par$bank.interpolate.max.dist.

6 Technical fails and how to prevent them

There are certain geometrical cases in which the algorithm
can fail with the default parameterization. To prevent this, a
customized parameterization of the model is required. The
program prints notifications to the console during runtime
if the generation of the centerline fails and offers solutions
to overcome the issue. The main reason that failure occurs
is that the resolution of channel bank points (controlled via
cmgo.obj$par$bank.interpolate.max.dist)
is relatively low compared to the channel width. In tests, a
cmgo.obj$par$bank.interpolat.max.dist less
than the average channel width was usually appropriate.
Otherwise, the desired centerline segments produced by
the Voronoi polygonization can protrude out of the bank
polygon (Fig. 7a) and thus do not pass the initial filter
of the centerline calculation (see Sect. 3), since this filter
mechanism first checks for segments that lie fully within the
channel polygon. This creates a gap in the centerline, which
results in an endless loop during the filtering for dead ends.
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# initialization: load data and parameters 
cmgo.obj = CM.ini("demo")      # check the data structure with str(cmgo.obj) 
 

# processing 
cmgo.obj = CM.generatePolygon(cmgo.obj) 
cmgo.obj = CM.calculateCenterline(cmgo.obj) 
cmgo.obj = CM.processCenterline(cmgo.obj) 
 

# view results 
CM.plotPlanView(cmgo.obj)      # plot a map with pre-defined extent 
CM.plotWidth(cmgo.obj)         # plot the channel width in downstream direction 
CM.plotMetrics(cmgo.obj)       # plot a comparison of bank profiles 

Codebox 8. Minimal example script to run cmgo with demo data set.

Figure 8. (a) The transects (perpendiculars to the centerline) do not intersect with banks properly, and thus the channel width is overrepre-
sented; (b) an increased transect span fixes the problem and channel width is identified correctly.

Thus, if problems with the calculation of the centerline arise,
an increase in the spatial resolution of bank points via
cmgo.obj$par$bank.interpolat.max.dist
is advised to naturally smooth the centerline segments
(Fig. 7b).

Another problem can arise from an unsuitable setting dur-
ing the calculation of transects. If the channel bed exhibits a
sharp curvature, a misinterpretation of the channel width can
result (see Fig. 8). In that case, one of the red transects does
not touch the left bank of the channel properly, thus leading
to an overestimated channel width at this location. To prevent
this, the span of the transect calculation can be increased. The
results have to be checked visually by using one of the plot-
ting functions of the package.

7 How to use the program: step by step instructions

The cmgo package can be used even without comprehensive
R knowledge, and the following instructions do not require
preparatory measures other than an installed R environment
(R Development Core Team, 2011). Once the R console is

started, installation of the cmgo package is done with the
install.packages() function (Codebox 7).

To quickly get started with cmgo, we provide four demo
data sets. Using these data sets, the following examples
demonstrate the main functions of the package but, more im-
portantly, allow for the investigation of the proper data struc-
ture of the global data object. This is of particular importance
when trouble shooting failures with custom input data.

The general execution sequence includes initialization,
processing, and reviewing the results with a standard exe-
cution sequence shown in Codebox 8. To switch from demo
data to custom data, input files have to be placed in the spec-
ified input folder (“./input” by default) and CM.ini() has
to be called without any arguments. Since the file format of
the custom input files can differ from the expected default
format, all program parameters regarding the data reading
should be considered. A list of all parameters available can be
accessed with ?CM.par executed in the R console or can be
found in the Supplement. To change a parameter, the new pa-
rameter value is assigned directly within the global data ob-
ject (e.g., cmgo.obj$par$input.dir="./input").
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Figure 9. Channel width as derived by cmgo (blue line) and RivMAP (red line) for 1506 locations along a 449 m reach of a natural channel
(Fig. 10) in the upstream direction. The vertical dashed lines mark our points at which we investigated the width manually in a GIS.

Figure 10. Fifteen random locations (yellow stars) of the 1506 cen-
terline points (red dots) at which we evaluated the width manually
in a GIS (example in the inset) that are compared to the width of the
automated products.

The plotting functions include a map-like plan view plot
(CM.plotPlanView()), a line chart with the channel
width (CM.plotWidth()), and, if available, a plot of the
bank retreat (CM.plotMetrics()). The latter is only
available in the reference centerline mode (see the “Refer-
ence centerline” section).

8 Evaluation of the data quality

We evaluated the quality of the derived channel width by
cmgo compared to manually measured data and to the best
documented and versatile product of our literature review,
RivMAP (Table 1). First, we compared the evolution of the
channel width derived by the two automated products, show-
ing that there is general agreement (Fig. 9). We then identi-
fied 15 locations randomly (vertical dashed lines in Fig. 9)
at which we assessed the channel width manually in a GIS
(Fig. 10).

The channel width at the transects is generally well cap-
tured by the automated products (Table 3) as the mean errors
are relatively low compared to the absolute width. However,
compared to the manually derived average width of 3.49 m,

Figure 11. The two different centerlines of the products cmgo
(green line) and RivMAP (red line) reveal differences in the shape
that also influence the channel length.

the average width of all transects deviates only −0.07 m for
cmgo, while it deviates −0.42 m for RivMAP. Thus, cmgo
performs generally better in deriving the channel width for
the test channel reach, and overall RivMAP underestimates
the channel width. This is also expressed in the smaller stan-
dard deviation of the differences, which is 0.098 m for cmgo
and 0.736 m for RivMAP. The large scatter can also be ob-
served in Fig. 9. Compared to the error of the in situ mea-
surements of the channel banks with a total station (1 cm),
the precision of the channel width calculations by cmgo is
within the same order of magnitude, while it is an order of
magnitude larger for RivMAP.

The channel centerlines of the two products differ in
length. While the centerline of cmgo has a length of 449 m
along the river reach, the centerline of RivMAP has a length
of 588 m (31 % longer). Looking at the shape of the center-
lines (Fig. 11), we argue that the centerline of cmgo better
represents the channel in terms of large-scale phenomena. It
may, for example, be more accurate for reach-averaged cal-
culations of bankfull flow. The centerline of RivMAP con-
tains a stronger signal of the microtopography of the banks
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Table 3. Channel width at 15 randomly selected locations along
a natural channel. The width was identified manually in a GIS, by
cmgo, and by RivMAP. Differences in the width from the automated
products were compared to the manual approach.

Transect Manual cmgo cmgo RivMAP RivMAP
[no.] approach width difference width difference

[m] [m] to manual [m] to manual
[m] [m]

1 4.01 4.02 0.01 2.83 −1.18
2 5.01 5.02 0 3.75 −1.27
3 4.57 4.55 −0.01 4.03 −0.54
4 2.66 2.59 −0.07 2.6 −0.06
5 6.79 6.83 0.04 5.37 −1.41
6 2.82 2.66 −0.15 2.12 −0.7
7 3.02 2.97 −0.06 2.55 −0.48
8 1.76 1.67 −0.09 2.6 0.84
9 2.27 1.93 −0.34 2.6 0.33
10 3.9 3.91 0.01 2.83 −1.07
11 3.82 3.66 −0.17 4.4 0.58
12 4.19 4.14 −0.05 3.04 −1.15
13 2.04 1.89 −0.15 1.34 −0.7
14 3.37 3.37 0 3.5 0.13
15 2.14 2.11 −0.03 2.5 0.36

Avg. 3.49 3.42 −0.07 3.07 −0.42

SD 1.34 1.399 0.098 0.997 0.736

due to the way the centerline is created (eroding banks). The
difference in length also has an influence on slope calcula-
tions, which will be lower for RivMAP.

9 Concluding remarks

The presented package cmgo offers a stand-alone solution
to calculate channel metrics in an objective and reproducible
manner; cmgo also allows for a close look into the interior
of the processing. All intermediate results are accessible and
comprehensible. Problems that arise for complex geometries
can be overcome due to the high degree of parameterization.
The cmgo package qualifies as a highly accurate tool suited
to analyze especially complex channel geometries. However,
if complex geometries should be compared to each other, for
example when analyzing the evolution of meandering chan-
nels, our product does not offer the ideal solution due to the
way that cmgo treats the reference of the channels. Thus, our
product should be the tool of choice if precise measurements
are required both in location and quantity and if geometri-
cal and other spatial data should be statistically analyzed.
However, when large time series of meandering rivers are
the main purpose of the effort, other products, for example
the Channel Migration Toolbox, are more suitable.

Since cmgo does not come with a graphical user inter-
face, only static map views of the channel can be obtained
by scripting them. The cmgo package offers various plotting
functions to do this, which allow for a predictable and repro-

ducible plot. The downside of this approach is that plots are
naturally not interactive, which is the case for GIS applica-
tions. For people who prefer this functionality, an export of
the intermediate and end results to GIS is recommended.

The only requirement for running cmgo is an installed en-
vironment of the open-source framework R. Thus, the pre-
requisites are narrowed down to a minimum to facilitate easy
integration and wide distribution for scientific or practical
use. The license under which the package is provided allows
for modifications to the source code. The nature of R pack-
ages determines the organization of the source code in func-
tions. This encapsulation comes at the cost of a sometimes
untransparent architecture, making it difficult to modify or
understand the code. Thus, for advanced users who desire a
more flexible way of interacting with the algorithm, we re-
fer to the raw source codes at GitHub (https://github.com/
AntoniusGolly/cmgo).

Code and data availability. All codes and demo data are avail-
able at https://github.com/AntoniusGolly/cmgo.
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