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Abstract 

The study of earthquake swarms and their characteristics can improve our understanding of 

the transient processes that provokes seismic crises. The spatio-temporal process of the 

energy release often linked with changes of statistical properties and thus seismicity 

parameters can help to reveal the underlying mechanism in time and space domains. Here we 

study the Torreperogil-Sabiote 2012-2013 seismic series (Southern Spain), which was 

relatively long lasting and it was composed by more than 2000 events. The largest event was 

a magnitude 3.9 event which occurred at 5th of February 2013. It caused slight damages, but it 

cannot explain the occurrence of the whole seismic crises which was not a typical mainshock-

aftershock sequence. To shed some light on this swarm occurrence, we analyze the change of 

statistical properties during the evolution of the sequence; in particular, related to the 

magnitude and interevent-time distributions. Furthermore, we fit a modified version of the 

epidemic type aftershock sequence (ETAS) model in order to investigate changes of the 

background rates and the trigger potential. Our results indicate that the sequence was driven 

by an aseismic transient stressing rate and that the system passes after the swarm occurrence 

to a new forcing regime with more typical tectonic characteristics. 
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1 Introduction 

The occurrence of seismic activity in southern Spain is ultimately explained as a consequence 

of the shortening between the Iberian microplate and the African tectonic plate, which is 

accommodated over a broad deformation area (Benito and Gaspar-Escribano 2007). Typical 

mainshock-aftershock sequences and swarm-like seismic series are relatively common in this 

zone (e.g., Martínez et al. 2005; Rodríguez-Escudero et al. 2014). The particular interest of 

the Torreperogil-Sabiote 2012-2013 (TS-1213) seismic series lies in the involved significant 

scientific, social, and media concern.   

 

The seismic series started in Oct 20th, 2012, lasted a relatively long period of 8 months, with 

over 2000 low magnitude events (-0.1 ≤ M ≤ 3.9). According to the seismic record, this area 

was considered as a zone of low seismic activity (Cantavella et al. 2013). Some authors (e.g., 

Pedrera et al. 2013) indicate the presence of basement faults and suggest their activation 

during the TS-1213 series. The epicentral area was located within the eastern Guadalquivir 

basin, beneath an elongated ridge known as Loma de Ubeda, between the towns of 

Torreperogil and Sabiote. A recent study on structural data revealed a previously unknown 

shear zone including right and left lateral blind faults where their parallel geometry does not 

promote static triggering (Morales et al. 2015). The shallow and dense distribution of 

epicenters caused that many events were felt, raising a considerable social concern and a 

debate about the tectonic or hydro-seismic origin; such as human made changes in aquifers 

and reservoirs (Doblas et al. 2014). Morales et al. (2015) discard this idea associate the 

initiation of this swarm activity with slow strain release in small but highly fragmented region 

under a bending scheme.  

 

Statistical analyses of the seismic series may contribute to gain important insights about their 

nature because the generation mechanism and the system state changes are often connected to 

systematic changes of statistical parameters and distributions (e.g. Hainzl and Fischer 2002; 

Mignan 2012; Schoenball et al. 2015). Especially for cases as Southern Spain, where the 

seismotectonic setting is complex, conclusions can be mainly drawn from statistical analysis 

of the seismicity patterns. 



 

The main effort of this paper is to investigate the temporal evolution of the seismic series in 

order to better identify the underlying process. Using a more expanded spatio-temporal 

overview we try to discuss this sequence not as an isolated incident, but as a part of a 

significant growth in the seismic activity in the area. This growth is associated with the 

occurrence of small clusters since 2010 and within a radius of 30 km to the Torreperogil-

Sabiote sequence. We analyze the temporal changes of statistical parameters, in particular we 

focus on the b-value and interevent-times. We also carry out an ETAS modeling of the 

sequence to unravel the background rate and trigger potential characteristics. Finally, the 

conclusions of the different statistical observations are brought together and discussed. 

 

2 Data  

We analyze the seismic catalog provided by the National Geophysical Institute of Spain 

(IGN) focusing in a rectangular region centered in the TS-1213 epicentral area within 

longitude [-3.7, -2.8] and latitude [37.6, 38.4] (box marked in Figure 1). We start the analysis 

back in 1980 to explore the study area in a more expanded temporal frame.  

 

A relative seismic inactivity is observed from 1980 to 2010. Then from 2010 up to April 

2015, an increase in seismic activity is noted, including the occurrence of the TS-1213 series 

and other small groups of events to the west and southeast.  

 

The National Seismic Network of IGN, joint with other centers’ stations like the Andalucian 

Institute of Geophysics (IAG) and conventions of Real Observatory of Armada, Complutense 

University, and German Research Centre for Geosciences (ROA-UCM-GFZ), have localized 

the seismic activity since its beginning in October 2012.  Because of the peculiarity of this 

series and in order to run a specific study on it, IGN and IAG established additional 

temporary stations (Figure 1e) between 18 Dec 2012 and 18 Apr 2013, with real time data 

transitions (Cantavella et al. 2013).  

 



Apart from the main sequence, four small groups of events are recognizable in time and space 

while three of them occurred before October 20th, 2012. The re-localizations of the main 

sequence reveal some clustering in the main activity period as well (Peláez et al. 2013; 

Morales et al. 2015). The occurrence of seismic clusters in the selected frame does not seem 

usual since diffused seismicity was dominating before in this part of Spain. To explore the 

potential reasons for this apparent system change, we study in the following sections the 

statistical properties of this activity. The analyzed data include 2713 events with M≥-0.1 in 

the mentioned box region between longitude [-3.7, -2.8] and latitude [37.6, 38.4].  

 

Fig1: The seismic catalog of IGN (M≥1.0) for southern Spain since 1980 is presented in 

intervals of 10 years in captions a-c. The last temporal interval (d) was chosen until more 

recent time, end of April 2015. (e) Shows the spatial distribution of the seismic stations 

contributing in IGN seismic catalog during the last decade and temporary stations were 

installed between 18 Dec 2012 and 18 Apr. 2013. (f)  Zoom into the box-region marked in 

plots a-e with IGN total data (M≥-0.1) since 2010 to the end of 2014. 

 

In order to perform a statistical analysis of the seismic series, the first step is to select the 

subseries which are best suited to characterize the evolution of the plenary incident in time. In 

this study, we decided to divide the activity into three sub-series in time. The precedent 

period (phase D") starts in 2010 ends just before 20 October 2012, when a sharp increase on 

the seismic activity indicates the beginning of the main activity phase (phase D#). This lasts 

until 30 June 2013, when the seismic activity returns to the level of the precedent phase. The 

subsequent phase (phase D$) lasts until the end of the catalog (Table 1). Figure 3 shows the 

epicentral locations from 2010.0 to the 2015.0 plotting the three phases with different colors. 

This division provides a suitable term to investigate the changes in statistical properties 

during and after the sequence. Table 1 provides the details of the time intervals and 

earthquake numbers of the selected sub-series in Figure 2.  In the following, the statistical 

properties of the mentioned sub-series are studied. 

 

Table1 

 



Fig2: Shows total seismic data form IGN catalog during 5 years where selected periods are 

marked by vertical dashed lines. (a) Magnitude versus time plot. (b) Daily rate of seismicity 

versus time. 

Fig3: Spatial distribution where colors refer to the different  temporal intervals; white for 

pre-activity (Figure 2) D1, black for main activity or D2 and grey for post-activity or D3. 

 

3 Statistical Characterization 

The statistical characterization of the TS-1213 series focuses on the time variations of the 

parameters defining the magnitude-frequency relation (including b-values and magnitude of 

completeness M&) and addresses the distribution of interevent-times. 

 

3.1 Frequency-Magnitude Distribution 

The study of the magnitude frequency distribution is a basic step to characterize any seismic 

population. Earthquake magnitudes are known to follow generally the Gutenberg-Richter law 

(Gutenberg and Richter 1956) describing the number of earthquakes with magnitude equal or 

greater than M as: 

N M = 10+,-.               (1) 

Whereas parameters a and b, describe the activity level and the slope of the distribution, 

respectively. The b-value scatters generally around 1. Experiments of rock samples and 

observations suggest that the b-value is a ''stress-meter'' where low b-values are indicative for 

rocks under high stress (Schorlemmer et al. 2005; Scholz 2015). We effectively find a linear 

relationship between log"2 N  and M for magnitudes greater than approximately 1.0 (Figure 

4), which can be fitted by a typical b-value in the order of 1.  

 

Fig4: The frequency-magnitude distribution of the total activity during 2010 to 2014. 

	

However, for b-value estimation, it is essential to firstly determine the magnitude of 

completeness for the data.  For this purpose, we follow the method introduced by Wiemer 

and Wyss (2000) and apply it to the total activity during 5 years. This was done by 



calculating the goodness of the fit of the Gutenberg-Richter (GR) law to the observed 

frequency-magnitude distribution as a function of the lower magnitude cutoff. The magnitude 

M& at which 95% of the data was modeled by the GR power law is 1.2. For the calculation of 

a and b-values of the GR-law, we used maximum likelihood estimation for	M ≥ M&. 

 

Applying the same method for detecting potential changes of M& with time, we select 

subsequent samples of N events. Considering the lower seismicity in phases D" and D$, we 

choose N=100 events for each sample with an overlap of 10 events. Then we establish less 

strict criteria of 90% goodness of fit for data in each sample to be modeled with GR law.  

 

Fig5: Black curve represents calculated Mc versus time for sample size of 100 events with 

10% overlap and 90% goodness of fit for modeling the frequency-magnitude distribution with 

the GR law. Dashed grey curves represent ±σ obtained from 200 bootstrapped samples. 

 

The result for both D" and D$ does not oscillate significantly and shows M&-values between 

1.2 and 1.3 with σ ~ 0.1 for 200 bootstrapped samples (Figure 5). In phase	D# we see a large 

fluctuation with this sample size. In fact, as during D# the seismicity rate rises notably, a 

sample size of 100 covers much shorter time intervals and leads to less smooth M&– time 

curve. On the other hand establishment of temporary seismic stations between 18 Dec 2012 

and 18 Apr 2013 (Figure 1e) enhanced the network capabilities for data detection in quality 

and quantity. Thus, the capability of detecting smaller magnitude events explains the first 

drop in M& values. Then, along with a rise in the occurrence of relatively large magnitudes 

M ≥ 3.0 since December 2013, the detection ability of the smaller events is likely lowered 

because of overlapping (and hence inability to spot) of the seismic records of lower-

magnitude events occurring immediately after higher-magnitude events, which explains some 

fluctuations to larger M&-values (Hainzl 2016). However, uncertainties of the M&-values 

might partially also explain those fluctuations. Increasing the sample size reduces sharp 

changes, but also reduces the temporal resolution. Finally, a M& value of 1.3 is found to be a 

reasonable choice for the overall completeness magnitude of the sequence. 

 



Conducting the b-value estimation of events exceeding the time-dependent M&-value (or even 

a fixed M&=1.3) results in an evident decrease of the b -value with time. In fact, the result for 

a sample size of 100 (the same as we used for M& estimation) indicates b-values of 

approximately 1.3 in the D" (~1000 days) followed by a decreasing trend within the high-

activity phase from a value over 1.5 to a value of approximately 1.1 in the end, and a further 

decrease toward a value of 0.8 in the D$ phase (Figure 6). This drop of b -value might result 

from an increase in stress level that leads to occurrence of bigger magnitudes. Such process 

might be the same as diminishes the differential stress at the location of the activity in phase 

D" and right before the main sequence where the b-value rises (Scholz 2015). Beside the 

general b-value decay, larger fluctuations occur on short times which might be related to 

secondary loading/unloading processes due to stress transfer or pore pressure changes. 

 

Fig6: Temporal variation of b-value calculated for sample sizes of 100 events with 10% 

overlap with three methods. 1) Using Mc that provides 90% goodness of fit for modeling the 

frequency-magnitude distribution of the data with the GR law; black solid curve and ±σ; grey 

solid curves.  2) Using Mc driven from the maximum curvature method; light dashed curve 

and ±σ grey dashed curves. 3) Using fixed Mc=1.3; tick dashed curve. Time interval 

selection is marked with vertical dashed lines.   

 

In Figure 7, we show the normalized magnitude distribution for each of the three phases. In 

all cases, the distribution can be well described by the Gutenberg-Richter law with similar 

slope for D"	and D#, while the slope for D$ is significantly smaller, in agreement with our 

analysis in moving time windows (Figure 7). 

 

Fig7: The normalized magnitude distribution for the three periods. 

 

3.2 Interevent-Time Distribution 

For characterizing the temporal occurrence of the events within the seismic sequence, we 

study the interevent-time distribution. Time-lag or interevent-time 𝜏 indicates the time 

between two consecutive events. Figure 8 visualize the interevent-time distribution versus 



event-index for the 1622 events occurred in the three phases considered in this study with M 

≥1.3. Right after 20 October 2012, the interevent-time starts to decrease by a factor of almost 

102 and remains smaller than 103 in almost the whole duration of the high activity phase D#.  

 

Fig8: Interevent-time versus index of the events for events with M>1.3 whereas 𝐷# starts with 

164th event on 20 Oct 2012 and ends by 1421st event on 30 Jun 2013. 

 

The interevent-time is the most important characteristic of any point process in the time 

domain and can be quantified by cumulative probability distribution as: 

F< τ = 1 − exp(− h< u du
F

2
)								 2  

Where h< u du is the probability that the next event after time t occurs between times t + u 

and t + u + du conditioned on its non-occurrence between times t and t + u. Assuming a 

zero probability for simultaneous events implies that h< τ dτ ≈ λ t Η< dt with λ t Η<  being 

the intensity (local event rate) of the process which generally depends on the history Η< of the 

preceding events.  

 

In a Poissonian process, the local event rate is independent of the history λ t , and it becomes 

a constant value λ in the case of a stationary Poisson process. In this case, the interevent-time 

distribution is: 

F τ = 1 − e,NF												 3  

The probability density function of the interevent-time follows an exponential distribution: 

f τ = λe,NF																			 4  

Here λ is the long-term average of the event rate. Thus, if the analyzed sequence represent a 

stationary Poisson process, we would expect to have an exponential distribution of the 

interevent-times. The expected result for Poisson process is illustrated by the dotted curve in 

Figure 9. In comparison, the probability densities of interevent-time calculated for the M ≥1.3 

events in the three phases show no evidence of such exponential tendency.  



 

Fig9: Probability densities of the interevent-times for the three subsequences. They tend to 

have a linear decay in double-logarithmic scale. For comparison, the result for a Poissonian 

process with the average D2-rate of 0.003 events per minute is marked by the dotted line. 

 

Tomada (1954) reported a power law distribution of interevent-times of the form f τ ∝ τ,R, 

with q = 1 ∼ 	2, for some volcanic swarms and aftershock sequences (Utsu et al. 1995). 

Senshu (1959) interpreted Tomada’s result and showed that for a decaying event rate 

according to 1 tU , the decay exponent of the interevent-time probability density is q = 2 −

1 p.  

 

Densities in Figure 9 show that during D" and D$ the probability decays with an almost same 

constant power of approximately 0.75.  Which would relate to a p-value of 0.8 in Senshu’s 

formulation for a single power-law decay of the rate. Nevertheless for limited spatio-temporal 

windows and superpositions of aftershock sequence and background activity, the interevent-

time distribution gets more complex (Saichev et al. 2007; Lippiello et al. 2012). 

 

This stable power law behavior indicates the similarity of earthquake occurrence in time 

scale, especially for time lags between 10" and 10V minutes. The observed deviation for 

small interevent-times is likely related to incompleteness, while the bending at large values 

might be related to finite sample size and observation time. Interevent-time distribution for 

D# deviates from a stable power law toward a faster decay for time lags bigger than 10# 

minutes. This is influenced by a higher contribution of events that occurs very closely in time 

because of a higher degree of clustering.  

 

4. ETAS Analysis 

One of the most common models for characterizing the clustering of seismicity and 

understanding the probable source processes is the Epidemic Type Aftershock Sequence 

(ETAS) model, a point process model introduced by Ogata (1988). 



 

This model accounts for activity driven by aseismic processes as well as aftershocks triggered 

by observed earthquakes. Aftershock occurrences can be well-described by the Omori-Utsu 

law (Utsu et al. 1995) stating that the aftershock rate decays with time t after the mainshock 

according to 

N+W<XYZ[\&]Z ∝
K2

t + c U 												 5  

Where c and p are constants (see Utsu et al. (1995) for a review). The exponent p is typically 

in the range 0.8 - 1.2 and independent of the mainshock magnitude M, whereas K2 is known 

to depend exponentially on M (Utsu et al. 1995, Hainzl and Marsan 2008). Detailed 

aftershock studies showed that the delay parameter c is very small, in the order of one to 

several minutes or even less (.e.g. Peng et al. 2006; Enescu et al. 2007), while larger 

estimations often result from incomplete recordings directly after the occurrence of larger 

earthquakes (Kagan 2004, Hainzl 2016). Note that for single aftershock decay according to 

the Omori-Utsu law, the probability density function of the interevent-times decays with an 

exponent of 2 − 1 p (see above). 

 

The TS-1213 series is however not dominated by a single mainshock with its aftershocks and 

consists of several events with similar magnitudes, the highest one in the range between 3.4 

and 3.9 (see Figure 2). Thus, we are dealing with a swarm-like sequence likely attributed to 

some external aseismic forcing. Aseismic forces contribute to the background seismicity 

which becomes time-dependent (Hainzl & Ogata 2005); e.g. due to transient creep (such as 

slow earthquakes) or rapid fluid intrusions (Marsan et al. 2013). In this study, we analyze the 

temporal behavior of the seismicity using a modification of the ETAS model by Hainzl and 

Ogata (2005) which provides comprehensive information about time variation of the 

background rate: 

λ t = µ t + υ t = µ t + cXd efgeh

<,<fi& j<fk< 														 7         

Where tm and Mm are the occurrence times and magnitudes of earthquakes. This formulation 

separates the time dependent forcing (background) rate µ t  and the earthquake rate υ t  

related to earthquake-earthquake triggering, where parameters c and p come from the Omori 



law and K and α are related to the magnitude-dependent aftershock productivity.  At any time 

t since the start of the catalog the rate of seismicity λ t  is history-dependent through the term 

υ t  which sums the aftershock rate of all the earthquakes occurred before t with magnitude 

Mm which is equal or greater than M&. If the aseismic forcing would be almost constant then 

λ t  could be modeled by aftershock rate υ t  plus a constant rate µ. But if the background 

significantly varies with time during the swarm, then a reasonable model fit requires a variant 

aseismic forcing which should be questioned on its roots.  

 

5. Method  

To estimate the model parameters and background rate simultaneously, we apply the 

algorithm developed by Marsan et al. (2013) and further tested by Hainzl et al. (2013) which 

is based on the inversion of the temporal ETAS model. This algorithm iteratively estimates 

the four parameters K, α, c and p of the ETAS model by maximizing the log-likelihood value 

inside a time interval Dm and then estimating the time-dependent background rate using the 

plus/minus n-nearest neighbors. 

 

With the estimated µ t , the ETAS-parameters are re-estimated and so on, until the 

convergence of both parameters and background rates. The smaller the smoothing window n, 

the larger the degree of freedom of the model would be and the variation of µ t  would be 

stronger as well. The optimal value of the smoothing window is determined by Akaike 

Information Criterion, AIC=2k-2ln(L) where k is the number of free model parameters and L 

the maximum likelihood value. The computation of the ETAS parameters is carried out 

considering the three phases of Table 1. An alternative computation for phase D$ is 

developed excluding the aftershock productivity of events before July 2013 (D$′). This leads 

to an unrealistic situation in the case of D$′, which assumes no prior high activity. However it 

prepares a more conceivable comparison between background seismicity before and after the 

main sequence.   

 



6. Results and Discussion 

The Akaike Information Criterion (AIC) yields n=3 as optimal smoothing parameters for	D", 

D$ and D$′, while the optimal value is n=9 in the case of	D#. These small smoothing windows 

indicate that strong temporal changes of the background rates are necessary to statistically 

explain the observed data. Thus transient aseismic processes likely occurred in all three 

phases which triggered the majority of observed M ≥ 1.3 events. The estimated fraction of 

events attributed to the background activity is between 60% and 83%. Vice versa, only 17% 

to 40% of the events are identified as aftershocks. This result is provided in Figure 6 together 

with the estimation of the ETAS parameters. The estimated c-values are small and ranging 

between 3 and 13 minutes (0.002 and 0.009 days), while α-values are close to 1 for D" and 

D# which are significantly smaller than those values observed for typical aftershock 

sequences (Ogata 1992, Hainzl & Ogata 2005). However smaller α-values have been 

previously found to be indicative for swarm activity. In contrast, the latest phase has an 

estimated value of 1.55 which is close to typical tectonic values (Hainzl et al. 2013). Together 

with the observed b-value decrease in this last phase, this might indicate the change of the 

activity from swarm-type to mainshock-aftershock -type activity. However, the reason of the 

significant increase in the Omori p-value from 1.15 in D" to 1.44 in D# and 1.69 in D$ 

remains unclear. 

 

Table 2 

 

It is also noticeable that the result for D$ does not change significantly, if we exclude the 

aftershock productivity of events before July 2013, as in D$′. Figure 10a shows the estimated 

time-dependent background rate before and after the main swarm activity in logarithmic 

scale. Apart from short time excursions, the rate fluctuates around 0.1 events per day in D" 

and around 0.3 events per day in D$ phase. The background rate during D# is strongly 

amplified and the gradually decays with time approximately according to an exponential 

function. The fit of the ETAS model is shown in Figure 10b indicating that the ETAS model 

is capable to model the swarm activity and predicts only 24 events less than observations. 

 



Fig10: (a) The time-dependent background rate before (D1), after (D3) and during the main 

activity (D2). (b) The result of ETAS modeling for the cumulative event numbers in D2 is 

illustrated with red solid line in comparison to the observed one (black dashed line), while 

the blue dotted like describes the cumulative number of estimated background events. 

 

In order to understand changes in the aftershock productivity (trigger potential), we need to 

introduce the theoretical relation between the number of aftershocks triggered by a 

mainshock of magnitude M, studied by Utsu (1971). 

n = Aet.																																								 8  

In the ETAS formulation this should be related to Ket .,.hv
2 t + c ,Udt for p > 1, that is 

c",U

p − 1Ke
t .,.& = Aet.													 9  

A =
K

e".$t p − 1 cU," 														 10  

Using ETAS parameters in Table 2 we find A to be 0.030, 0.068, 0.005 and 0.008 for D" , D#, 

D$ and D$′. Then we can find the minimum magnitude that will produce at least one 

aftershock (n=1) using (10) in order to compare the productivity more explicitly.  

 

Fig11: The curves show the average number of M≥0 aftershocks as a function of the 

mainshock magnitude according to Eq. (7) for the three periods. The A-value in relation (9) 

was calculated using the derived values for K, α, c and p in Table 2. 

 

Figure 11 shows the productivity changes during the three phases. The trend varies with the 

α-value and with the A-value; and defines the mainshock magnitude which is related to 

specific number of aftershocks. The trend during D" and specially D# is slower with rise in 

magnitude (α ∼ 1), and among D# smaller magnitudes are more productive in comparison to 

the other phases (A=0.068).  

 



After D#, the capacity of the aftershock production is shown for both cases D$ and D$′. As 

we have seen in ETAS calculation results, they basically expose very similar parameters and 

occurrence rates. Such comparison indicates the independence of seismicity rate in this phase 

from the past. However Figure 11 illustrates that if we ignore D# for ETAS parameter 

calculations in post-activity phase D$′, the productivity potential after the swarm is more or 

less like before the swarm and starts with magnitude ∼3.1 but then the trend gets faster 

indicating more rapid rise in productivity with rise in the magnitude. This is an evidence for 

the fact that since July 2013 the forcing system is experiencing some changes that cause a 

less swarm characteristics or more elastic effects. But the same minimum magnitude for 

being a potential parent seems unrealistic if we assume that the system has gone toward a 

higher rigidness. Including the history for ETAS calculations of the post-activity phase D$, 

the result gives a more reasonable view of what happens after the main swarm D#. It can be 

seen that the minimum patented magnitude for having at least one aftershock rises from 3.1 in 

D" and D$′ to 3.4 for D$. 

 

7. Summary and Conclusions 

The Torreperogil-Sabiote 2012-2013 seismic series represents a swarm-like activity with 

strong clustering in space and time. Earthquakes are known to interact by means of induced 

dynamic and static stress changes and thus cannot be modeled as independent events. This is 

clear for classical mainshock-aftershock sequences which can be modeled by the Omori-Utsu 

law. However, stress-interactions occur also during earthquake swarms where no clear 

mainshock can be identified. Some earthquake swarms might be only the random result of 

stress-interactions where several triggered events have by chance similar large magnitudes. 

Often, however, earthquake swarms are driven by an additional transient aseismic process, 

such as fluid intrusions or slow earthquakes. The aseismic process might not only change the 

background rate but also some other statistical properties of the activity. For a proper analysis 

of the observed sequence, we thus analyze temporal changes of the statistical properties and 

apply a modified version of the ETAS model which includes time-dependent background 

rates.  

 



The result of maximum log-likelihood estimations for the ETAS parameters was derived for 

small smoothing windows indicating rapid temporal changes in background activity. Such 

fluctuations in time can be due to rapid evolutions in the forcing rate which switch the system 

to a higher seismic activity as we observe since 20th of October 2012. The high proportion of 

background events ∼80% for all small clustered earthquakes between 2010 and October 2012 

(before the main sequence), suggests a high contribution of transient aseismic process. Along 

with the occurrence of the main phase of the swarm, the aftershocks’ contribution duplicates 

from 20% to 40%. But it is still carrying out the minority of the whole population of the 

events. The resulting µ-value shows some strong fluctuations which might suggest an 

episodic character of the aseismic forcing. Nevertheless some fluctuations could also be 

partially related to missing events in phases of activity (Hainzl 2016). 

 

Our analysis of the sequence shows that the activity is not solely explainable by tectonic 

loading and earthquake-earthquake triggering and that an addition transient aseismic loading 

process must have taken place. Decreasing b-values (Figure 6) during the main seismic 

activity might be related to an aseismic process which continuously increased the average 

stress level. Considering that the area is not volcanic, it is likely that fluid movements or slow 

earthquakes were responsible for the swarm activity in the years 2012-13 in Torreperogil-

Sabiote area. The potential processes were also suggested based on the analysis of the 

hypocenter distribution and seismotectonic structures by Morales et al. (2015). 

 

Furthermore, we find that the background rate remains elevated after the main swarm activity 

with decreased b-value and increased α-value of the trigger potential. Altogether, this might 

indicate a system change to a more critical stress state in this region. The background rate in 

this period describes 83% of the activity. The result for 𝐷$′ which is driven independent of 

the history and shows the same percentage of the background events as for𝐷$. It may be 

concluded that the behavior of the area after the main sequence is not a continuation of the 

2012-2013 swarm but is its consequence. 
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Table 1: The characteristic of the selected sub-series 

 

 

 

 

 K c (days) α p 𝑁 
𝑀 ≥ 1.3  𝑁 = 𝜆 𝑡 𝑑𝑡 𝑁~� = 𝜇 𝑡 𝑑𝑡 𝑁~� 𝑇 

(#/day)	 𝑁~� 𝑁 

𝐷" 
𝐷# 
𝐷$ 
𝐷$′ 

0.007 
0.007 
0.001 
0.002 

0.002 
0.002 
0.009 
0.008 

1.199 
0.975 
1.550 
1.550 

1.154 
1.440 
1.690 
1.604 

163 
1257 
202 
202 

156.74 
1232.68 
194.36 
194.97 

124.79 
741.04 
162.10 
161.41 

0.122 80% 
60% 
83% 
83% 

2.917 
0.295 
0.294 

 

Table 2: The maximum likelihood estimates of the ETAS parameters for the three different 
time periods. 

 

 

Period	 Starting	date	 Ending	date(year	decimal)	 Duration(days)	 Number	of	events	
D1:	Pre-activity	 01.01.2010	 19.10.2012	(2012.8)	 1022	 233	
D2:	Main-activity	 20.10.2013	 30.06.2013	(2013.5)	 254	 2199	
D3:	Post-activity	 01.07.2013	 31.12.2014	(2015.0)	 549	 281	
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