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S U M M A R Y
Earthquake clustering can be well described by the Epidemic Type Aftershock Sequence model
(ETAS), where each earthquake potentially triggers its own aftershocks. The temporal decay
of aftershocks is most commonly modelled with a power law, the so-called Omori–Utsu law.
However, new results suggest that alternative decay functions may be more appropriate. One
recent study found that a version of the ETAS model fitted the data better when the Omori–
Utsu law was truncated in time. A finite triggering time is consistent with the rate-state model
that expects an exponential roll-off after a finite time following the initial power law decay.
Another recent study compared a power law, pure exponential and stretched exponential and
found that the stretched exponential described the overall decay of aftershocks best. Our aim
is to find the best temporal aftershock decay function within the ETAS model framework. We
investigate six decay functions; three power laws and three exponential decays. The power laws
are an unlimited Omori–Utsu law, a sharply truncated Omori–Utsu law, and an exponential
roll-off consistent with the rate-state friction model. The exponential decay functions are the
pure exponential, stretched exponential and a modified stretched exponential. We fit model
parameters for each decay function to 326 individual earthquake sequences from four regional
and one global earthquake catalogue. The three models that fit most of the sequences the best
are the truncated Omori–Utsu law (32 per cent of sequences), the power law based on the
rate-state friction model (26 per cent) and the unlimited Omori–Utsu law (23 per cent). When
the parameters are not fitted individually but the median model parameters are used for each
function, the modified stretched exponential function fits most (28 per cent) sequences the
best, followed by the unlimited Omori–Utsu law (22 per cent) and the stretched exponential
(18 per cent). However, the majority of sequences (53 per cent) is still best fit by a power law.
Out of all the tested decay functions, the one based on the rate-state friction model is the only
one that performs in a majority of cases better than the Omori–Utsu law for fixed parameters.
This suggests that it could be a potential candidate to replace the unlimited Omori–Utsu law
in ETAS-model-based earthquake forecasts.

Key words: Earthquake hazards; Earthquake interaction, forecasting, and prediction;
Statistical seismology.

1 I N T RO D U C T I O N

Aftershocks occur after almost all large shallow earthquakes and can
cause further damages as for example in the Canterbury sequence,
New Zealand (Bannister & Gledhill 2012). Although aftershocks
are most abundant shortly after the mainshock, they can continue to
occur with decaying rate for months and years. Therefore, the spe-
cific functional form of the temporal decay is of crucial importance
for time-varying seismic hazard assessments.

The decay of aftershocks is most commonly modelled by the
Omori–Utsu law, a power law, which can present some challenges
in practical implementation. The decay rate of aftershocks R(t) at
time t is given by

R(t) = K0(c + t)−p. (1)

The decay exponent p typically takes values in the range 0.8–1.2;
the time-offset parameter c avoids a singularity at time zero, and
the productivity is described by K0; see Utsu et al. (1995) for a
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review. The proportionality factor K0 increases exponentially with
mainshock magnitude M according to K0 ∼ 10α(M−Mmin), where α

is a constant around 1 and Mmin is the lower magnitude cut-off of
the earthquakes under consideration. The time offset parameter c is
usually much smaller than one day, and is associated with reduced
detection ability of the operating seismic network immediately after
large events (Kagan 2004; Hainzl 2016a,b). The functional form of
the Omori–Utsu law poses challenges: For p ≤ 1 it does not integrate
and has to be truncated at a finite triggering time T for the expected
number of aftershocks to be finite. Even for 1 < p < 1.2, the after-
shock activity can continue for thousands if not millions of years
according to the parameters fitted to the early part of aftershock
decay (Harte 2013). However, we do not have the data available to
test the applicability of the Omori–Utsu law for these time periods.
Many aftershock sequences tend to last until the end the earthquake
catalogues (Godano & Tramelli 2016). While the 1891 Great Nobi,
Japan earthquake still had its aftershocks decaying according the
Omori–Utsu law after 100 yr (Utsu et al. 1995; Hainzl & Christo-
phersen 2016), most earthquake catalogues provide homogeneous
data of sufficient quality for aftershock studies for not more than
30–50 yr, which complicates the analysis of the tail of the aftershock
decay.

Recently two alternatives to the Omori–Utsu law have been sug-
gested: The truncation of the Omori–Utsu law at a finite triggering
time (Hainzl et al. 2016) and the stretched exponential (Mignan
2015). A finite triggering time is consistent with physics-based
models (Hainzl et al. 2016). In particular, the rate-state friction
model predicts that a population of faults will respond to a sudden
stress increase by producing aftershocks with a rate equal to the
Omori–Utsu decay with p = 1, but with an exponential roll-off at
larger times (Dieterich 1994; Dieterich et al. 2000). In contrast,
Mignan (2015) found that the stretched exponential function bet-
ter describes the temporal decay of aftershocks than a power law.
He thus inferred that aftershocks are caused by a simple relax-
ation process like many other processes observed in nature. Mignan
(2015) fitted a power law, a pure exponential and a stretched ex-
ponential in their simplest form to the overall decay of individual
aftershock sequences in three regional earthquake catalogues. Apart
from a problem with the visual presentation of the data (Hainzl &
Christophersen 2016; Mignan 2016), his statistical analysis showed
that the overall aftershock decay for times t > tmin can be bet-
ter modelled by the stretched exponential function of the form
tβ−1exp (−λtβ ) with the two parameters λ, β with tmin in the or-
der of an hour. These results were confirmed for three methods
of defining aftershocks sequences but the fitting did not account
for background seismicity and secondary aftershock activity trig-
gered by preceding aftershocks. Previous tests of the stretched
exponential were less successful (Kisslinger 1993; Gross &
Kisslinger 1994; Lolli & Gasperini 2006; Lolli et al. 2009), but
improved when background seismicity was included (Gasperini &
Lolli 2009). For the overall aftershock decay of the Nobi earth-
quake the Omori–Utsu law was found to be the best decay function
(Hainzl & Christophersen 2016; Mignan 2016). Still, the findings
from regional catalogues could have important consequences for
understanding aftershock generation and modelling time-varying
seismic hazard.

The functional form of the aftershock decay functions needs
more thorough testing to include secondary triggering and potential
background activity, which can affect the tail of the decay func-
tion when the aftershock rate is small. To account for independent
events and secondary aftershocks in a consistent manner, we ap-
ply the Epidemic Type Aftershock Sequence (ETAS) model, which

was developed by Ogata (1988) to model cascading earthquake
occurrence. The total rate of earthquakes at time t is the sum of
background seismicity and on-going aftershocks triggered by all
past events and can be described by

R(�x, t) = μ(�x) +
∑
i :ti <t

K 10α(Mi −Mmin)(c + t − ti )
−pg(�x − �xi , Mi )

(2)

where μ(�x) is the space-dependent background rate, K a propor-
tionality factor, and g the spatial probability density function for
triggered aftershocks. It is important to remember that for p ≤ 1,
the Omori–Utsu law would predict an infinite number of direct af-
tershocks and thus the total seismicity in the ETAS model would
escalate with time (Harte 2013; Zhuang et al. 2013). Thus this
model is not self-consistent for p ≤ 1. Hainzl et al. (2016) intro-
duced a truncation time T for the Omori–Utsu decay in the ETAS
model, which leads to a finite aftershock number also for p ≤ 1. By
means of the analysis of synthetic simulations and empirical earth-
quake catalogues, they found that maximum likelihood fits often
reveals T-values significantly shorter than the catalogue length and
that falsely assuming T = ∞ can significantly bias the estimations
of the other ETAS parameters. In general, the ETAS model can be
rewritten in the case of self-consistent decay functions (that can be
normalized) as

R(�x, t) = μ(�x) +
∑
i :ti <t

N010α(Mi −Mmin) f (t − ti )g(�x − �xi , Mi ) (3)

with a temporal probability density function f. In this case, N0 is
the expected total number of M ≥ Mmin aftershocks triggered by an
earthquake with magnitude Mmin.

The spatial aftershock triggering is usually anisotropic due to
extended complex earthquake ruptures. Thus its parametrization
might introduce some bias in the ETAS model estimation (Hainzl
et al. 2008) as well as the unknown spatial variation of the back-
ground rate. Because we are mainly interested in the temporal decay,
we follow the approach of Hainzl et al. (2016) and Zakharova et al.
(2017) and only consider the temporal evolution of the integrated
activity in a region A to reduce the effects of the unknown details
of the spatial variation. The integration of eq. (3) yields

RA(t) = μA +
∑
i :ti <t

wi N010α(Mi −Mmin) f (t − ti ) (4)

with background rate μA = ∫
A μ(�x) d�x and the weighting factor

wi = ∫
A g(�x − �xi , Mi ) d�x which represents the fraction of after-

shocks of the ith event that is expected to occur in A. Note that the
summation on the right side of the equation includes all earthquakes
in the catalogue occurring before time t independent of whether the
events occurred inside or outside of A.

In the following, we will use eq. (4) to systematically compare
the performance of the infinite and truncated Omori–Utsu law, the
stretched and simple exponential function, and the physics-based
rate-state decay function for a large number of earthquake sequences
recorded in global and regional catalogues. Our aim is to identify the
decay function that best describes the temporal decay of aftershocks
within the ETAS framework. The tested functions are summarized
in Section 2. The data and method are introduced in Section 3.
Finally, the results are presented and discussed in Sections 4–6,
respectively.
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Figure 1. (a) Probability density functions of the different tested decay functions for exemplary parameter values. The corresponding cumulative distribution
function are shown in plot (b). Parameters are c1 = c2 = c6 = 0.01, T = ta = 100, a = 1 (all in units of days), p1 = 1.1, p2 = 0.9, λ5 = λ6 = 1.0, and
β5 = β6 = 0.2.

2 D E C AY F U N C T I O N S

We study six different decay functions:
Normalized Omori–Utsu law (nOU). For p > 1, the Omori–Utsu
law can be normalized and its probability density function is given
by

f1(t) = (p1 − 1)cp1−1
1 (c1 + t)−p1 (5)

with the two parameters c1, p1.
Truncated Omori–Utsu law (tOU). Assuming a truncation at time
T, the Omori–Utsu law can be normalized for any value of p and its
probability density function is given by

f2(t) = C (c2 + t)−p2 H (T − t) (6)

with H being the Heaviside-function (H(s) = 1 for s ≥ 0 and 0
otherwise) and the normalization coefficient C being equal to

C =
{

(p2 − 1)cp2−1
2 /

(
1 − (1 + T

c2
)1−p2

)
for p2 �= 1,

[ln(c2 + T ) − ln(c2)]−1 for p2 = 1.

The three parameters of this function are c2, p2, and T. Note that
the non-normalized formulation of the Omori–Utsu decay in the
standard ETAS model (eq. 2) can account for p ≤ 1. However, in
this case it is implicitly assumed that a truncation exists and the
corresponding T-value exceeds the catalogue lengths.
Rate-state response (RS). The decay function of the RS model is
identical to the Omori–Utsu law with p = 1 with an exponential
roll-off at later times. The framework of rate-and-state friction (Di-
eterich 1994; Dieterich et al. 2000) takes into consideration the
rate- and slip-dependence of frictional strength and time-dependent
re-strengthening observed in laboratory experiments. Assuming a
population of nucleation sites in a stationary regime with back-
ground rate μ, the rate of additionally triggered aftershocks in re-
sponse to a single positive stress jump �CFS at time t = 0 evolves
according to

R(t) = μ

1 − Be− t
ta

− μ (7)

where B = 1 − exp (−�CFS/Aσ ) with Aσ being the frictional
resistance and ta the aftershock relaxation time which is inversely
proportional to the tectonic stressing rate τ̇ , i.e. ta = Aσ/τ̇ . This
decay function is identical to the Omori–Utsu law with p = 1 and
c = (1 − B)ta/B at short times, but with an exponential roll-off at
time ta (Cocco et al. 2010).

Its normalized form is given by

f3(t) = − B

ta ln(1 − B)

1

e
t

ta − B
(8)

with the two parameters ta and B, where 0 < B < 1.
Exponential function (Exp). The exponential function is the simplest
decay function known to describe linear relaxation processes, and
that is why we also test it. Its normalized form is given by

f4(t) = ae−at (9)

with the parameter a.
Stretched exponential function (SExp). The normalized form of the
stretched exponential form used by Mignan (2015) is given by

f5(t) = λ5 β5 tβ5−1 e−λ5tβ5 (10)

with the two parameters λ5 and β5, where 0 < β5 < 1.
Modified stretched exponential function (MSExp). To allow for a
time offset immediately following the mainshock and prior to the
onset of the decay, Gross & Kisslinger (1994) introduced a pa-
rameter c6-value similar to the c-value in the Omori–Utsu law. The
normalized form of the modified stretched exponential form is given
by

f6(t) = λ6 β6 eλ6c
β6
6 (c6 + t)β6−1 e−λ6(c6+t)β6 (11)

with the three parameters c6, λ6, and β6, where 0 < β6 < 1. The
parameter c6 can also account for the partial incompleteness of
earthquake catalogues directly after mainshocks.

Fig. 1 shows a comparison of the different decay functions for ex-
emplary parameter sets. Despite different parameters (e.g. p1 = 1.1
in the case of nOU and p2 = 0.9 in the case of tOU) and functional
forms, the shapes of probability density functions look rather similar
in the doubly-logarithmic presentation, except for the exponential
function. However, differences become clear in the log-linear plot
(Fig. 1b) of the cumulative distribution function which presents
the fraction of aftershocks occurring on average before the given
time. Thus the different decay functions are expected to lead to
significantly different fits.

3 DATA A N D M E T H O D

The empirical mainshock–aftershock sequences to be analysed are
selected from the following five catalogues:
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Southern California catalogue (SCA). We use the updated relo-
cated Southern California catalogue containing earthquakes from
1981 to 2014 (Hauksson et al. 2012). We use a cut-off magnitude
of Mmin = 3.0, which is well above the reported completeness of
Mc = 1.8 for this time period (Hauksson et al. 2012). Except follow-
ing a large earthquake, the selected sub-set is therefore complete
and includes 12 947 earthquakes above this threshold.

Northern California catalogue (NCA). We use the updated relo-
cated Northern California catalogue containing earthquakes from
1984 to 2011 (Waldhauser & Schaff 2008). We use a cut-off magni-
tude of Mmin = 3.0 leading to 9350 earthquakes above this threshold.

New Zealand catalogue (NZ). We use the GeoNet catalogue of
New Zealand earthquakes which, until the end of 2011, was pro-
cessed by the CalTech-USGS seismic processor (CUSP) system
(Lee & Stewart 1989). We selected earthquakes inside the testing
region of the Collaboratory for the Study of Earthquake Predictabil-
ity (CSEP) which includes the main islands of New Zealand and
extends about 50 km offshore with a depth cut-off of 40 km (Ger-
stenberger & Rhoades 2010). Considering changes in the magni-
tude of completeness over time, we use the cut-off magnitude of
Mmin = 3.5 and select for our model fits only events that occurred
after 1987. This data set includes 10,154 events. However, pre-1987
events are used as input for the ETAS rate estimate in the time
period after 1987.

Taiwan catalogue (Taiwan). We use the relocated catalogue of
Taiwan from 1991 to 2005 of Wu et al. (2008), with a cut-off
magnitude of Mmin = 3.0 and a depth cut-off of 40 km, containing
24,631 events.

Global catalogue (global). We analyse the ISC-GEM Global
Instrumental Earthquake Catalogue (www.isc.ac.uk/iscgem) (Stor-
chak et al. 2013). We use the cut-off magnitude of Mmin = 5.6
and select only shallow events with a depth less than 80 km in the
time period 1964–2012. This selection yields a catalogue of 12,780
events. However, pre-1964 events are used as input for the ETAS
rate estimate in the time period after 1964.

3.1 Sequence selection

Instead of analysing the seismicity with universal parameters, we
allow for potential variations of the ETAS parameters in space by
analysing the different decay functions separately for different earth-
quake sequences. By using the ETAS rate integrated over a localized
region A (eq. 4), we minimize the potential bias due to anisotropic
spatial triggering and inhomogeneous background activity without
ignoring the aftershocks triggered by events that occurred outside of
A. The spatial areas A are circular areas centred around mainshocks
defined by a simple window-based procedure introduced by Tahir
et al. (2012). We use exactly the same procedure as in Hainzl et al.
(2016), where it is described in detail. Here we only provide a brief
summary.

An earthquake with magnitude M is defined as a mainshock
if it is the largest earthquake within the time period of ± one
year and distance range D, where the spatial window is set to be
a multiple of the rupture length, that is, D = D̃ L(M). Here we
use L(M) = 10−2.44 + 0.59M (km) according to the average empiri-
cal rupture length of an earthquake with magnitude M (Wells &
Coppersmith 1994). The majority of aftershocks usually occur very
close to the mainshock rupture, but remotely triggered aftershocks
can also occur which will be missed for small values of D̃. As a
compromise, we choose D̃ = 3 but we show the robustness of our
results also for different values (see the Supporting Information).

However, the choice of the parameter values for the mainshock
selection is not crucial because we use the ETAS model, which
does not require any pre-definitions of mainshocks, aftershocks
and background events. Furthermore, we account for aftershocks
triggered by earthquakes outside the circular spatial region. For
this purpose, we calculate for all earthquakes in the catalogue, the
fraction w of aftershocks which is expected to occur in the study
region by means of the empirical probability density distribution
recently derived for California seismicity (Moradpour et al. 2014),
which has been also found to be in agreement with static stress
triggering (Hainzl et al. 2014). Although the spatial distribution
function has so far been fitted only to California data, Hainzl et al.
(2014) showed in their electronic material that the distribution is
not strongly dependent on the focal mechanism. Thus we use it for
all empirical data.

3.2 Parameter estimation

After the identification of a mainshock with magnitude M, we fit the
ETAS model to earthquakes occurring in the circular area A with
radius D around the mainshock epicentre in the time interval from
1 year before the mainshock until the end of the catalogue. Within
this period we exclude time intervals of incompleteness in the cat-
alogue known to exist after mainshocks (Kagan 2004). For that we
use the estimated incompleteness function for California, Mc(M,
�t) = M − 4.5 − 0.75 log10(�t), where �t is the time (in days)
after an earthquake with magnitude M (Helmstetter et al. 2006).
Earthquakes in time periods with Mc > Mmin are not considered as
target events, but still contribute to the predicted ETAS rate in later
time periods. To ensure some statistical significance, we analyse
only sequences with mainshock magnitudes M ≥ Mmin + 1.5 and
N ≥ 50 events occurring in the fitting period.

For the N observed earthquakes occurring within the area A in
one of the Nk subperiods with complete recordings (see above),
we estimate ETAS parameters by maximizing the Log-Likelihood
function LL

LL =
N∑

j=1

ln(RA(t j )) −
Nk∑

k=1

te(k)∫
ts (k)

RA(t) dt (12)

where ts(k) and te(k) refer to the start and end times of the kth com-
plete subinterval. We consider the incomplete periods after all M ≥
Mmin + 2 events. The parameters are optimized by the Davidon–
Fletcher–Powell optimization algorithm (Press et al. 1992). An ex-
ception is the tOU function, where a grid-search is performed for
the truncation time T, because the sharp truncation precludes the
calculation of the derivative. For a given T the other parameters are
estimated by the Davidon–Fletcher–Powell optimization algorithm.
In the latter case, we allow as T-values only mid-points between
the sorted interevent-times of the fitted events to any preceding
earthquake in the sequence. Selecting mid-points avoids a system-
atic overestimation of the LL-value, which has its maximum at one
of these interevent-times, without paying the price of predicting a
greater total number of earthquakes during the subsequent quiet
time interval.

3.3 Model comparison

For model comparison, the number of free parameters has to be
taken into account. We use the corrected Akaike information cri-
terion (cAIC), which indicates the best model by the minimum

http://www.isc.ac.uk/iscgem
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Figure 2. The maximum likelihood estimates of the decay functions for the different analysed sequences. In the case of each decay function, the upper plot
refers to the probability density function and the bottom plot shows the corresponding cumulative distribution function. Black lines indicate the result for
sequences where the corresponding function provides the best fit based on the cAIC-value, while the grey lines represent the results for the other cases. The
green lines illustrate the decay functions with median values provided in Table 1.

cAIC-value (see the Supporting Information for the application
of an alternative information criterion). The corrected Akaike in-
formation criterion accounts for the sample size and is defined
as cAIC = 2 (n + n(n + 1)/(N − n − 1) − LL) with n being the
number of free model parameters and LL being the log-likelihood
value defined in eq. (12) (Hurvich & Tsai 1989). The number of free
parameters varies for the different models according to nnOU = 2,
ntOU = 3, nRS = 2, nExp = 1, nSExp = 2, and nMSExp = 3. For example,
if the true decay follows an unlimited p > 1 decay, the nOU function
as well as the tOU function with T larger than the catalogue length
will lead to identical LL-values, but the nOU function is selected
because it has only two instead of three free parameters.

4 R E S U LT S

The total number of sequences selected according to the defined
selection criteria is 326; 146 in the global catalogue, 38 in the
SCA-catalogue, 39 in the NCA-catalogue, 78 in Taiwan and 25 in
the NZ-catalogue. For each sequence, we calculate the maximum
likelihood value and the corresponding model parameters for each
decay function. Furthermore, the best model is determined for each
sequence by means of the cAIC-values. Fig. 2 shows the maximum
likelihood estimates of the decay functions and the cumulative dis-
tribution functions for all sequences. For each decay function, the
black lines indicate the result for sequences where the correspond-
ing function provides the best fit, while the grey lines represent the



590 S. Hainzl and A. Christophersen

Figure 3. The resulting decay curves for the nOU function shown in Fig. 2, but now renormalized for a finite aftershock duration of T: (a) probability density
function and (b) cumulative distribution function. Black lines indicate the result for sequences where the corresponding function provides the best fit. Grey
lines represent the results for the other cases. In addition, the green lines provide the result of the cases where the non-normalized OU function with p ≤ 1 fits
best. Note that in this case it is implicitly assumed that a truncation time T exists and exceeds the catalogue lengths. T is set to 100 yr for all curves.

Table 1. Parameters for sequences where the corresponding decay function fits best according to the corrected AIC-criterion. In brackets, the
corresponding results for all sequences are provided. All values are in time units of days.

No. Function Functional form Parameter Median Mean Standard deviation

1 nOU eq. (5) ∼ (c1 + t)−p1 c1 0.011 (0.008) 0.029 (0.55) 0.04 (7.1)
p1 1.12 (1.08) 1.15 (1.46) 0.11 (6.4)

2 tOU eq. (6) ∼ (c2 + t)−p2 H (T − t) c2 0.002 (0.003) 0.006 (0.25) 0.01 (3.5)
p2 0.94 (1.01) 0.95 (1.56) 0.13 (9.3)
T 218 (226) 991 (864) 2559 (1999)

3 RS eq. (8) ∼ 1

e
t

ta −B
B 0.99998 (0.99998) 0.99917 (0.99950) 0.0029 (0.0036)

ta 188 (271) 10497 (11977) 89705 (73824)

4 Exp eq. (9) ∼e−at a 0.7 (1.9) 0.9 (7.8) 0.90 (51.0)

5 SExp eq. (10) ∼ tβ5−1e−λ5 tβ5
λ5 0.75 (0.76) 0.90 (0.89) 0.58 (0.68)
β5 0.44 (0.36) 0.45 (0.39) 0.10 (0.12)

6 MSExp eq. (11) ∼ (c6 + t)β6−1e−λ6(c6+t)β6 c6 0.0004 (0.002) 0.0005 (0.04) 0.0004 (0.48)
λ6 1.01 (1.12) 1.03 (21.4) 0.30 (76.1)
β6 0.22 (0.17) 0.22 (0.19) 0.05 (0.16)

results for the other cases. The results are found to scatter quite
significantly, however most solutions lie close to each other. Note
that in the case of nOU, the separated bottom cluster of curves rep-
resent the solutions with p-value close to one, in which case only
a small fraction of events are expected to occur in the first 10 d.
There is a cross-over of the curves from the bottom cluster with the
higher cluster, which is outside the range shown in these graphs.
Note that the nOU function for p > 1 has identical data fits as
the tOU function with any triggering time T longer than the cata-
logue length Tcat. However, it has one less parameter. We also tested
the non-normalized OU decay function used in eq. (2). For p > 1,
the function can be normalized and has identical results as the nOU
function. The non-normalized function can also be applied for p
≤ 1 when implicitly assuming that the aftershock duration is finite
but longer than the catalogue length, T > Tcat. This is equivalent
to the tOU function with T > Tcat but preferred by the cAIC-value
for the same LL-values due to the reduced number of parameters.
The non-normalized OU decay with p ≤ 1 is the best of all tested
decay functions for 22 out of the 326 sequences (6.7 per cent) ac-
cording to the cAIC-value. For an arbitrary truncation time of 100
yr (approximately the length of our longest tested catalogue), these
22 curves are shown by green lines in Fig. 3 together with the nOU
results re-normalized to the same time period. The two populations

of the nOU results found in Fig. 2 (top left) converge in this case.
Due to the arbitrariness of setting T, we exclude the non-normalized
OU function from the following analysis.

While the application of the nOU function leads to the expecta-
tion that for many sequences a significant fraction of direct after-
shocks occurs after 1000 d, all other models forecast only a minor
number of direct aftershocks after this time. A large percentage of
late aftershocks can significantly alter seismic hazard estimations.
Table 1 provides the median, mean and standard deviation of the
estimated parameters for the case that the corresponding function
fits best. The mean values are partly dominated by some outliers, as
indicated by a significantly higher mean than median value in the
case of c, T, a and ta. The decay functions based on the median val-
ues of its individual parameters are shown as green lines in Fig. 2.
Since the median value is chosen separately for each parameter,
the green lines do not necessarily agree with any fitted solutions.
Nevertheless, the median parameters lead to decay curves centred
in the cloud of solutions.

The resulting percentage of sequences in which each function is
best fitting is given in Table 2 and shown in Fig. 4(a). The results
for all analysed sequences show that the tOU function performs
best overall with a success rate of 32.2 per cent, followed by the
RS function with 26.1 per cent and the nOU with 22.7 per cent.
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Table 2. Percentage of sequences best fitted by the different decay functions, where model parameters are estimated for each individual sequence. The
combined result for all sequences as well as the results for each individual catalogue are provided. In brackets, the corresponding results for the fits
with median parameter values are given.

Function all (N = 326) NCA (N = 39) SCA (N = 38) Taiwan (N = 78) NZ (N = 25) ISC-GEM (N = 146)

nOU 22.7 (21.8) 7.7 (15.4) 10.5 (18.4) 11.5 (10.3) 24.0 (36.0) 35.6 (28.1)
tOU 32.2 (15.6) 38.4 (23.1) 31.6 (5.3) 35.9 (28.2) 64.0 (8.0) 23.3 (11.0)
RS 26.1 (16.0) 30.8 (25.6) 31.6 (15.8) 29.5 (3.8) 4.0 (16.0) 25.3 (19.8)
EXP 1.8 (0.6) 2.6 (0.0) 0.0 (0.0) 1.3 (0.0) 0.0 (0.0) 0.0 (1.4)
SExp 9.5 (18.1) 7.7 (5.1) 0.0 (0.0) 9.0 (6.4) 8.0 (16.0) 13.0 (32.9)
MSExp 7.7 (27.9) 12.8 (30.8) 26.3 (60.5) 12.8 (51.3) 0.0 (24.0) 2.8 (6.8)

Figure 4. Percentages of sequences which are best fitted by the decay functions noted by their abbreviation on the abscissa: (a) best fit of all tested functions
and (b) better fit than the normalized Omori–Utsu (nOU) function.

All exponential functions perform significantly worse. The SExp
and MSExp function are best in only 9.5 per cent and 7.7 per cent,
respectively, and the Exp function only in 1.8 per cent of the cases.
The performance is similar for all catalogues. Altogether, the best
function belongs in 81 per cent of the cases to the power law family
(nOU, tOU, RS) and only in 19 per cent to the exponential model
family (EXP, SExp, MSExp). For each sequence we compare the
performance of each decay function with that of the Omori–Utsu
decay function (Fig. 4b) to evaluate whether there is evidence for
changing the decay function in the ETAS model. We find that the
tOU and RS function both outperform the nOU function in the
majority of cases. In this comparison the RS function does best
with a success rate of 63 per cent of all analysed sequences, while
the tOU function has a success rate of 57 per cent. All exponential
functions are fitting worse than the nOU function.

The above analysis shows that the Omori–Utsu decay function,
with or without truncation, generally fits individual sequences better
than the stretched exponential function. However, the fitted param-
eters vary significantly from sequence to sequence, as discussed
above. Therefore, the predictability for future sequences might be
lower for the Omori-type functions than for the stretched exponen-
tial function. To test this using our existing data sets, we repeat the
data fits with all parameters fixed to their median values provided in
Table 1. For each sequence, we compare the log-likelihood values
and select the best function. The result is provided in Table 2 in
brackets and shown in Fig. 5. The MSExp function is better than all
other decay functions with a success rate of 28 per cent followed
by the nOU function with 22 per cent, and the SExp function with
18 per cent. Here the RS and tOU functions perform best only for
approximately 16 per cent of the sequences. Again, the pure ex-
ponential fits the worst and only describes one sequence best. In
summary, the best function belongs to the power law family (nOU,

tOU, RS) for the majority of sequences (53.4 per cent) and to the
exponential family (EXP, SExp, MSExp) for 46.6 per cent of the
sequences. Comparing the fit quality directly with the nOU func-
tion, only the RS function leads to an improved fit in the majority
(69 per cent) of the sequences. All other decay functions are found to
be better than nOU in less than half of the analysed sequences. The
discrepancy between the observed high score for the direct compar-
ison to the nOU function and the only moderate performance of the
RS function in the comparison to all decay functions (Fig. 5a) in-
dicates that the exponential truncation of the Omori–Utsu law with
fixed p = 1, seems to be often better than an unlimited Omori–Utsu
decay with higher p-value (nOU), but that other functions are fre-
quently even better for explaining individual sequences. While the
nOU function significantly outperforms the two functions SExp and
Exp for all catalogues, the MSExp function is found to be better than
the nOU function in the majority of the sequences in California and
Taiwan. The same holds for the tOU function with the exception of
southern California.

5 D I S C U S S I O N

From a physical point of view, the underlying p-value of an in-
finite power law aftershock decay has to be greater than one in
order to lead to a finite energy release. However, ETAS model fits
are known to be subject to many problems. This can lead to some
biased parameter estimations, e.g. due to anisotropic spatial clus-
tering, data incompleteness, and finite size effects (Hainzl et al.
2008; Seif et al. 2017). In particular, missing small earthquakes
below the completeness magnitude can lead to an underestimation
of the p-value (Harte 2015). Thus an estimated value of p ≤ 1 for
the infinite OU decay function does not necessarily reject an infinite
decay, but instead be related to a biased p-value estimation while
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Figure 5. Percentage of sequences, which are best fitted by the decay functions with its median values: (a) best fit of all tested decay functions and (b) better
fit than the normalized Omori–Utsu (nOU) function.

the true underlying value is p > 1. Our application of the non-
normalized OU function shows that approximately 7 per cent of all
analysed sequences can be best fitted according to the cAIC-value
by an OU decay with p ≤ 1 and no truncation (i.e. T larger than
the catalogue length Tcat). The consideration of these cases only
slightly affects the estimated median parameters, c = 0.010 d and
p = 1.09, compared to c = 0.011 d, p = 1.12 for the nOU function
alone (see Table 1). However, the non-normalized OU function with
p ≤ 1 formally belongs to the tOU class of functions with T > Tcat.
For the purpose of seismicity forecasts based on the ETAS model,
a rather arbitrary setting of a T-value with T > Tcat is necessary in
these cases to avoid inconsistent simulations in the long run.

Our results favour a power law decay for aftershock rate. The
total percentage of sequences fitted best by one of the functions
OU, nOU, tOU, or RS is 81 per cent whether the non-normalized
OU decay is considered as a separate function or not. This result
is consistent with earlier works comparing the fits of power law
and exponential decay functions for the overall decay of the after-
shock activity ignoring ETAS-type secondary aftershock triggering
(Kisslinger 1993; Gasperini & Lolli 2009). The observation that the
percentage of sequences that are best described with a power law
decay drops from more than 80 per cent to around 53 per cent with
fixed parameters is an indication that the model parameters are more
consistent for the exponential decays. In particular, tOU, which is
the best performing decay function in all but one catalogue with
fitted parameters, scores much less with fixed parameters. This can
be explained by the large variation of the triggering time that ranges
from less than 10 d to around 30 yr (Hainzl et al. 2016), i.e. it is
close to the duration of some of the earthquake catalogues, and thus
practically the same as being infinite. When the actual triggering
time for a sequence is shorter than the fixed median value (T = 218
d), tOU forecasts too many late aftershocks relative to nOU because
the fixed median p-value (p2 = 0.94) is smaller than for the nOU
function (p1 = 1.12). On the contrary, when the actual triggering
time for a sequence is larger than the fixed value, nOU with an
infinite triggering time also tends to perform better than tOU.

Out of all tested functions, the RS function is the only function
that systematically performs better than the nOU function for fixed
parameters. This suggests that it could be a potential candidate func-
tion to replace the unlimited OU decay in ETAS-based forecasts.
In the rate-and-state model the duration of the triggering is related
to the stressing rate (Dieterich 1994). Aftershock duration has been
found to correlate inversely with fault loading rate (Stein & Liu

2009). Therefore, including strain-rate measurements as a proxy
for fault loading may account for the large variability in triggering
time and might even improve the fits.

6 C O N C LU S I O N S

The stretched exponential function was recently found to fit the
overall aftershock decay better than a power law (Mignan 2015). In
comparison to a power law, the stretched exponential implies a faster
decay of aftershock rates at longer times. Confirming this faster de-
cay in an ETAS framework, which can be used to model seismicity
for earthquake forecasting, would have important consequences for
time-varying seismic hazard assessments. We have implemented the
stretched exponential function as well as five other decay functions
in the framework of the ETAS model, which includes background
and secondary triggering and is known to describe earthquake clus-
tering well. Analysing several hundreds of mainshock–aftershock
sequences recorded in global and regional catalogues, we find that a
power law decay fits a larger percentage of sequences better than the
stretched exponential function. In particular, the truncated Omori–
Utsu law which has been studied by Hainzl et al. (2016) fits most
sequences the best, followed by the physics-based rate-state re-
sponse function and the unlimited Omori–Utsu law. The stretched
exponential function fits only a small fraction of the analysed se-
quences best. However, its parameters are found to be more stable.
This leads to a comparable performance as the power law decay in
fits with universal parameters. Nevertheless, the difference is only
minor and does not justify the replacement of the Omori–Utsu de-
cay function by the stretched exponential function in ETAS-type
seismicity models. In contrast, the rate-state function is found to
be superior to the unlimited Omori–Utsu decay function in the ma-
jority of cases. It represents a Omori–Utsu decay with p = 1 and
an exponential roll-off at a time which should be theoretically in-
versely related to the stressing rate. Including other observables in
aftershock modelling such as strain-rate as proxy for fault loading
rate may in future improve aftershock modelling and lead to better
time-varying hazard estimates.
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