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ABSTRACT
Translating amounts and rates of rock cooling derived from low-temperature thermo-

chronometry into denudation requires assumptions about the local geothermal gradient. 
The temperature gradient in the crust depends on many factors, including basal heat flow, 
crustal heat production, and thermal conductivity. Consequently, geothermal gradients may 
be variable on time scales over which rock cooling is tracked by thermochronometry. Using 
one-dimensional numerical modeling of heat transfer in rocks of varying thermal character-
istics, we show that the geothermal gradient of the eroded layer is the most important factor 
for accurate estimation of denudation amounts. Using a three-dimensional numerical model 
(Pecube), we demonstrate the impact of crustal heat production and thermal conductivity 
on estimates of total denudation derived from apatite fission track data from central west 
Britain. We show that the regional variation in cooling ages measured in Caledonian granites 
can be explained by geothermal gradient variation due to the presence of a heat-producing 
granite batholith and removal of insulating sedimentary rocks, and does not require vari-
able denudation. Neglecting the blanketing effect leads to twofold overestimation of the 
amount of denudation. The occurrence of heat-producing basement that was once covered 
by a sedimentary blanket is common, in particular in the core of mountain belts. Accurate 
determination of the amount and rate of denudation from thermochronometric studies in 
these situations must take into account the composition of the eroded rocks.

INTRODUCTION
Low-temperature thermochronometry (LTT) 

is used to quantify amounts of denudation by 
converting paleotemperatures into paleodepths. 
In the absence of a clear indication of elevated 
basal heat flow, present-day geothermal gradi-
ents (20–30 °C/km; Turcotte and Schubert, 2002) 
are typically assumed. This assumption ignores 
the spatial and temporal variation in heat produc-
tion and thermal conductivity of rocks, as well 
as short-lived heat-flow perturbations, such as 
from faulting, fluid circulation, magmatism, and 
rapid rock uplift (Turcotte and Schubert, 2002). 
Although efforts have been made to predict the 
effect of these factors on the upper crustal geo-
thermal gradient (e.g., Brown et al., 1994), only 
recently have studies considered the role of the 
thermal conductivity of the rocks that are being 
denuded (e.g., Barbarand et al., 2013; Braun et 
al. 2016), while variation in crustal heat produc-
tion is largely neglected.

Surface heat flow is the sum of basal heat-
ing of the lithosphere and radiogenic heat pro-
duction in the crust. Typically, each contributes 
about equally to surface heat flow (Turcotte 
and Schubert, 2002). However, where the upper 
crust comprises high-heat-producing (>3 μW/
m3) rocks, crustal heat production may contribute 
in excess of 80% (Neumann et al., 2000). The 

thermal conductivity in the uppermost crust varies 
from 0.5 to 7.0 W/m/K depending on tempera-
ture, pressure, porosity, quartz content, and water 
saturation (Eppelbaum et al., 2014). Low-conduc-
tivity rocks such as mudstone, coal, and basalt 
have an insulating effect on the underlying rocks 
(often referred to as the “blanketing effect”) that 
can enhance the maturity of organic material in 
sedimentary basins (Pollack and Cercone, 1994) 
and the geothermal energy potential of heat-pro-
ducing basement (Majorowicz and Minea, 2012).

Acid-intermediate basement rocks are com-
monly sampled for LTT due to the abundance 
of apatite and zircon. Exhumation events com-
monly involve erosion of overlying sedimentary 
or volcanic successions. In such cases, the com-
bined effect of the low-conductivity rocks over-
lying heat-producing igneous bodies on denuda-
tion estimates derived from LTT data has not yet 
been investigated. Here we use one-dimensional 
(1-D) and 3-D (Pecube) numerical models to 
determine the extent to which the thermal con-
ductivity of eroded strata and heat production in 
the basement affect the geothermal gradient in 
the uppermost crust. The modeling results are 
tested in a case study from central west Britain, 
where we show that denudation can be overes-
timated by a factor of two if variations in the 
thermal structure of the crust are ignored.

QUANTIFYING GEOTHERMAL 
GRADIENTS

Heat transfer in eroding crust follows a sec-
ond-order equation:
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where T is temperature, t is time, v is veloc-
ity of rock uplift, x, y, and z are coordinates of 
the rock particle, κ is thermal diffusivity, and 
A is rate of heat production (κ = k/ρ/c and A = 
H/ρ/c, where k is thermal conductivity, H is heat 
production, ρ is density, and c is specific heat 
capacity). In Figure 1 we show solutions to the 
1-D (vertical) form of this equation for scenarios 
designed to determine how the geothermal gra-
dient changes in response to heat production in 
a pluton and to the thermal conductivity of an 
overlying sediment pile.

Figure 1A shows how geothermal gradients 
change in response to pluton thickness and heat 
production (constant thermal conductivity). For 
a 4–12-km-thick intrusive body, the geothermal 
gradient increases only by 1.2–4.4 °C/km for 
each 1 μW/m3 increase in H.

For a “normal” crust, where heat production is 
low and constant (1 μW/m3), the geothermal gra-
dient increases rapidly when the thermal conduc-
tivity of the blanketing layer is <2 W/m/K (Fig. 
1B); high-porosity–low-conductivity rocks, such 
as chalk (≤1.5 W/m/K; Eppelbaum et al., 2014), 
can produce geothermal gradients of >40 °C/km.

Figure 1C shows the combined effect on 
the geothermal gradient of varying radiogenic 
heat production and thermal conductivity. The 
two factors can either produce extremely low or 
high geothermal gradients, or almost cancel each 
other, leaving the gradient practically unchanged. 
The point to note here is that geothermal gradi-
ents in excess of 50 °C/km can readily be gen-
erated in a low-conductivity sedimentary layer 
overlying a high-heat-producing granite.

Figure 1D shows the thermal structure of 
the crust for varying heat production and with 
or without a sedimentary cover. For 2 km of 
erosion, calculating denudation using the geo-
thermal gradient in the preserved rocks is accu-
rate only when the sedimentary cover is absent. 
In all other cases, denudation is significantly 
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overestimated, demonstrating that an accurate 
estimate of the geothermal gradient within the 
eroded rock section is crucial for accurate deter-
mination of the amount of denudation using LTT.

CASE STUDY—CENTRAL WEST 
BRITAIN

Rapid exhumation of onshore Britain in the 
early Paleogene is consistent with rock uplift 
in response to the arrival of the Iceland man-
tle plume; however, the amount and extent of 
denudation is controversial (Green et al., 2012; 
Cogné et al., 2016). Apatite fission track (AFT) 
data show that latest Cretaceous temperatures 
in the English Lake District were >110 °C 
and were 50–90 °C in the surrounding regions 
(Fig. 2B), requiring >3 km of denudation cen-
tered on the ~60-km-wide Lake District block 
(assuming a geothermal gradient of 30 °C/km; 
Green, 1986). This amount of exhumation is at 
odds with stratigraphic reconstructions (Holli-
day, 1993) and estimates based on the thickness 
of magmatic underplating (Tiley et al., 2004). 
An elevated geothermal gradient (~60 °C/km; 
Green, 2002) was introduced to reconcile these 
conflicting interpretations and was explained as 
an effect of enhanced basal heat flow from the 
underplating melts (Green et al., 2012). However, 
deep-seated magmatism has a negligible effect 
on the thermal structure of shallow crust (see 
Fig. DR2 in the GSA Data Repository1; Brown 
et al., 1994). Holliday (1993) proposed that the 

1 GSA Data Repository item 2017256, the apatite 
fission track data set and modeling parameters, is avail-
able online at http://www.geosociety.org /datarepository 
/2017/ or on request from editing@geosociety.org.
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Figure 1. A–C: Plots showing effect of heat production (H) and thermal conductivity (k) on 
geothermal gradient in uppermost crust made of: heat-producing body of variable H and 
thickness, k = 2.5 W/m/K (constant), intruded in “normal” crust (A); 1-km-thick sedimentary 
layer with variable k and H = 0 µW/m3 (constant), overlying “normal” crust (B); or 1-km-thick 
sedimentary layer with variable k (values in figure) and H = 0 µW/m3 overlying 12-km-thick 
body (H varies, k = 2.5 W/m/K) (C). D: Change of temperature with depth (black lines) for dif-
ferent crustal compositions (GS—granite with sedimentary cover; CS—“normal” crust with 
sedimentary cover; UC—uniform “normal” crust; G0—granite only; z—elevation relative to 
paleosurface). Granite is 12 km thick with H = 5 µW/m3 and k = 2.5 W/m/K. Blanket layer is 1 
km thick with k = 1.5 W/m/K and H = 0 µW/m3. Shaded area represents rocks preserved after 2 
km of denudation. Gray lines indicate predicted denudation if blanket layer is not accounted 
for. In all models, “normal” crust has k = 2.5 W/m/K and H = 1 µW/m3.

Figure 2. Maps of Great Britain showing: subsurface extent of granite batholiths and sampling locations (A); latest Cretaceous temperatures 
(circles show data from Green et al. [1997], Thomson et al. [1999], and Green [2002]; stars show data from this study) (B); and surface heat 
flow, after Busby et al. (2011) (C).
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high latest Cretaceous temperatures were a con-
sequence of high heat flow and a now-eroded 
low-conductivity sedimentary cover. This inter-
pretation has remained untested.

We collected new AFT data from the Lake 
District, south Scotland, and north Wales to 
explore the effect that a low-conductivity sedi-
mentary cover and variable heat production may 
have on cooling histories (Fig. 2A). New AFT 
ages are youngest in the Lake District (48–75 
Ma) and significantly older (>150 Ma) in south 
Scotland and north Wales. Thermal histories 
were derived using a Bayesian approach of data 
inversion in the QTQt software (Gallagher, 2012). 
The models indicate that latest Cretaceous tem-
peratures were ~120 °C in the Lake District and 

~70 °C in south Scotland and north Wales (Fig. 
2B), similar to those presented by Green et al. 
(1997). The full data set and paleotemperatures 
estimates are available in the Data Repository.

The latest Cretaceous temperature pattern 
roughly correlates with the present-day surface 
heat flow (Fig. 2C; Busby et al., 2011). Heat 
flow exceeds 80 mW/m2 around the large granite 
batholiths in north England, where radiogenic 
heat production is 1.9–5.2 μW/m3 (Downing 
and Gray, 1986). These values are two to five 
times the average heat production in Phanero-
zoic crust (0.9–1.1 μW/m3; Jaupart and Mare-
schal, 2005). The AFT-derived thermal histories 

indicate an exhumation pulse that began in the 
latest Cretaceous, when the granites were over-
lain by Mesozoic mudstones and chalk (Hol-
liday, 1993). The low thermal conductivity of 
these rock types (1.2–2.0 W/m/K; Downing and 
Gray, 1986) implies that they may have provided 
thermal insulation to enhance the temperatures 
in the granites at the time of denudation.

Effect of Thermally Heterogeneous Crust
In order to test the effect of variable heat 

production and sedimentary cover on the AFT-
derived thermal histories, three sets of forward 
models (grand total of 56) for three crust thermal 
structures were determined using the Pecube 
numerical model (Braun et al., 2012): UC, a spa-
tially uniform crust with a geothermal gradient 
of 20–30 °C/km; G0, a spatially uniform crust 
that includes four heat-producing bodies (one 
underneath the Lake District and three in south 
Scotland); and GS, a crust structure similar to 
G0, but covered by a blanket of low-conductivity 
sedimentary rocks. Models were run with vari-
able thermal parameters and for different values 
of total rock uplift. The quality of the models is 
evaluated based on the misfit (μ) between the 
observed and predicted AFT ages. All modeling 
parameters, misfit values obtained for particular 
models, and a detailed description of the model-
ing procedure are given in Section DR-2c of the 

Data Repository. Misfit values are plotted versus 
total rock uplift in Figure 3. For a range of total 
uplift consistent with regional geological con-
straints, low misfit values (<5) are found only 
by models that consider the combined effect of 
high-heat-producing granites and a sedimentary 
blanket.

Figure 4 shows, for each modeled scenario, 
the predicted distributions of AFT ages for total 
rock uplift of 2.25 km, which, for a given topog-
raphy, implies exhumation of 1.25–2.25 km. 
Measured AFT ages are significantly younger 
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Figure 3. Misfit of Pecube forward models 
versus amount of total uplift for three analyzed 
scenarios: UC—uniform crust with geothermal 
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Figure 4. Pecube-derived forward models of distribution of apatite fission track (AFT) ages for total uplift of 2.25 km and different crustal 
compositions (UC—uniform crust; G0—crust with heat-producing granite; GS—crust with granite and sedimentary cover) for study area in 
Great Britain (see Fig. 2 for location). Lower graphs show predicted versus observed ages for sampled localities. Gray line is 1:1 reference 
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K—thermal diffusivity.
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and more variable than those that the uniform 
crust model (UC) generates. The AFT age dis-
tribution is better reproduced if a heat-producing 
body is present (G0), but the modeled ages are 
still older than measured values. The best fit to 
the data (μ < 4) is obtained when, prior to exhu-
mation, a low-conductivity sedimentary succes-
sion covers a heat-producing intrusion (GS). In 
this scenario, the AFT age pattern is the result 
of variable thermal properties of the rocks, not 
variable denudation.

The model has some limitations, such as a 
simplified spatial distribution of thermal param-
eters and a lack of pre-Cenozoic uplift and sub-
sidence events. Although taking these aspects 
into account would further improve our esti-
mates of denudation, they have little effect on 
the regional pattern of the AFT ages on which 
the model results are based (see Section DR-2d 
in the Data Repository).

The 3-D numerical models support the 
results of the 1-D model by demonstrating that 
crustal thermal heterogeneities have to be taken 
into consideration when deriving the amount 
of uplift and denudation from LTT data. In this 
case, the presence of a low-thermal-conduc-
tivity layer reduces the amount of total Ceno-
zoic denudation required in the Lake District 
by 50%–70%, and the AFT-derived cooling 
is translated into 1.25–2.25 km of denudation. 
These amounts overlap with the stratigraphic 
estimates of eroded Mesozoic cover (1.2–1.75 
km; Holliday, 1993), without the need to invoke 
elevated basal heat flow.

IMPLICATIONS
This study demonstrates that not accounting 

for the increased geothermal gradient in a low-
thermal-conductivity sedimentary layer under-
lain by high-heat-producing rocks may lead 
to significant overestimation of the amount of 
denudation. This issue can be particularly impor-
tant in LTT studies, as granitic rocks are favored 
because of their content of idiomorphic apatite 
and zircons and they are commonly exhumed by 
erosion of overlying sedimentary successions. 
For instance, in the European Alps, the Variscan 
granite batholiths have been exposed by post-
orogenic erosion, subsequently buried beneath 
Paleozoic–Paleogene sediments, and finally 
exhumed during Alpine orogenesis, resulting in 
complex LTT age patterns (e.g., Glotzbach et al., 
2011) that are likely influenced by the thermal 
properties of the eroded crust. Similar situations 
can be found in other orogenic belts (Carrapa et 
al., 2014; Hoke et al., 2015), at rifted and pas-
sive margins (Persano et al., 2006; Wildman et 
al., 2015), and in intra-plate settings (Majoro-
wicz and Minea, 2012; Barbarand et al., 2013). 
This study shows that quantifying the amount 
and regional extent of denudation should be pre-
ceded by a careful examination of the thermal 
properties of both sampled and eroded rocks.
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