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Abstract. Volume–area scaling is the most popular method
for estimating the ice volume of large glacier samples. Here,
a series of resampling experiments based on different sets
of synthetic data is presented in order to derive an upper-
bound estimate (i.e. a level achieved only within ideal con-
ditions) for its accuracy. For real-world applications, a lower
accuracy has to be expected. We also quantify the maximum
accuracy expected when scaling is used for determining the
glacier volume change, and area change of a given glacier
population. A comprehensive set of measured glacier areas,
volumes, area and volume changes is evaluated to investigate
the impact of real-world data quality on the so-assessed ac-
curacies. For populations larger than a few thousand glaciers,
the total ice volume can be recovered within 30 % if all data
currently available worldwide are used for estimating the
scaling parameters. Assuming no systematic bias in ice vol-
ume measurements, their uncertainty is of secondary impor-
tance. Knowing the individual areas of a glacier sample for
two points in time allows recovering the corresponding ice
volume change within 40 % for populations larger than a few
hundred glaciers, both for steady-state and transient geome-
tries. If ice volume changes can be estimated without bias,
glacier area changes derived from volume–area scaling show
similar uncertainties to those of the volume changes. This pa-
per does not aim at making a final judgement on the suitabil-
ity of volume–area scaling as such, but provides the means
for assessing the accuracy expected from its application.

1 Introduction

Directly measuring the total ice volume of a glacier is vir-
tually impossible. Even with very detailed surveys of the ice
thickness, which have recently been carried out for individual
glaciers (e.g.King et al., 2009; Gabbi et al., 2012), the total
ice volume needs to be recovered through interpolation of
locally confined measurements. Alternatively, total volume
can be inferred by using inversion techniques and informa-
tion deriving from the glacier surface, such as the surface
topography, flow speed, mass balance, rates of surface ele-
vation change, or combinations of these. Recently, a num-
ber of contributions have addressed the topic, presenting a
wide range of approaches with differing levels of complex-
ity: methods that include direct ice thickness measurements
have been presented byFischer(2009), Morlighem et al.
(2011), McNabb et al.(2012) andFarinotti et al.(2013); the
approach byClarke et al.(2009) is based on artificial neu-
ral networks, whilst several methods rely on principles of
the ice dynamics (e.g.Raymond and Gudmundsson, 2009;
Farinotti et al., 2009a; Linsbauer et al., 2012), with imple-
mentations ranging from the shallow-ice approximation (Li
et al., 2011) to the Stokes formulation (Michel et al., 2013).
Despite this wealth of approaches, many studies – especially
those focusing on sea level change, mountain hydrology, and
other climate change impacts – have been using, and still use,
simpler approaches, mostly based on empirical relations be-
tween glacier volume and area (e.g.Van de Wal and Wild,
2001; Comeau et al., 2009; Radíc and Hock, 2010; Marshall
et al., 2011; Hagg et al., 2013; Grinsted, 2013). This is either
due to the lack of necessary data sets, the large spatial scale
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considered, or the convenience of simpler methods. Although
Huss and Farinotti(2012) recently presented the first physi-
cally based estimate for the glacier ice thickness distribution
of all glaciers around the globe (besides the two ice sheets),
thus providing in principle a ready-to-go estimate of the to-
tal volume of every individual glacier on Earth, volume–area
scaling will certainly remain widely used in the near future
and, therefore, deserves attention.

Volume–area scaling relates glacier volumeV (measured
in km3) to glacier areaA (km2) by means of the power law

V = c · Aγ , (1)

wherec (units km(3−2γ )) and γ are two parameters to be
estimated. AlthoughBahr et al.(1997) provided the physi-
cal basis for this relation, and its performance has already
been addressed in the context of glacier volume projections
(e.g.Radíc et al., 2007, 2008; Bahr et al., 2009; Slangen and
van de Wal, 2011), the appropriateness of volume–area scal-
ing is currently highly debated. Recently,Adhikari and Mar-
shall (2012) used higher-order mechanics for showing how
estimated scaling parameters evolve over time if consider-
ing transient glacier states, confirming the results byRadíc
et al. (2007), whereasHuss and Farinotti(2012) pointed
out that parameters can also vary spatially on a continental
scale. On the other hand,Bahr et al.(2012) emphasized the
power of scaling relations in overcoming the intrinsically ill-
posed problem of glacier volume estimations, whilstGrin-
sted(2013) showed how including additional parameters in
the regression between area and volume is of benefit for in-
creasing the predicting skills of scaling relations, as shown
earlier byLüthi (2009).

In this contribution we do not enter the debate about
whether a volume–area scaling relation that appropriately de-
scribes a given glacier population exists or not, but perform
a series of synthetic experiments providing an upper-bound
estimate (i.e. an estimate that is only reached in an ideal case,
in which all assumptions are fulfilled) for the accuracy which
can be expected when volume–area scaling is used for esti-
mating (1) the total volume, (2) the total volume change, or
(3) the total area change of a given glacier population. In-
sights are won from a series of resampling experiments per-
formed on different sets of synthetic data for which the as-
sumptions acting as the base of volume–area scaling are en-
forced a priori. The role of the accuracy and number of mea-
surements available for estimating the scaling parameters is
investigated separately. Furthermore, a comprehensive set of
measured ice volumes and observed ice volume changes is
used for assessing to which degree the confidence intervals
derived from the synthetic experiments have to be amplified
in applications with real-world data. The individual exper-
iments are presented hereafter in different stand-alone sec-
tions in which the used data, the methods, and results are pre-
sented in succession with the aim of facilitating the reading.

2 Using scaling for estimating total volumes

The goal of the first experiment is to investigate the accuracy
with which the total volume of a glacier population can be
recovered by using volume–area scaling if a limited subset
of measured values of a given size and accuracy is available
for estimating the parameters of the scaling relation (Eq.1).
The upper-bound estimate for the accuracy is derived by con-
sidering a synthetic set of data for which the assumptions
necessary for volume–area scaling are imposed a priori. In
an application with real-world, non-synthetic data, these as-
sumptions will not be fulfilled to the same ideal degree, and
a lower accuracy thus must be expected.

2.1 Generation of a synthetic data sample

A sampleT of ntrue = 171000 synthetic volume and area
pairs (“(V, A)-pairs”), intended to represent the global pop-
ulation of glaciers, is generated by assuming

Vtrue = c · Aγ
true · exp(εV,true), (2)

whereεV,true is a random noise term originating from a set of
independent, identically distributed (i.i.d.) values that follow
a normal distribution with zero mean and standard deviation
σV,true (i.e. εV,true ∼N (0,σV,true) i.i.d.). The areaA (km2)
is taken from the Randolph Glacier Inventory version 2.0 as
released in June 2012 (Arendt et al., 2012). The subscript
“true” is used since the data pairs are pretended to represent
the set oftrue (i.e. exact but unknown) glacier volumes and
areas. For the experiment, we chosec = 0.033 andγ = 1.36
(Bahr, 2011), andσV,true = 0.3, based on the analysis of the
results byHuss and Farinotti(2012).

A corresponding setM of synthetic values, simulating
measuredvalues, is then generated by adding white Gaus-
sian noise to the true values of setT according to{

Vmeas= Vtrue · exp(εV,meas)

Ameas= Atrue · exp(εA,meas)
, (3)

Similarly as above, εV,meas∼N (0,σV,meas), and
εA,meas∼N (0,σA,meas), both i.i.d. In the following,
σA,meas is fixed to 0.025, i.e. assuming that the glacier area
is known within 5 % at the 95 % level of confidence (e.g.
Paul et al., 2013), whereasσV,meas will be varied in order
to mimic scenarios for which the individual glacier volumes
are known with different levels of accuracy.

Note that for the so-constructed data set, and because of
the characteristics imposed uponεV,true in Eq. (2) in partic-
ular, the principle of maximum likelihood (Fisher, 1912) can
be used for showing that a least-squares fit of the logarith-
mically transformedA andV data provides the statistically
most efficient estimator for the parametersc andγ . Note also
that this is not in contrast toGrinsted(2013), who argued that
using a least absolute deviation estimator would be “better
suited for sea level rise studies, as an error in the volume of
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a large ice mass is arguably more important than an error in
a small ice mass”, since that statement refers to “real” data,
in which normality of the residuals cannot be guaranteed a
priori.

2.2 Accuracy with which the total volume can
be recovered

Equation 3 postulates the existence of a scaling relation
which describes the true volume of individual glaciers
within a deviation ofεV,meas. Let P (P ∈ T ) be a subset
of nP glaciers out of the global populationT , as it could
be the glacier population of a particular hydrological
catchment, a particular mountain range, or a continent. And
let Q (Q ∈ M) be a subset ofnQ ≤ nP glaciers for which
the volume and area are known from measurements. The
accuracy with which the true, unknown total volumeVP of
the populationP (P ∈ T ) can be recovered if the subsample
Q is available for estimating the parameters of the scaling
relation, can be estimated through Experiment A as follows:

Experiment A

(A.1) Randomly select a sampleP of nP (V, A)-pairs from
T . This sample represents the glacier population for
which the total volume shall be estimated.

(A.2) Out of P , randomly select a subsample ofnQ (V, A)-
pairs, and consider the corresponding measured val-
uesQ. This sample represents a subset of the glacier
population for which individual glacier volumes are
known from measurements. The total volume ofQ is
denoted withV̂Q, where “ˆ” indicates that the value is
estimated, namely through the sum of the measured
volumes, which all differ by a certain amount from the
true (unknown) ones.

(A.3) Estimate the parametersc andγ of the scaling rela-
tion by using the subsampleQ selected in (A.2). The
estimate is performed by a least-squares fit of the log-
arithmically transformed (V, A)-data.

(A.4) Estimate the volumêVR of the “remaining” subsample
R = QC

∩ P of nR = nP− nQ glaciers (i.e. that frac-
tion of the glacier population for which no measured
volumes are available;QC indicating the complement
of Q with respect to the whole setM) by using the
scaling relation (Eq.1) and the parameters estimated
in (A.3).

(A.5) Compute the difference between the estimated volume
V̂P = V̂Q + V̂R and the true volumeVP , which can be
calculated from the true values.

(A.6) Repeat steps (A.1) to (A.5) 1000 times, in order to ob-
tain an empirical confidence interval for the result in
(A.5).

(A.7) Repeat the steps (A.1) to (A.6) for (a) different sizes
of sampleP and subsamplesQ andR (i.e. different
nP, nQ andnR), and (b) different “measurement accu-
racies” (i.e. differentσV,meas).

The results of this experiment are shown in Fig.1a for
an example in which the glacier population consists ofnP =

10000 individual glaciers. For this case, the total volume can
be recovered within≈ 30 % at the 95 % level of confidence,
if a subsample of at least 200 glaciers is available for esti-
mating the parameters of the scaling relation. Note that, in
first approximation, this statement holds true independently
from the uncertainty of the measured values (different lines
in Fig. 1a), as long as the scatter introduced by the uncer-
tainty in the measurements remains below the variability im-
posed byεV,true (see Eq.2). This is the case because the
measured values are assumed to deviate from the true ones
by following a normal distribution with zero mean (Eq.3),
but it would not apply in the case of a systematic error in the
measurements.

In the presented example, the effect of the uncertainty in
the known glacier volumes becomes visible only if the sub-
sample used for the estimation of the parameters is very small
(< 100 glaciers) or very large (& 4000 glaciers). Whilst the
first observation is not surprising, as the standard errors of the
estimated parameters increase steadily with decreasing sub-
sample size, the second observation may be unexpected at
first. In this case the estimated total volume is dominated by
the values known from measurements, i.e. those values that
are not estimated through scaling. As the size of the subsam-
ple used for the estimation of the parameters approaches the
total sample size, the accuracy with which the total volume is
recovered converges to the accuracy given by the principle of
Gaussian error propagation for the sum of measured values.

The deterioration in accuracy with which the total vol-
ume is recovered if the size of the subsample used for es-
timating the parameters drops below≈50 glaciers is very
important. For a subsample of a dozen glaciers for exam-
ple, the total volume can only be recovered within a factor
of 2 (100 % deviation), even if the measurements of the sub-
sample would be known exactly. Considering the scarcity of
measured glacier volumes in real applications (according to
Cogley, 2012, only about 280 worldwide) this clearly high-
lights the low level of accuracy that can be expected if scaling
is applied with parameters estimated from a small set of local
values. Such applications are, however, sometimes found in
the literature (e.g.Liu and Sharma, 1988; Hagg et al., 2013).

On the other hand, the accuracy with which the true to-
tal volume can be recovered improves with increasing size
of the considered glacier populationP . For example, us-
ing 280 (V, A)-pairs for estimating the scaling parameters,
and assuming an uncertainty in measured volumes of 20 %
(two plausible values for the ice volume data available world-
wide), allows recovering the total volume of a population of

www.the-cryosphere.net/7/1707/2013/ The Cryosphere, 7, 1707–1720, 2013



1710 D. Farinotti and M. Huss: On the accuracy of volume–area scaling

    
0

20

40

60

80

100

120

140

5 10 50 100 500 1000 5000

D
ev

ia
tio

n 
fr

om
 tr

ue
 to

ta
l v

ol
um

e 
(%

)

Sample size used for parameter estimation

Total sample size (TSS) = 10000
.

.

a UKV
  5%

 25%
 50%

0 20 40 60 80 100

 

 

 

 

50

100

500

1000

S
am

pl
e 

si
ze

 r
eq

ui
re

d
fo

r 
pa

ra
m

et
er

 e
st

im
at

io
n

Uncertainty of known glacier volumes (UKV) (%)

Target accuracy = 40%

bTSS
  1000

 10000
100000

Fig. 1. (a)Accuracy (at the 95 % confidence level) with which the true total volume of a population of 10 000 glaciers is recovered through
volume–area scaling (ordinate) if the parameters of the scaling relation are estimated by using a given number of measured (V, A)-pairs
(abscissa). The different lines depict scenarios for different measurement uncertainties in glacier volume.(b) Sample size required for
estimating the parameters of the scaling relation in order to recover the true total volume of a glacier population within 40 % accuracy (95 %
confidence level). The result is given as a function of the uncertainty in the measured volumes. The different lines show the result for different
sizes of the glacier population for which the total volume is estimated.

1000, 10 000 and 100 000 glaciers within≈ 32, ≈ 23, and
≈ 20 %, respectively (not shown).

With the same assumptions for the data set used for esti-
mating the parameters, increasing the number of glaciers to
171 000, i.e. the number of glaciers contained in the Ran-
dolph Glacier Inventory, leads to a maximal expected accu-
racy of ≈ 19 %. This indicates that the confidence interval
given byGrinsted(2013) for the worldwide glacier ice vol-
ume (0.35±0.07 m sea level equivalent, corresponding to an
accuracy of 20 %) is conceivable as a first-order estimate. In
fact, the assessment was based on a modified scaling relation
that includes additional regression parameters besides glacier
area, thus reducing the variance in the estimate.

2.3 Requirements for achieving a given accuracy

The results of the above experiment can also be used for in-
vestigating how many (V, A)-pairs are required for estimating
the parameters of a scaling relation such that the total ice vol-
ume of a particular glacier population is recovered within a
given accuracy. Similarly as before, the answer is a function
of the uncertainty associated with the measured data, and of
the size of both the subsample used for calibrating the param-
eters and the sample for which the total volume is estimated.

Figure 1b provides the results for a target accuracy of
40 %, i.e. the case in which the total volume of the glacier
population shall be recovered within a deviation of 40 % of
the magnitude of the true value at the 95 % confidence level.
Again, the two most prominent features are (1) the relatively
weak influence of the uncertainty in the known (“measured”)
volumes for large sample sizes, and (2) the poor performance
of the scaling approach for small sample sizes. For a volume

measurement uncertainty of 30 %, and total sample sizes of
1000 and 10 000 glaciers, the required subsample size for pa-
rameter estimation is≈ 102 and≈ 80 glaciers, respectively.
For a total sample size of 100 000 glaciers, this number drops
to ≈ 60 glaciers. This can be explained by the fact that by in-
creasing the sample size for which the total volume is es-
timated, random deviations cancel each other out even if
the estimated scaling parameters are relatively poorly con-
strained.

The results highlight the fact that if a sufficient number
of measured ice volumes are available, and scaling is ap-
plied to a sufficiently large sample of glaciers, the accuracy
of the measurements itself is only of secondary importance.
For example, the total volume of a glacier population of
10 000 glaciers, recovered through scaling with parameters
estimated from a subsample of 50 glaciers for which the vol-
ume is known exactly (ideal case), can be expected to have
the same accuracy as if the parameters had been estimated
with a subsample of 200 glaciers for which the individual
volumes are known with an uncertainty as large as 75 %. Re-
member, however, that the assumption that leads to this result
is that the deviations in the measurements are random and
centered around the true values, i.e. that there are no system-
atic errors in the measurements.

3 Using scaling for estimating changes in volume
and area

The second set of experiments addresses the accuracy that
can be expected if volume–area scaling is used for estimat-
ing changes in glacier area and volume. In this context, two
applications are found in the literature: (1) either scaling is

The Cryosphere, 7, 1707–1720, 2013 www.the-cryosphere.net/7/1707/2013/



D. Farinotti and M. Huss: On the accuracy of volume–area scaling 1711

applied separately to two different data sets of glacier area
(usually two glacier inventories, compiled for two different
points in time), and the difference in the result is interpreted
as the actual volume change (e.g.Granshaw and Fountain,
2006; Moore et al., 2009; Hagg et al., 2013), or (2) a volume
change between two points in time is calculated by using a
mass balance model, and the scaling relation is inverted in
order to update glacier area (e.g.Raper et al., 2000; Van de
Wal and Wild, 2001; Radíc et al., 2007, 2008; Möller and
Schneider, 2010; Marshall et al., 2011; Cogley, 2011). Anal-
ysis of the second application is of particular interest since
the vast majority of the projections concerning the contri-
bution of mountain glaciers and ice caps to future sea level
rise in the fifth assessment report of the Intergovernmental
Panel on Climate Change is based thereupon (e.g.Slangen
and van de Wal, 2011; Marzeion et al., 2012; Radíc et al.,
2013; Giesen and Oerlemans, 2013). In the following, the
accuracy that can be expected from both applications is an-
alyzed separately. The analyses are performed in synthetic
experiments again, in order to provide idealized conditions
and an upper-bound estimate for the accuracy. The case of
the two points in time both referring to a steady state is ad-
dressed, as well as the transient case referring to non-steady
geometries.

3.1 Generation of a synthetic data sample

For the following analyses, the time evolution of both area
and volume needs to be known for a given set of glaciers. In
order to perform the analyses based on realistic glacier ge-
ometries, a subsample of 1800 glaciers is randomly extracted
from the results ofHuss and Farinotti(2012). Random ex-
traction guarantees that the distribution of glacier areas in
the subsample remains unaltered with respect to the original
population. Extracted glaciers have an initial area between
0.8 and 510 km2. From an ice-dynamics point of view, the
selected pairs composed of a bedrock and a surface geome-
try are mutually consistent only within the simplified model
that was used inHuss and Farinotti(2012). The individual
glaciers are therefore first grown to a steady state by using the
3-D full Stokes ice-dynamics model byJouvet et al.(2008).
This is done by initializing the model with a given glacier ge-
ometry, and imposing a constant climate until a steady state
is reached (see below). Climate forcing is prescribed by an
altitude-dependent, annual surface mass balance distribution
b (m yr−1), computed as

b(z) = min[(z − ELA) · db/dz , bmax], (4)

wherez is elevation (m a.s.l.), ELA the equilibrium line al-
titude (m a.s.l.),db/dz the mass balance gradient (yr−1),
andbmax a prescribed maximal mass balance (m yr−1) that
discards unrealistically high accumulation rates. For each
glacier, a mass balance gradient is randomly assigned sam-
pling uniformly from the interval [3,12] 10−3 yr−1, which is
the range of values determined from field observation (e.g.

Hoelzle et al., 2003). The ELA is chosen such that the given
surface geometry yields an accumulation area ratio (AAR) of
0.44, as observed in the worldwide average (e.g.Dyurgerov
et al., 2009). Maximal mass balancebmax is set tob(z0.95),
where z0.95 is the 0.95 quantile of glacier elevation. Fur-
ther parameters in the ice-dynamics model include the flow
rate factorA and the exponentn for Glen’s flow law (Glen,
1955), as well as a unitless sliding coefficientC controlling
the implemented Weertman-type sliding (Weertman, 1964).
For simplicity, all three parameters are set to constant val-
ues, chosen asA = 0.06 bar−3 a−1 (corresponding to ice at
a temperature of−1◦C; Cuffey and Paterson, 2010), n = 3,
andC = 0.3 (following Jouvet et al., 2009). Glacier sliding
is assumed to occur below the ELA only, whilst, according to
the model formulation, all glaciers are frozen to the bedrock
above that altitude. The model byJouvet et al.(2008) has
been described, validated, and successfully applied in a num-
ber of studies (e.g.Jouvet et al., 2009, 2011a, b; Farinotti,
2013). No further details are thus provided here. For addi-
tional information we refer to the mentioned publications.

Glaciers are considered to have reached steady state if,
over a 50 yr period and within the first 300 yr of simula-
tion, (1) fluctuations in mass balance are within±0.1 m yr−1,
(2) fluctuations in ice thickness are< 2.5 % of the aver-
age thickness, and fluctuations in (3) glacier area and (4)
glacier volume are both< 2.5 %. The application of these
criteria leads to the selection of 1174 glaciers (65 % of the
initial sample size). Estimating scaling parameters for this
sample yieldsc = 0.030±0.001 andγ = 1.34±0.02, which
is lower than the value ofγ = 1.375 expected from theory
(Bahr et al., 1997), but in agreement with observational data
(e.g.Macheret et al., 1988; Chen and Ohmura, 1990; Meier
and Bahr, 1996; Bahr et al., 1997). Inspection of the scale lo-
cation and normal quantile-to-quantile plots (e.g.Chambers
et al., 1983) for the residuals of this scaling relation reveal
that the assumptions required for applying scaling are ful-
filled (not shown).

The next step consists in prescribing an altered climate,
and computing a new steady state by using the same ice-
dynamics model. This provides a glacier evolution from
which simulated ice volume changes can be derived. Pertur-
bation in climate is prescribed as an uniform rise in ELA
by 100 m, roughly corresponding to an increase in air tem-
perature by 0.8◦C (Oerlemans and Fortuin, 1992). The ice-
dynamics model is then re-run for another 300 years. Out of
the 1174 glaciers, 743 (63 %) reach a new steady state with
the same conditions as above. Steady state is reached after
between 22 and 273 years (median 105 yr). The so-obtained
sample will form the new initial populationT for all further
analyses, with the advantage that area and volume are known
at any point in time for the period between the two simu-
lated steady states. Figure2 visualizes the described model-
ing steps for two randomly selected glaciers. Scaling param-
eters estimated for the new sample arec = 0.040±0.001 and
γ = 1.33±0.02. This is in line with the previously estimated
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values since the value forγ is unaltered, and a change inc is
expected because of the distribution of glacier areas consis-
tently shifting towards lower values. Again, analysis of the
residuals of the fitted relation reveals the suitability of the
sample for the application of scaling.

3.2 Accuracy of volume changes estimated from
changes in area

The accuracy with which the total volume change of a glacier
populationP can be recovered through scaling if the area of
every glacier is known for two points in time is addressed
first. Similarly as before, scaling parameters are determined
by assuming that a subsampleQ of nQ measured (V, A)-pairs
is available for calibration. Since the analyses presented so
far showed that the accuracy of the measured glacier vol-
umes only plays a minor role (Fig.1b), 20 % uncertainty in
measured volumes is assumed from here on. Uncertainty in
measured area is kept at the level of 5 % (Paul et al., 2013).

By using the subscriptst1 andt2 for indicating two points
in time, the experiment can be described as follows:

Experiment B

(B.1) From the total populationT , randomly select a sample
P of nP glaciers, for which the total volume change
betweent1 andt2 shall be estimated. The sample has
two different states,Pt1 andPt2, corresponding to the
two points in time.

(B.2) Out of the combined populationPt1 ∪ Pt2, randomly
select a subsample ofnQ glaciers, and consider the cor-
responding measured valuesQ for area and volume.
SubsampleQ will be composed ofnQ,t1 (V, A)-pairs
referring to timet1 (subsampleM ′

t1), andnQ,t2 (V, A)-
pairs referring to timet2 (subsampleM ′

t1), with the
conditionnQ = nQ,t1 +nQ,t2, and, in general,nQ,t1 6=

nQ,t2.

(B.3) Estimate the parametersc andγ of the scaling relation
by using the subsampleQ selected in (B.2). The esti-
mate is performed by least-squares fit of the logarith-
mically transformed (V, A)-data. Two cases are distin-
guished: in the first, one individual set of parameters is
estimated for both points in time, thus assuming con-
stant values forc andγ , whereas, in the second, two
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Fig. 3. Accuracy (95 % of confidence) with which the true total volume change between two points in timet1 andt2 can be recovered by
using volume–area scaling if the area of each individual glacier is known for botht1 andt2. In panel(a) both t1 andt2 refer to steady-
state geometries, whilst in panel(b) the geometries are transient. Scaling parameters are assumed to be constant (black lines) or estimated
separately fort1 andt2 (red lines). The different line styles depict different total sample sizes (TSS) for the glacier population.

different sets of parameters are estimated fort1 andt2
separately.

(B.4) Estimate the volumeŝVR,t1 andV̂R,t2 of the remaining
subsamplesRt1 = M ′C

t1 ∩ Pt1 andRt2 = M ′C
t2 ∩ Pt2 of

nRt1 = nPt1 − nM′

t1
andnRt2 = nPt2 − nM′

t2
glaciers, re-

spectively, by using the scaling relation (Eq.1) and the
parameters estimated in (B.3).

(B.5) Estimate the total volume for the glacier populationP

for the two points in time witĥVP,t1 = V̂Q,t1+V̂R,t1 and
V̂P,t2 = V̂Q,t2 + V̂R,t2, where the estimateŝVQ,t1 and
V̂Q,t2 derive from the measured volumes, andV̂R′,t1

andV̂R′,t2 from the scaling relation.

(B.6) Estimate the total volume change betweent1 andt2
with 1̂V = V̂P,t2−V̂P,t1 and compare it to the true total
volume change1VP which can be calculated from the
true values.

(B.7) Repeat steps (B.2) to (B.6) 1000 times, in order to ob-
tain an empirical confidence interval for the result in
(B.6).

(B.8) Repeat steps (B.1) to (B.7) for different sizes of sam-
plesP and subsamplesQ andR (i.e. for differentnP,
nQ andnR).

(B.9) Perform steps (B.1) to (B.8) two times: first for the
case in whicht1 and t2 both refer to a steady state
(“steady-state case”), and second for the case in which
neithert1 nort2 refer to steady state (“transient case”).

The results of this experiment are shown in Fig.3a for the
steady-state case, and in Fig.3b for the transient case. Three

features are worth special notice:
(1) Estimates that assume a constant set of parameters re-
cover the true total volume change with a higher accuracy
than the estimates assuming time-varying parameters. This is
true for both the steady-state and the transient case (Fig.3a
and b), although it is more prominent in the second case and
if a small subset of glaciers is used for parameter estima-
tion in particular (Fig.3b). This observation seems to con-
tradict earlier findings that indicate time-varying parameters
(e.g.Adhikari and Marshall, 2012), but can be explained by
(a) the standard errors associated with the estimated param-
eters, which are mainly a function of the absolute number
of (V, A)-pairs available for the estimate itself, and (b) the
consistency of the estimated parameters for the two points
in time, which is given when assuming constant parameters,
but not when these are time-varying. For a population of 100
glaciers for instance, using 50 % of the sample for estimat-
ing the parameters would lead to (i) two subsamples of 50
(V, A)-pairs (one fort1 and one fort2), in the case of two
different sets of parameters being estimated, or (ii) a sub-
sample of 100 glaciers, if constant parameters were assumed.
Besides the fact that a decrease in the standard errors of the
estimated parameters reduces the variance in the estimated
total volume as well, there is no guarantee that in the case of
time-varying parameters the two sets of 50 (V, A)-pairs will
refer to the same subset of glaciers (which seems realistic for
practical applications). This means that biases in the com-
puted volume change are likely to be introduced through the
variations in the estimated parameters. As an example, con-
sider a glacier that does not change its geometry between two
points in time: computing the glacier volume through scaling
and calculating the volume change1V from these data will
lead to1V 6= 0 in the case of two different sets of parame-
ters being used, and1V = 0 otherwise. Similar effects play
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a role especially if the volume changes are computed over
short periods. As expected, the difference between the two
assumptions (i.e. constant vs. time-variable parameters) de-
creases with both increasing total sample size and increasing
size of the subsample used for parameter estimation. How-
ever, it remains clearly noticeable even for total sample sizes
of up to 500 glaciers.
(2) In the steady-state case, increasing the set of measure-
ments used for estimating the scaling parameters beyond a
few dozens of (V, A)-pairs results in a relatively weak im-
provement of the accuracy for the recovered total volume
change (Fig.3a). This can be explained by the fact that for
transitions between steady states, the distributions of area
and volume for both considered points in time fulfill the as-
sumptions necessary for using scaling very well. As a con-
sequence, the correct set of scaling parameters can be re-
covered accurately even if the subsample available for the
estimate is comparatively small. Moreover, the effect of in-
creasing standard errors with decreasing subsample size is
mitigated when considering volume changes since, in this
case, differences (and not absolute values) in the estimated
volumes are considered. Note however that for the case of
transient glacier states, the accuracy with which the true total
volume change can be recovered steadily improves also if the
subsample size used for the estimation of the parameters is
as large as a few hundred glaciers (Fig.3a).
(3) In general, the true total volume change can be recovered
with a higher accuracy for transitions between two steady
states. This is not surprising since the assumptions for using
scaling are better satisfied in this case. For example, assum-
ing constant scaling parameters and using 30 % of a popula-
tion of 500 glaciers for calibrating a scaling relation would
allow recovering the true total volume change of that popula-
tion within ≈ 30 % in the steady-state case, and only within
≈ 50 % in the transient case. These numbers are in line with
the results of Experiment A, in which it was shown that us-
ing 150 glaciers for calibrating a scaling relation allows re-
covering the true total volume of a population of 500 glaciers
within ≈ 40 % (Fig.1).

Summarizing the results of this experiment we conclude
that, as a rule of thumb, (1) the true total volume change of
large glacier populations (more than a few hundred glaciers)
can be recovered through scaling with a similar accuracy as
the true total volume, if a sufficient number of glaciers (more
than a few dozen) are available for estimating the parame-
ters of the relation, and (2) for practical applications, assum-
ing constant scaling parameters increases the accuracy with
which the true volume change can be recovered.

3.3 Accuracy of updated area estimated from volume
changes

The second analysis focuses on the accuracy with which the
area of a glacier populationP can be updated by inverting
the scaling relation. This requires that the volume change be-
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Fig. 4. Accuracy (95 % of confidence) with which the true total
area change between two points in timet1 andt2 can be recovered
by using volume–area scaling if the volume change betweent1 and
t2 can be estimated within a given uncertainty. Blue (red) lines refer
to the situation in which botht1 andt2 refer to steady-state (tran-
sient) geometries. The different line styles depict different subsam-
ple sizes used for parameter estimation (SS used for PE). The total
glacier population is fixed to 500 glaciers. The 1: 1 line is given as
a reference.

tween the two points in time is known from a mass balance
model within a given uncertainty. Similarly as before, it is
assumed that a subsampleQ of nQ (V, A)-pairs is available
for estimating the parameters of the scaling relation. As for
Experiment B, the uncertainty for measured area and volume
is set to the level of 5 % and 20 %, respectively.

Following Radíc and Hock(2011) or Marzeion et al.
(2012) for example, updating of glacier area is performed for
each glacier individually according to

At2 =

[
A

γ

t1 +
1V

c

] 1
γ

, (5)

where1V = Vt2−Vt1 is the volume change between the two
times t1 andt2, andAt1 andAt2 the corresponding glacier
areas. Note that the necessary assumption for writing Eq. (5)
is that the parameters of the scaling relation are constant in
time. In the following,1V is assumed to be known from
modeling only, and the estimated valuê1V is constructed
according to

1̂V = 1Vtrue+ ε1V,modeling, (6)

whereε1V,modeling∼N (0,σ1V,true) i.i.d. mimics the devia-
tion of the modeled value from the true one1Vtrue. Simi-
larly as before (cf.εV,meas in Eq. 3) the assumption is that
the deviations from the true, unknown values are centered
around zero, which is a substantially stronger assumption
than for measured volumes. Note, however, that the devia-
tions are implemented differently than in the case of mea-
sured (V, A)-pairs (Eq.3), reflecting the fact that the modeled
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volume changes may well differ from the true ones even by
sign.

With the above definitions, the experiment is implemented
as follows:

Experiment C

(C.1) From the total populationT , randomly select a sample
P of nP glaciers, for which the area shall be updated
between the time pointst1 andt2.

(C.2) Out of P , randomly select a subsample ofnQ (V, A)-
pairs, and consider the corresponding measured values
Q. The values refer to timet1.

(C.3) Estimate the parametersc andγ of the scaling rela-
tion by using the subsampleQ selected in (C.2). The
estimate is performed by least-squares fit of the loga-
rithmically transformed (V, A)-data.

(C.4) Randomly assign an uncertainty to the volume changes
known from modeling, i.e. randomly choose a realiza-
tion of ε1V,modeling(Eq.6), for a givenσ1V,true.

(C.5) Calculate the updated glacier areaÂt2 for the entire
populationP according to Eq. (5), and compare the
estimated total area changê1A = Ât2−Ât1 to the true
area change that can be computed from the known, true
values.

(C.6) Repeat steps (C.2) to (C.4) 1000 times, in order to ob-
tain an empirical confidence interval for the result in
(C.5).

(C.7) Repeat steps (C.1) to (C.6) for different (a) sizes of
samplesP and subsamplesQ (i.e. for differentnP and
nQ), and (b) values ofσ1V,true, which determines the
variance inε1V,modeling.

(C.8) Perform steps (C.1) to (C.7) for both the steady-state
and the transient case.

The results of this experiment are shown in Fig.4a for the
steady-state case, and in Fig.4b for the transient case.

The accuracy with which the true total area change can
be recovered is almost a linear function of the uncertainty
with which the corresponding volume changes are known.
The size of the subsample available for estimating the scaling
parameters plays a marginal role and is noticeable only if the
uncertainty in the volume changes is small (below≈ 30 %).
Similarly as before, the true total area change can be recov-
ered more precisely in the case of transitions between steady-
state geometries than between transient states. Considering a
population of 500 glaciers for example, if 100 % (10 %) of
the sample is used for estimating the scaling parameters, and

if the volume changes are known exactly, the true total area
change can be recovered within 10 % (25 %) between two
steady states, but only within 20 % (35 %) between two tran-
sient states. It is interesting to note that if the accuracy of
individual volume changes is very low (uncertainty&70 %),
the accuracy with which the area change can be recovered is
slightly better than the uncertainty with which the individual
volume changes are known. If, for example, the individual
volume changes are known within the magnitude of the sig-
nal itself (100 % uncertainty), the total area change can be
recovered within 90 and 95 % in the steady-state and tran-
sient case, respectively. This is, however, not the case when
the individual volume changes are known relatively well. For
example, if the individual volume changes are known exactly
(with an uncertainty of 20 %) in the transient case, the true to-
tal area change can be recovered within 25–35 % (35–40 %),
depending on the size of the subsample used for estimating
the parameters. Thus, as a rule of thumb, one can say that
by inverting the scaling relation for updating the area of a
glacier population, the true total area change can be recov-
ered with an accuracy that is comparable to the uncertainty
with which the corresponding volume changes are known if
this uncertainty is high, and with a significantly lower accu-
racy if the uncertainty in the known volume changes is low.
Bear in mind, however, that the known volume changes are
assumed to scatter symmetrically around the true, unknown
values.

3.4 Estimating scaling parameters from measured
volume changes

In all three experiments presented so far, the parameters of
the scaling relation were derived from a given set of ob-
served (V, A)-pairs. However, if measured volume changes
are available and constant parameters are postulated (and Ex-
periment B showed that for practical application this assump-
tion may even be advantageous), there is another potential
way of estimating the parameters. Consider the equation

Vt1 = c · A
γ

t1 = Vt2 − 1V = c · A
γ

t2 − 1V, (7)

with the same notation as used so far. Estimation of the pa-
rametersc andγ can be written as an optimization problem:

argminc,γ
(∑

(c · (A
γ

t2 − A
γ

t1) + 1V )2
)
, (8)

and a solution can be found by using any optimization algo-
rithm. This alternative approach is intriguing, since it would
allow estimatingc andγ without requiring directly measured
ice volumes, and would only be based on measurements of
glacier areas and volume changes, which are much easier to
acquire.

The performance of this alternative method was assessed
by repeating Experiment B for the case in which one single
set of scaling parameters is estimated for both points in time.
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The optimization problem (Eq.8) was solved by using the
algorithm byNelder and Mead(1965) as implemented in the
software package R, and a series of tests were performed in
order to assess the influence of the uncertainty in the avail-
able measured volume changes.

Although promising, the alternative approach was as-
sessed to yield substantially poorer results in comparison to
the “usual way” of estimating the scaling parameters that
makes use of measured (V, A)-pairs (not shown). In partic-
ular, the results were assessed to be neither robust (i.e. the
estimated values did not cluster around the best estimate for
small subsamples of available data) nor efficient (i.e. the con-
fidence intervals of the estimated parameters decreased only
slowly with respect to the subsample size used for parame-
ter estimation). In practical applications, therefore, the use of
this alternative approach is discouraged.

4 Applications with real-world data

All experiments presented so far have been performed with
synthetic data, for which the preconditions for applying
volume–area scaling are either imposed by definition (Ex-
periment A) or checked a priori (Experiments B and C). For
applications with real-world data, the confidence intervals
estimated so far are thus expected to be systematically too
narrow. For assessing by how much these confidence inter-
vals need widening, the three experiments are repeated using
measurements taken from two different data sets. The first
data set was compiled byCogley(2012), and includes mea-
sured glacier area and volume for 271 glaciers around the
globe. The second data set is based on data provided by the
World Glacier Monitoring Service (WGMS) and includes a
total of ≈4000 changes in ice thickness or ice volume re-
ported for 214 different glaciers worldwide (WGMS, 2012).
Prior to utilization, the WGMS data set was filtered in order
to exclude entries that (1) have no time reference, (2) do not
have information about glacier area, (3) show inconsistent
information (e.g. different areas for the same point in time),
(4) refer to periods shorter than 2 years, (5) only refer to a
part of a glacier (e.g. a given elevation band), and (6) refer
to glaciers with an area< 0.1 km2. Moreover, additional data
for the Swiss Alps were retrieved fromBauder et al.(2007),
Huss et al.(2008, 2010), Farinotti et al. (2009b, 2012) and
Gabbi et al.(2012). This resulted in a final set of 557 mea-
surements of volume and area changes.

Experiment A is repeated by setting the initial population
T to the set of 271 measured (V, A)-pairs, where the true
values are now given by the measurements. Uncertainty in
the data is assumed to be 5 % for area and 20 % for volume,
and is accounted for by introducing noise according to Equa-
tion 3. In each of the 1000 repetitions that are used for empir-
ically determining the confidence intervals, a synthetic set of
271 additional values is generated according to Equation2.
This is done by settingA to the measured values, and using

the parametersc andγ that can be estimated from the total
sample of real, measured (V, A)-pairs; i.e.c = 0.040±0.002
andγ = 1.25± 0.02. Note that the estimated value forγ is
significantly lower than the value given by both the synthetic
data and theory. This can be explained by the fact that the
real data refer to transient geometries (e.g.Bahr et al., 1997;
Adhikari and Marshall, 2012).

The two confidence intervals (one derived from the real
data, one from the synthetic ones) obtained in this way for
the accuracy with which the true total volume can be recov-
ered are compared in Fig.5a. As expected, the difference
between the two decreases with increasing subsample size
used for estimating the scaling parameters (since more and
more volume data are assumed to be known). However, dif-
ferences larger than 10 % (20 %) are assessed for subsample
sizes smaller than 80 (40) glaciers. These numbers are con-
sistent to first order with the findings byAdhikari and Mar-
shall (2012), who analyzed a synthetic set of glaciers and
found that “ca. 200 glaciers are required to produce stable
solution[s] of scaling parameters”. If the parameters are es-
timated from 20 glaciers or less, the accuracy with which
the total true volume can be recovered for the real data is
45 % lower than for the synthetic ones (deviations of 120 %
and 75 %, respectively). This emphasizes the importance of a
sufficiently large sample for estimating the necessary param-
eters on the one hand, and, more importantly, the magnitude
with which the accuracy in applications with real data can
deviate from the ideal assumptions on the other.

For the application with real data, Experiments B and C
are slightly modified. The total glacier populationT , out of
which the sampleP will be drawn (steps B.1 and C.1), is
represented by the set of 557 measured volume and area
changes. The parameters of the scaling relation, however,
are determined from a subsample of given size randomly ex-
tracted from the data set of 271 real-world (V, A)-pairs (steps
B.2, B.3, and C.2, C.3). Again, the assumption of constant
scaling parameters is necessary. In Experiment B, steps B.4,
B.5 and B.6 are then performed analogously, with the differ-
ence that the volume of the entire populationP will be esti-
mated from scaling (this is true for both points in time,t1 and
t2). In Experiment C, the known volume changes (step C.4)
and true area changes (step C.5) are now represented by the
measurements. Similarly as before, in each of the 1000 rep-
etitions used for estimating the confidence intervals, a cor-
responding set of synthetic values is drawn from the popu-
lation of synthetic glaciers. This is true for both the sample
used for determining the scaling parameters and the sample
for which changes in area or volume are estimated. For con-
sistency with the real data, both samples are taken from ge-
ometries that refer to transient states. The experiments are
repeated for different subsample sizes used for estimating
the scaling parameters, whilst the size of the populationP

is kept constant to the number of available real-world mea-
surements (i.e. 557). Measurement uncertainty for area and
volume is again assumed to be 5 % and 20 %, respectively,
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Fig. 5. Accuracy (95 % of confidence) with which the true total(a) volume,(b) volume change, and(c) area change can be recovered for a
given glacier population by using volume–area scaling if the parameters of the scaling relation are estimated from a subsample of (A, V)-data
of a given size. The two lines depict the cases in which the accuracy is estimated from synthetic (black) and real (red) data.

whilst uncertainty in measured volume changes is assumed
to be 10 %.

The confidence intervals derived for the real and the syn-
thetic data are shown in Fig.5b for the case in which the
volume change is estimated from the changes in area (Ex-
periment B), and in Fig.5c for the case in which the area is
updated from known volume change (Experiment C).

In the case of real data, the accuracy with which the true
total volume change can be recovered is significantly lower
compared to the synthetic data (Fig.5b). Even if the entire
set of available (V, A)-pairs is used for estimating the scal-
ing parameters, the difference in accuracy is on the order of
30 %: the true total volume can be recovered within≈ 20 %
in the synthetic data case, but only within≈ 50 % in the case
with real data. This figure is remarkably amplified for sit-
uations in which the scaling parameters are estimated from
smaller subsamples: if 50 (20) (V, A)-pairs are used for pa-
rameter estimation, the difference in accuracy corresponds
to ≈40 % (≈ 65 %). The application of scaling for estimat-
ing volume changes in real applications is thus suitable only
for samples with several hundreds of glaciers. Moreover, the
database of measured (V, A)-pairs that is required for achiev-
ing a reasonable level of accuracy in this case needs to be
extended from the “few dozen” necessary in the synthetic
case with ideal conditions to “about a hundred”. This may
lead to questioning the suitability of this approach for ap-
plications outside the global context, such as applications at
the mountain-range scale, in which measurements are rarely
available for more than a dozen glaciers.

Given that a sufficiently large sample of (V, A)-pairs is
used for estimating the scaling parameters, the accuracy with
which the true area change can be recovered for real data
is reduced only marginally compared to the synthetic case
(Fig. 5c). If the entire sample of (V, A)-pairs is used for
parameter estimation, the true total area change can be re-
covered within≈ 25 % and≈ 35 % in the synthetic and the

real data case, respectively. The difference increases when a
smaller subsample of values is used for estimating the pa-
rameters, but the changes are less pronounced than in the
case where scaling is used for estimating the volume change:
if 30 % (10 %) of the available (V, A)-pairs are used for pa-
rameter estimation, the difference between the application to
real and synthetic data is 10 % (15 %). The use of scaling for
updating the glacier area in real applications thus seems to
be reasonable if (a) the application is performed for a suf-
ficiently large set of glaciers, (b) sufficient (V, A)-pairs are
available for estimating the scaling parameters, and (c) the
corresponding volume changes are known with a sufficient
level of accuracy. In applications that aim at modeling future
glacier evolution, condition (c) can be considered as the lim-
iting factor. In fact, recall that the abovementioned numbers
refer to the case in which the individual volume changes are
known within 10 % uncertainty, and, more importantly, that
the individual values are assumed to scatter around the un-
known, true values.

5 Conclusions

The accuracy that can be expected when using volume–
area scaling for estimating the total volume, the total vol-
ume change, or the total area change of a glacier popula-
tion was investigated using a series of resampling experi-
ments. By considering different sets of synthetic data explic-
itly constructed in order to fulfill the assumptions that under-
lie volume–area scaling, the derived confidence intervals for
the stated accuracies represent an upper-bound, i.e. a level of
accuracy that will not be reached in applications with real
data. The amount with which these accuracies need to be
adjusted in applications with real-world data was assessed
by considering a comprehensive compilation of measured
glacier volumes, areas, and changes in area and volume.
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Based on the presented analyses, the following statements
can be formulated:

1. The accuracy with which the total volume of a glacier
population can be recovered is a function of both the
size of the population itself and the size of the sample
used for estimating the scaling parameters. Given that
“a few dozen” (V, A)-pairs are available for estimat-
ing the scaling parameters, applications of scaling for
populations of several hundred glaciers and more can
be considered appropriate if the recovery of the true
total volume within 40 % (at the 95 % of confidence)
is considered to be a sufficient degree of accuracy. For
samples larger than “a couple of thousand” glaciers,
accuracies better than about 30 % can be achieved if a
set of (V, A)-pairs having the size of all measurements
available worldwide (about 280) are used for estimat-
ing the scaling parameters. This shows the limitations
of using scaling relations calibrated with local data.
Presupposing that no systematic measurement errors
occur, the uncertainty associated with the individual
(V, A)-pairs only plays a marginal role. It is not pos-
sible to give one number for the decrease in accuracy
that has to be expected in applications with real data.
However, considering the limited amount of directly
measured (V, A)-pairs, a loss in accuracy by 20 % and
more may occur in applications at the mountain-range
scale.

2. Applying volume–area scaling for estimating the vol-
ume change of a glacier population for which the area
is known for two points in time is suitable for glacier
populations larger than a few hundred glaciers. The
condition is that a sufficient number of glaciers (more
than a few dozen) are available for estimating the scal-
ing parameters. Assuming scaling parameters that do
not vary over time is not only necessary from a prac-
tical point of view but also has a positive effect on
the accuracy of the estimate. This is especially true
if relatively small glacier populations and small vol-
ume changes are considered. The difference between
the upper-bound accuracy derived from synthetic ex-
periments and the accuracy that can be expected in ap-
plications with real data is more pronounced than in
the case of estimated total volumes. However, if all
measurements available worldwide are used for esti-
mating the scaling parameters, total volume changes
derived from scaling can be expected to be recovered
within 50 % and less for populations of 500 glaciers
and more.

3. The accuracy with which the area of a glacier popu-
lation can be updated by inverting volume–area scal-
ing if the volume change is known, is nearly a linear
function of the uncertainty in the volume change it-
self. If the uncertainty in the known volume changes

is above 30 %, the total area change can be recov-
ered only within an accuracy that is comparable to the
known volume changes. For uncertainties lower than
that, the accuracy of the inferred area change improves
less fast than the reduction in uncertainty in the known
values. Assuming that volume changes are known with
an uncertainty of 10 %, and that a sufficient quantity
of (V, A)-pairs is available for estimating the scaling
parameters, the total area change of a glacier popula-
tion of some hundred glaciers (& 500) can be recov-
ered within 30 %. This number increases only slightly
in applications with real data. The necessary prereq-
uisite, however, is that the volume changes are known
without a systematic bias.

The presented analysis does not aim at making a final
judgement about the suitability of volume–area scaling, but
provides the means for assessing the accuracy that can be
expected from a particular application.
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