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[1] The observed geoid, dynamic topography, and surface plate velocities are controlled by various
factors such as density and viscosity variations in the Earth’s mantle and strength of the lithosphere.
Previous studies have shown that the geoid signal cannot be resolved in details within the framework of a
simplified model of the mantle flow considering only radial viscosity variations. Thus, a modeling
technique handling both radial and lateral variations of viscosity and other parameters should be used.
The spectral method provides a high-accuracy semianalytical solution of the Navier-Stokes and Poisson
equations when viscosity is only depth (radially) dependent. In this study, we present the numerical
approach, built up on the substantially revised method originally proposed by Zhang and Christensen
(1993), for solving the Navier-Stokes equation in the spectral domain with lateral variations of viscosity
(LVV). This approach incorporates a number of numerical algorithms providing efficient calculations of
the instantaneous Stokes flow in the sphere and taking into account the effects of LVV, self gravitation,
and compressibility. In contrast to the traditionally used propagator method, our approach suggests a
continuous integration over depth without introducing internal interfaces. Various numerical tests have
been employed to test accuracy and efficiency of the proposed technique. Benchmarking of the code
shows its ability to solve the mantle convection problems implying strong LVV with high resolution.
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1. Introduction

[2] The spectral method is widely used for modeling
of the instantaneous mantle flow, geoid, and stress
field in the mantle since the pioneering work of
Hager and O’Connell [1981]. This method provides
a high-accuracy semianalytical solution of the
Navier-Stokes and Poisson equations when the vis-
cosity is only depth (radially) dependent (e.g.,
Richard et al. [1984], Richards and Hager [1984],
Forte and Peltier [1987], Corrieu et al. [1994],
Forte and Perry [2011], Steinberger and Torsvik
[2008], and many others). However, the viscosity
distribution in the Earth is essentially three-
dimensional. In this case, the nonlinear coupling of
different spherical harmonic modes does not allow
obtaining a straightforward semianalytical solution.
Several techniques have been suggested to account
for LVV. Generally, most of them are based on an
iterative approach proposed for such problems by
Orszag [1971]. This method in application to LVV
has been further developed by Christensen and
Harder [1991] in the Cartesian domain. Later on, it
was adapted for a spherical shell [Zhang and Chris-
tensen, 1993], and the iterative technique has been
used in several studies [e.g., �Cadek and Fleitout,
1999, 2003; Karpychev and Fleitout, 2000; Kaban
et al., 2007]. An alternative approach is to use a var-
iational formulation of the buoyancy-driven mantle
flow in a heterogeneous spherical shell solving the
resulting system of equations by a direct method
[e.g., Moucha et al., 2007], or to use spatial domain
methods [e.g., Zhong et al., 2000].

[3] However, various studies using different
numerical methods demonstrate inconsistent
results for the calculated dynamic geoid, which is
extremely sensitive to very small changes in the
convecting flow pattern and associated changes in
the dynamic topography. For example, Martinec et
al. [1993], Zhang and Christensen [1993], Forte
and Peltier [1994], and Moucha et al. [2007] con-
clude that LVV do not produce a significant effect
on the geoid. At the same time, a number of other
studies [e.g., Zhong and Davies, 1999; Karpychev
and Fleitout, 2000; �Cadek and Fleitout, 2003;
Kaban et al., 2007; Ghosh et al., 2010] argue that
their effect on the geoid is significant and may
strongly influence the result of the geoid inversion.

[4] Owing to the controversial conclusions of
existing studies, the problem of quantifying the
effects of LVV in the mantle on the geoid calls for
a comprehensive investigation. Several principal
issues should be resolved. First of all, the existing
techniques do not efficiently work in case of

strong and high-gradient viscosity variations,
which are typical for the Earth’s mantle (more
than 3 orders of magnitude in adjacent elements)
[e.g., Tackley, 2008; Deubelbeiss and Kaus, 2008;
Furuichi et al., 2011]. Furthermore, increasing the
spatial resolution leads to instabilities in the vicin-
ity of the poles if spectral methods are used [e.g.,
Holmes and Featherstone, 2002]. Finally, it was
recently shown [Trubitsyn et al., 2008; Rogozhina,
2008] that the equations presented by Zhang and
Christensen [1993] contain a number of typos that
make it hard to reproduce their results.

[5] In this study, we present a numerical approach
built up on the substantially revised method of
Zhang and Christensen [1993], for solving the
Navier-Stokes equations in the spectral domain
with strong LVV. We suggest several algorithms,
which provide efficient calculations of the instan-
taneous Stokes flow taking into account the effects
of LVV, self gravitation, and compressibility. In
particular, the Newton-Raphson procedure applied
to the shooting method demonstrates the ability to
solve the boundary value problem, necessary for
cross-linking solutions on the sphere. In contrast
to the traditionally used propagator method, our
approach suggests continuous integration over
depth. The Clenshaw-based recursion algorithms
for computing associated Legendre functions and
Horner’s scheme for computing partial sums allow
avoiding numerical instabilities in the vicinity of
the poles, which are typical for the spherical har-
monic method, and thus obtaining a fast and robust
solution on the sphere for high degree and order.
Some of the spherical harmonic transformation
subroutines were developed using the freely avail-
able software SHTOOLS [Wieczorek, 2012]. The
reliability and efficiency of the proposed technique
is demonstrated by several benchmark tests.

2. Method

2.1. Governing Equations

[6] Our formulation for instantaneous viscous
mantle flow in a spherical shell assumes compres-
sibility, the 3-D distributions of viscosity � ¼
� r; �; ’ð Þ, density � ¼ � rð Þ þ �� r; �; ’ð Þ, and the
effect of self gravitation. Under this formulation,
the conservation equations of mass, momentum,
and gravitational field flux in spherical coordinates
are:
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where V is the gravitational potential, G the gravita-
tional constant, g ¼ g rð Þ is the gravitational accelera-

tion, k rð Þ ¼ dln � rð Þ
dln r is the radial compressibility term

[Thoraval et al., 1994], and ur; u�; u’
� �

is the veloc-
ity vector. The stress tensor �ij can be expressed as
the sum of the stress deviator � ij and pressure p:
�ij ¼ � ij � p�ij, where �ij is the unit tensor.

2.2. Numerical Method

[7] An iterative technique incorporating nonlinear
terms in the form of corrections to the solution of
the system of linear equations calculated in a col-
located mesh was first proposed by Orszag [1971]
and applied for the case of LVV in Cartesian
[Christensen and Harder, 1991] and spherical
[Zhang and Christensen, 1993] domains. In our
approach, we attempt to further develop the
method proposed by Zhang and Christensen
[1993] to overcome a number of the problems
associated with solving the Stokes equations in the
spectral domain with strong LVV, which are men-
tioned in the introductory part.

[8] The solenoidal vector can be expressed as a
sum of two independent fields: spheroidal and to-
roidal. In this case, the radial component of the so-
lenoidal vector can be represented by a set of
spherical harmonic functions Ylm �; ’ð Þ, whereas
the lateral components are combinations of deriva-
tives of the spherical harmonic function,

Y �
lm �; ’ð Þ ¼ @Ylm �;’ð Þ

@� and Y’
lm �; ’ð Þ ¼ 1

sin �
@Ylm �;’ð Þ

@’ .

[9] Assuming that the spherical harmonics are
orthogonal over both l and m with the standard ge-

odesy normalization
R

� Ylm �ð ÞYl0m0 �ð Þ d� ¼
4��ll0 �mm0 , we can express all the variables in
equations (1)–(5) as follows:
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where Ulm
1 � Ulm

8 depend on radius. The terms
U lm

1 � U lm
4 are the poloidal, and U lm

7 ;U lm
8 are the

toroidal components of the velocity and stress
fields. The stress tensor components, ���, �’’, and
��’, can then be expressed in terms of the velocity
vector components, ur, u�, and u’. Substituting the
above relations (6) into equations (1)–(5) and pro-
jecting the equations onto corresponding spherical
harmonics [e.g., Zhang and Christensen, 1993;
Trubitsyn et al., 2008; Rogozhina, 2008], we
arrive at the following set of equations:
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where �� ¼ � rð Þ=�0 and �� ¼ � rð Þ=�0 are the nor-
malized radial density and viscosity, �0 and �0 are
the reference mantle density and viscosity, g0 is
the gravity acceleration at the surface, G is the
gravitational constant, R is the Earth’s radius, and
L ¼ l l þ 1ð Þ. The vector Slm ¼ Alm;Blm;Clm;

�
Dlm;Elm;FlmÞ is the viscous loading term that
accounts for the effects of LVV (see Appendix A).
Note that for l¼ 1, singularity of the system of
equations (7)–(14) appears (see equation (14)). To
avoid this, we assume the no-net rotation reference
frame for the toroidal component U1m

7 ¼ 0
� �

that
is similar to the condition used by Zhang and
Christensen [1993]. The equations (7)–(14) are
complemented by following boundary conditions:

Ulm
1 re; rcð Þ ¼ Ulm

4 re; rcð Þ ¼ Ulm
8 re; rcð Þ ¼ 0 ð15Þ

(free-slip conditions at the Earth’s surface and the
core-mantle boundary (CMB)
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where RCMB is the radius of the CMB; rc and re

are the normalized radius of the CMB and Earth’s
surface, respectively.

[10] Integration in the radial direction is performed
by a finite difference method in contrast to the tra-
ditionally used propagator matrix method. This
approach allows operating with continuous physi-
cal properties and avoiding problems with artificial
stress discontinuities, which are revealed by Cor-
rieu et al. [1995] in case of a compressible mantle.
Since our method implies a nonuniform spatial
discretization by radius, any discontinuity in phys-
ical parameters (such as abrupt changes in density
or radial viscosity) can be resolved using a mesh
refinement. To advance the solution from the ini-
tial point r to the point rþH, where H is a given
spatial step, we use the modified midpoint method
[e.g., Press et al., 2007, p. 923]. We solve the two-
point boundary value problem using the shooting

method and the two-step Newton-Raphson proce-
dure. Since the spectral methods are extremely
sensitive to rounding errors, especially for high
orders [e.g., Trefethen and Trummer, 1987], the
second step might be necessary to reduce the
round-off errors. We use the solution obtained at
the first step as an initial guess for the second step.
However, this method becomes unstable under rel-
atively high spherical harmonics (l> 60). This
instability increases in the direction of integration
if the shooting method is used. Therefore, the
boundary value problem is solved two times by
integrating in opposite directions. If the stable part
of the solution overlaps, we can compile the final
solution for every degree and order (see Figure S1,
supporting information).1 This obvious trick
enhances stability of the solution up to the degree/
order of 180. In our tests, we have found that the
stability depends on density and viscosity structure
of particular models and the maximum resolution
may be from 100 to 180. The method requires
using at least the double-precision floating-point
format for real numbers to achieve such
resolution.

[11] The Clenshaw-based recursion algorithm for
computing the associated Legendre functions and
the Horner’s scheme for computing partial sums
allow avoiding the problems in the vicinity of the
poles, which are typical for spherical harmonic
methods, and obtaining a fast and robust solution
on the sphere for high degree and order [Holmes
and Featherstone, 2002; Wieczorek, 2012]. Differ-
entiation of the functions on the sphere (e.g., sec-
ond derivatives of strain necessary for the viscous
loading terms) is performed in a space domain on
the Gauss-Legendre quadrature nodes. A compara-
tive analysis has shown that this method provides
more precise and noise-free results than the differ-
entiation in a spectral domain, especially at high
orders and in the vicinity of the poles.

[12] A fixed-point iteration method is used to
obtain values of the viscous loading vector Slm.
Initially, the vector components are set to zero;
therefore, the initial solution is computed assum-
ing a radial distribution of viscosity. Then, the vis-
cous loading vector is calculated based on the
solution obtained from the previous iteration step.
In case of relatively small LVV, the algorithm
converges fast and steadily. However, when the
LVV are large (more than 2 orders of magnitude)
some additional stabilizing procedures must be

1Additional supporting information may be found in the online
version of this article.
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applied. To stabilize and enhance convergence of
the method, the following simple under-relaxation
scheme for the viscous loading vector is applied:

S
lm
i ¼ 1� 	ð ÞSlm

i�1 þ 	Slm
i ; 0 � 	 � 1 ð18Þ

where i is the number of iteration. In general, the
value of the stabilizing term 	 is inversely propor-
tional to the LVV magnitude. Initially, 	¼ 0.5,
then it is reduced automatically if the method fails
to converge. The radial viscosity �(r) is chosen as
the minimal viscosity at each depth. Numerical
tests have demonstrated that the use of alternative
reference radial viscosity (e.g., average or log
mean average) leads to inaccurate solutions in
benchmark tests with strong LVV (especially for
low-viscosity zones). Even though with large LVV
this approach slows down the convergence, it pro-
vides a good conformity with theoretical solutions
in benchmark tests.

[13] The described algorithms have been inte-
grated in the ‘‘ProSpher’’ code, which is tested
below.

3. Benchmarks

[14] Since benchmarking techniques for 3-D
spherical codes are not well established, we
employ different approaches to test the method
developed. First, we show that the algorithm gives
a correct result for a radially symmetric viscosity
distribution. Second, an iterative scheme for the
LVV case is validated by comparing the solution
for a tetrahedral symmetric (l¼ 3, m¼ 2) steady
state compressible convective flow, comprising
temperature-dependent Newtonian viscosity, with
the solution obtained from the CitcomS numerical
code [Zhong et al., 2000; Tan et al., 2006] for the
same problem. In the supporting information (Text
S1), we analyze the applicability of the technique
to different LVV patterns and various viscosity
contrasts.

3.1. Radial Viscosity Case

[15] First, we test the consistency of both the ProS-
pher and CitcomS codes for the model with radial
viscosity changes only. Without LVV, the system
of equations (7)–(12) is reduced to the form
obtained by Thoraval et al. [1994] and Corrieu et
al. [1995] that provides the possibility for an exact
semianalytical solution. Comparison of the results
obtained from the ProSpher code with those

obtained from the propagator method and the
alternative ‘‘direct integration’’ method of Kaban
et al. [2007] shows their full correspondence. To
compare the ProSpher and CitcomS codes, we use
the solution of the Cookbook 1 example [Tan et
al., 2012] obtained from the CitcomS. Despite the
fact that the benchmark is widely used in many
studies [e.g., Ratcliff et al., 1996; Zhong et al.,
2000; Yoshida and Kageyama, 2004; Stemmer et
al., 2006], we refer to the CitcomS user guide
[Tan et al., 2012] since it provides a detailed
description and all necessary input files for the use
of the CitcomS. For the temperature field that ini-
tially has tetrahedral symmetric (l¼ 3, m¼ 2) per-
turbation, we find a steady state solution. The final
density distribution is then used for calculation of
the instantaneous mantle flow by the means of the
ProSpher code. After corresponding scaling is
applied, we get the result that agrees well with the
results from the CitcomS, within of less than 0.5%
root-mean-square velocity (Vrms). Such degree of
agreement between independent methods confirms
the reliability of the ProSpher code to calculate the
poloidal flow components and corresponding
fields.

3.2. Compressible Mantle Flow With LVV

[16] In order to test full functionality of the ProS-
pher code, we perform a comparative test for a
compressible thermal convection (CitcomS Cook-
book 8 example [Tan et al., 2012]), which is often
used for comparison with other methods [e.g.,
Ratcliff et al., 1996; Richards et al., 2001;
Yoshida and Kageyama, 2004; Zhong et al.,
2008]. The setup is basically similar to that
described in section 3.1 but now with a 3-D tem-
perature-dependent viscosity. The 3-D density and
viscosity distributions obtained from the CitcomS
steady state solution are used to calculate the in-
stantaneous velocity field by the ProSpher code.
We have obtained a reasonably good correspon-
dence between the modeled velocity fields within
3% Vrms (Figure 1, mean Vrms of 26.58 versus
27.36 by CitcomS [Zhong et al., 2008]) and less
than 1% Vrms as compared with Ratcliff et al.
[1996] (mean Vrms¼ 26.8)

3.3. ‘‘Half-sphere’’ Test

[17] It is known that sharp and large viscosity con-
trasts in a model may lead to numerical instabil-
ities and consequently to problems with the
method convergence. To test the ability of the
ProSpher code to handle such viscosity contrasts,
we have developed a new ‘‘stress’’ test. The idea
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of this benchmark problem is based on the fact
that the velocity of a body with negative (or posi-
tive) buoyancy is inversely proportional to the vis-
cosity of surrounding medium, as follows from the
Stokes’ law if the Reynolds number is small. The
sphere is divided into two hemispheres. Two iden-
tical bodies with negative buoyancy are placed in
the center of each hemisphere (Figure 2a). In each
experiment, the viscosity in one hemisphere (right
hemisphere in Figure 2a) remains constant (refer-
ence hemisphere), while the viscosity in the other
hemisphere is varied.

[18] In our tests, we employ a lateral resolution of
60 spherical harmonics and 100 km by radius. The

size of each body is 1000 � 1000 � 500 km. Nor-
malized by its maximum value, the velocity
depends only on the viscosity contrast between two
hemispheres. The result is presented in Figure 3.
The test demonstrates convergence of the method
for the viscosity contrasts up to 3 orders of magni-
tude for this particular geometry. Further analysis
shows that, although it is possible to obtain the cor-
rect solution for velocity of sinking bodies with
higher viscosity contrasts (up to 105), it is hardly
possible to achieve the required accuracy (0.01%
for DVrms). Probably it is due to the numerical
noise caused by round off errors [e.g., Trefethen
and Trummer, 1987], which is compatible by

Figure 2. (a) Benchmark problem setup and modeling results for: (b) 1 order and (c) 2 orders of viscosity
contrast magnitude. Arrows (at Figures 2b and 2c) indicate the directions of the fluid flow. Decimal logarithm
of the normalized Vrms is shown in color.

Figure 1. Viscosity distribution in a compressible steady state convection problem (see text, section 3.2).
(left) The viscosity isosurface of 1 is shown. (right) The resulting velocity fields from the CitcomS and ProS-
pher codes are shown as superimposed vector fields.
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amplitude to the solution for velocity in the hemi-
sphere with lower viscosity in the areas far-off from
the sinking body. The solution in the reference
hemisphere remains correct for the considered val-
ues of LVV (up to 5 orders of magnitude).

[19] Implementation of spherical bodies in the
model has some difficulties due to the limited.
However, possible deviations from the require-
ments of the Stokes’ law (see Figures 2b, 2c, and
3) do not affect remarkably the results, which are
in a good agreement with the theoretical estimates.

4. Effects of LVV on the Geoid

[20] The observed geoid is an integral parameter
that depends on both density variations within the
Earth and LVV and is thus sensitive to the rheo-
logical structure of the mantle. Therefore, it is im-
portant to analyze effects of LVV on the geoid. In
this paper, we do not intend to construct a self-
consistent global model of the mantle, which
would require a more extensive work on a joint
interpretation of various fields. Here, we intend to
demonstrate potential effects of LVV as estimated
from seismic-tomography based 3-D viscosity
models of the mantle and to test the ability of the
code to handle high lateral viscosity contrast.

[21] Density variations are calculated using stand-
ard velocity-to-density scaling factor 
 ¼ 0.2

(equation (19)), which is generally consistent with
the mineral physics estimations and previous stud-
ies [e.g., Karato, 1993; Mitrovica and Forte,
2004; Steinberger and Calderwood, 2006; Kaban
and Trubitsyn, 2012]. These are applied to the
S40RTS model [Ritsema et al., 2011] as follows:

�� r; �; ’ð Þ ¼ 
 �Vs r; �; ’ð Þ
Vs r; �; ’ð Þ � rð Þ: ð19Þ

[22] The viscosity model is obtained using the ho-
mologous temperature approach [e.g., Yamazaki
and Karato, 2001]. The homologous temperature
is the ratio of the actual temperature to the melting
point. Temperature variations �T(r,�,’) are
derived from density anomalies by applying a
depth-dependent thermal-expansion coefficient
[e.g., Paulson et al., 2005], which in combination
with adiabatic temperature profile Ta(r) [Katsura
et al., 2010] gives 3-D distribution of absolute
temperature. Then, temperature variations are con-
verted into viscosity variations as follows:

� r; �; ’ð Þ ¼ A0 rð Þexp E
Tm rð Þ

Ta rð Þ þ �T r; �; ’ð Þ

� �
: ð20Þ

[23] Depth-dependent melting temperature Tm(r)
is calculated as: Tm(d)¼ 2100þ 1.4848d�5
�10�4d2) in the upper mantle and Tm(d)¼ 2916þ
1.25d� 1.65� 10�4d2) in the lower mantle, where
d is the depth in kilometers [Yamazaki and Karato,
2001], r ¼ 1 � d/R, and R is the Earth radius. The
coefficient E scales the amplitude of LVV. Within
the range of LVV considered in this study, the
maximal viscosity contrast (E¼ 12 reaches �5
orders of magnitude within the uppermost mantle
(Figures 5 and S2, supporting information). Such
large contrasts cover the range of viscosity that is
usually used in mantle convection models includ-
ing slabs dipping in the mantle and the litho-
sphere heterogeneity [e.g., Ghosh et al., 2010]. In
order to keep the radial viscosity constant for any
given value E, we calculate the coefficient A0 as
follows:

A0 rð Þ ¼ � rð Þ
� rð Þ ;

log 10 � rð Þð Þ ¼

XN�

i

XN’

j

h
log 10ð�ðr; �i; ’jÞcos �iÞð �

N’

XN�

i

cos �ið Þ

ð21Þ

where � rð Þ is the mean viscosity weighted by the
area, N� and N’ are the numbers of points by

Figure 3. Velocity of the center of a sinking body placed in the
low-viscosity hemisphere, normalized by the maximum velocity;
and deviation from the theoretically estimated values for the
velocity versus viscosity contrast between the two hemispheres.
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latitude and longitude, respectively. The LVV can
be expressed as follows:

�� r; �; ’ð Þ ¼ � r; �; ’ð Þ � � rð Þ ð22Þ

that in combination with the equations (20) and
(21) gives the linear dependence of LVV on the
coefficient E, while keeping the radial viscosity
unchanged (Figure S3, supporting information).
Using this approach, we can thus assess the pure
influence of LVV on the modeled geoid.

[24] By increasing the LVV range, several areas
are revealed where LVV most significantly influ-
ence the geoid. The strongest negative perturba-
tions in the dynamic geoid, induced by LVV, are

found around Northern Australia and in the cen-
tral part of South America, 42 and 44 m, respec-
tively, for E¼ 12, Figure 4. Prominent negative
anomalies also appear in Southern Pacific, North-
ern America, Eastern Europe and North-West
Africa. By contrast, the South African and East-
ern Pacific areas are characterized by positive
perturbations in the geoid of 41 and 32 m,
respectively. In general, North-West and South-
East Pacific are characterized by positive pertur-
bations in the dynamic geoid induced by LVV
with the amplitude of 20 m on average. The
modeling results demonstrate a close-to-linear
relationship between the LVV-related geoid per-
turbations and LVV amplitude (Figure S4, sup-
porting information).

Figure 4. Perturbations of the dynamic geoid, induced by LVV, relative to the reference geoid (radial vis-
cosity only, upper left, E ¼ 0) for various amplitudes of LVV. The scaling coefficient E linearly modifies
LVV from no- to full- LVV model. E ¼ 0 corresponds to the no- LVV model (radial viscosity variations
only), E = 6 gives 50% of the maximum LVV that corresponds to E ¼ 12. The radial viscosity distribution
and the bounds of the viscosity for E ¼ 6 and E ¼ 12 are presented in the supporting information, Figure S2.
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[25] We repeat calculations using the alternative
tomographic model [Gu et al., 2003]. Although a
resulting map of LVV-related geoid anomalies
differs in some details from the map presented in
Figure 4, the major features are reproduced by
both simulations (Figure S5, supporting
information).

[26] According to our results, the convergence rate
of the method is proportional to the maximum
LVV value (Figure 5). For instance, the solution
of the problem with maximum LVV of 4 orders of
magnitude takes about 15 min (�3000 iterative
steps) using single thread on the Intel Core i7 3.2
GHz processor for the resolution of 40 spherical
harmonics on the sphere, and �50 km (58 ele-
ments) by radius that corresponds roughly to a spa-
tial resolution of 500 km � 500 km � 50 km. The
solution of the same problem with maximum LVV
of 10 takes about 8 s (28 iterative steps).

5. Discussion and Conclusions

[27] Employing innovative algorithms, we have
developed a powerful method for calculations of
the instantaneous viscous flow in a sphere han-
dling strong LVV (�5 orders of magnitudes),
compressibility, and self gravitation. The ProSpher
code enables predictive solutions with high resolu-
tion in both lateral (up to a spherical harmonic
degree and order of 180) and radial (about 20 km
by depth) directions showing a high computational

efficiency. However, this code has some limita-
tions inherited from spectral methods such as
round-off errors and aliasing. The method requires
using at least the double-precision floating-point
format for real numbers. Further increase in accu-
racy (12 or 16 bit for real numbers) will improve
stability of the method under high resolution (120
spherical harmonics and more) but will also
increase a computational time. We assume that the
use of the relaxation method instead of (or in com-
bination with) the shooting method, applied to
integration in the radial direction, can also
improve the stability of the code if higher resolu-
tion is necessary. The under-relaxation iterative
algorithm, which we use in the ProSpher code,
shows direct dependence of the convergence rate
on maximum LVV, i.e., it takes approximately
10–30 iterative steps for maximum LVV of 10 and
�105 iterative steps for LVV of 105 to achieve a
0.01% DVrms tolerance.

[28] A number of benchmarks have demonstrated
a good agreement between the results of simula-
tions and theoretical estimates. We have also
developed a simple benchmark for a quantitative
testing of viscous flow simulations (the ‘‘half-
sphere’’ test, see section 3.3). Based on a number
of benchmarks, we have found that the choice of a
radial reference viscosity is essential. Correct
results were only obtained when the reference vis-
cosity corresponds to the minimal value at each
depth. Although such a choice slows down conver-
gence of the iterative adjustment, any other choice
(e.g., average or log-mean average as suggested by
previous studies) leads to incorrect solutions for
the simulations with strong LVV and especially in
low-viscosity zones.

[29] Our tests confirm that the effect of LVV on
the geoid is significant, as has been shown by ear-
lier studies [e.g., Karpychev and Fleitout, 2000;
Kaban et al., 2007; Ghosh et al., 2010]. Maximum
deviations from the reference geoid calculated for
the case of only radial viscosity variations in the
mantle amount to about 640 m as derived from
the model with maximum LVV (about 5 orders of
magnitudes using the tomographic model
S40RTS). These values are comparable with
amplitudes of the reference geoid (�56 m, þ76
m). Thus, we can conclude that strong LVV and
the choice of a radial viscosity distribution exert a
strong influence on the mantle dynamics. The
results of the simulations reveal a high potential of
the ProSpher code which can be efficiently used
for solution of the mantle flow problems.

Figure 5. Convergence of the method versus maximum
value of LVV that is defined by scaling coefficient E accord-
ing to equation (20).
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Appendix A: The Components of the Vector
Slm

[30]

Slm ¼ Alm;Blm;Clm;Dlm;Elm;Flm
� �

Alm ¼ 0

Blm ¼ � 2r

slm��

Z2�

0

d’

Z�

0

~� er�Y
�
lm þ er’Y’

lm

� �
sin �d�

Clm ¼ � 6r

sm0

Z2�

0

d’

Z�

0

~� err þ
k rð Þ
3r

ur

� �
Ylmsin �d�

Dlm ¼ � 2r2

slm

Z2�

0

d’

Z�

0

D�Y
�
lm þ D’Y’

lm

� �
sin �d�� 1

3
Clm

Elm ¼ � 2r

slm��

Z2�

0

d’

Z�

0

~� er�Y
’
lm � er’Y �

lm

� �
sin �d�

Flm ¼ � 2r2

slm

Z2�

0

d’

Z�

0

D�Y
’
lm � D’Y �

lm

� �
sin �d�

where eij are the components of the strain tensor,
sm0 ¼ 4�; slm ¼ sm0l l þ 1ð Þ

D� ¼
1

r2

@ r~�e�� þ k rð Þ
3 ~�ur

� �
@�

þ r~� e�� � e’’
� �

ctg�þ r

sin �

@ ~�e�’
� �
@’

2
4

3
5

D’ ¼
1

r2

1

sin �

@ r~�e’’ þ k rð Þ
3 ~�ur

� �
@’

þ 2r~�e�’ctg�þ r
@ ~�e�’
� �
@�

2
4

3
5

[31] Velocity scaling (result is in m/s):

u r; �; ’ð Þreal ¼ u r; �; ’ð Þcalc

R2g0�0

�0
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