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Abstract

The pore pressure changes, due to injection and production of wa-

ter into a geothermal reservoir, result in changes of stress acting on

reservoir rock and consequently changes in mechanical and transport

properties of the rock. The bulk modulus and permeability were mea-

sured at different pressures and temperatures. An outcropping equiv-

alent of Rotliegend reservoir rock in North German Basin (Flechtinger

sandstone) was employed to perform hydrostatic tests and steady state

fluid flow tests. Permeability measurements were carried out while cy-

cling confining pressure at a constant downstream pressure of 1 MPa
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where the stress dependence of permeability was determined. Mean-

while the temperature was increased stepwise from 30 ◦C to 140 ◦C.

The crack porosity was calculated at various temperatures. While the

pore volume changes of the cracks are not significant but control fluid

flow pathways and consequently the permeability of the rock. A new

model was derived which relates the microstructure of porosity, stress-

strain curve and permeability. The porosity change was described by

the first derivative of stress-strain curve and permeability evolution

was ascribed to crack closure and was related to the second derivative

of strain-stress curve. The porosity and permeability of Flechtinger

sandstone decreased by increasing the effective pressure and after each

pressure cycle.

1 Introduction

There is a long-standing interest in understanding the interrelation between

deformation and transport properties of porous rock in civil and reservoir

engineering. The prediction of production rates and reservoir performance

rely on the accurate representation of the poromechanical behavior, where

the pore pressure in concert with rock deformation will influence the rock

permeability. The reservoir and surrounding rocks deform and change in

shape and volume when they are subjected to stress changes. The stresses

acting on the reservoir rock will be modified while injecting cold water into

reservoir due to changes in pore pressure and temperature. These stress
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changes could be accompanied by changes in pore geometry and intercon-

nectivity between pores, and consequently how easily fluid flows through the

reservoir rock (permeability). Among reservoir rock properties, permeability

is quite challenging as it varies more than 11 orders of magnitudes for dif-

ferent rock types and stress conditions (Brace, 1980). The porosity of the

rock is the other important property which controls to a large extent the

permeability and effective elastic properties of the crustal rock (Hassanzade-

gan et al., 2013). The porosity-permeability relationship can be described

by principles of hydrodynamics (Bear, 1988) and the porosity changes due

to changes in effective pressure and drained bulk modulus can be described

by poromechanics (Carroll, 1980).

The poromechanical behavior of the rock includes both elastic and inelas-

tic deformations. Biot (1941, 1956, 1973); Rice and Cleary (1976) derived

the constitutive equations that govern the elastic behavior of the saturated

porous rock. In measuring the elastic moduli of granular rocks, one may

encountered the problem of nonlinearity in stress-strain curves which can be

assigned to the opening and closure of the cracks (Walsh, 1980). The crack

porosity decreases and bulk modulus (first derivative of stress-strain curve)

increases with increasing effective pressure (Hassanzadegan et al., 2013).

To account properly for the effect of nonlinearity, the second derivative of

stress-strain curve (bulk modulus derivative) should also being considered.

A common approach is to relate the second derivative of stress-strain curve

to porosity microstructure by a set of statistical distribution functions, the
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aspect ratios distribution functions of penny-shaped cracks (Walsh, 1980).

If the population of penny-shaped cracks is defined the porosity and perme-

ability could be correlated and the permeability evolution could be estimated

(Guéguen and Dienes, 1996). Morlier (1971) developed a method to relate

strain to detailed description of pore geometry at the microscale and provided

the distribution functions of porosity microstructure.

The stress dependence of permeability and its relation to pore geome-

try have been studied experimentally and analytically (Zoback and Byerlee,

1975; Bernabe, 1986, 1987; David et al., 1994). Bernabe (1986, 1987) ob-

served a large hysteresis in permeability at loading and unloading paths for

different rock types. David et al. (2001) reported a rapid reduction in perme-

ability evolution between 15 to 40 MPa which was assigned to the closure of

the cracks. Guéguen et al. (1996) assigned the pressure dependence of per-

meability of cracked rocks to elastic closure of cracks and crack roughness,

where the cracks are compliant and close easily compared to rounded pores.

A comprehensive and quantitative analysis of the influence of pore space

topology on permeability is given by Sarout (2012) in terms of pores/cracks

characteristic size, geometry and connectivity.

The permeability of the rock is a macroscopic concept where its mathe-

matical description requires that detailed description of pore geometry to be

well-defined. The aim of this study is to connect the permeability evolution to

the changes in porosity microstructure (elastic deformation of penny-shaped

cracks). It results to a new analytical model which interrelates the evolution
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of permeability with microstructure of porosity and bulk elastic modulus.

The permeability of the rock will be modified when crack like pores expe-

rience an elastic deformation. That is, the fraction of the cracks that are

hydraulically connected and provide pathways to fluid flow will change due

to applied effective pressure. The new permeability model is characterized by

spherical pores and penny-shaped cracks, imbedded into a solid phase. The

permeability model assumes that spherical pores are connected by cracks.

2 Theoretical background

The poroelastic theory assumes a quasi static deformation where the state

variables (temperature, pressure, etc.) are in thermodynamic equilibrium.

However, if the state variables vary with time the system undergoes a process.

The number of state variables required to characterize a process might be

larger than thermodynamic equilibrium, for example in describing the fluid

flow in porous media, viscosity and permeability are required. Viscosity is a

physical property of the fluid and permeability is a property of porous media.

2.1 Permeability

Permeability is a transport property which allows to quantify the fluid flow

in porous media and is a measure of how easily fluid flows through a rock

(Guéguen et al., 1996). Furthermore, permeability is a measure of the geom-

etry of the pores (pore dimension) and their interconnections (Brace, 1978).
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It is the intricate relation between the pore geometries and their intercon-

nectivity which makes the permeability modeling in terms of microstructure

a challenging task (Sarout, 2012).

Bear (1988) described the conceptual models employed to derive Darcy’s

law:

q = −k
η
∇(Pp − ρfgz) (1)

where ∇ is a vector differential operator (gradient). z is the vertical distance

and points downward. The proportionality constant k
η
, mobility, includes the

fluid viscosity η and intrinsic permeability k. q is the fluid flux vector,g is the

gravity acceleration and ρf is fluid density. If the fluid density considered to

be constant, a potential energy function ϕ = Pp

ρ
− gz, energy per unit mass

of the fluid, can be defined such that

q = −(
kρf
η

)∇ϕ (2)

A general relation between porosity and permeability is given by Bear (1988):

k = f(s)f(φ)R2 (3)

where f(s) is a shape function, f(φ) is a porosity function andR is a hydraulic

radius defined as cross sectional area divided by wetted perimeter (Sisavath

et al., 2000). The Kozeny-Carman permeability (Carman, 1956) was derived

by employing Hagen-Poiseuille equation for steady laminar flow through a
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bundle of capillary tubes where the permeability can be expressed in terms

of porosity φ, specific surface area S or a flow path characteristic length d,

and tortuosity τ :

k =
cφ3

τ 2S2
(4)

where c is a geometric factor. The specific surface area, the pore surface

per bulk volume of porous media, is a dominant parameter in permeability

models which contributes in shape factor. A particular extension of this

equation is to consider a packed bed of spheres with S = 3
2
1−φ
d

and τ = 1,

which results in:

k = c1
φ3

(1− φ)2
d2 (5)

where c1 includes the geometric factor and the factor of (3
2
)2. The assumption

τ = 1, laterally states that all the pores are part of a connected network

(infinite path).

2.2 Poroelasticity

The key concepts in poroelasticity theory underly the following equations, de-

scribing the evolution of two kinematic quantities: bulk strain of the porous

rock εb and change in fluid mass content m in terms of their conjugate dy-

namic quantities, confining pressure Pc and pore pressure Pp (Detournay and

7



Cheng, 1993):

εb =
Pc − αPp

Kd

(6a)

m−m0 = −αρ0
Kd

[
Pc −

1

B
Pp

]
(6b)

B and α are Skempton and Biot coefficients, respectively. Kd is drained

bulk modulus and ρ0 is fluid density at reference condition. These two equa-

tions describe the fluid rock interaction under quasistatic conditions for a

representative elementary volume (REV). That is, an increase in pore pres-

sure dilates the rock, an increase in fluid mass content causes a rise in pore

pressure and the fluid mass content decreases due to applied pressure which

results in volume compression (Detournay and Cheng, 1993). The inertial

forces and other high frequency effects are neglected and it is assumed that

the characteristic length of REV is much larger than pore scale. The poroe-

lasticity theory describes the porosity changes in terms of the drained bulk

modulus and effective pressure (Carroll and Katsube, 1983) :

dφ = −
(

1− φ0

Kd

− 1

Ks

)
dP ′ (7)

where P ′ = Pc − Pp is Terzaghi effective pressure and φ0 is initial porosity.

The Eq. 7 states that porosity decreases with increasing effective pressure

and the rate of porosity change with pressure is inversely proportional to

drained bulk modulus. That is, the modification of porosity is related to
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drained bulk modulus. In addition, it is quite common to ascribe the non-

linearity in bulk modulus and its pressure-dependence to porosity change

and crack closure (Walsh, 1980). Accordingly, the change in porosity and

nonlinearity in bulk modulus can be linked together.

2.3 Crack closure and porosity

In a porous rock, the bulk modulus is no longer equal to the bulk modulus

of solid grains Ks but is a function of porosity φ. Walsh (1965) derived

the effective bulk modulus of the rock in terms of the bulk modulus of solid

phase Ks and the rate of change in porosity with external pressure. For a

two phase porous rock which is consisted of penny shaped cracks imbedded

into the solid phase, the effective bulk modulus of the porous media Kd was

derived by Walsh (1965) to be:

Kd = Ks/

[
1 +

(
16

9

)(
1− ν2s
1− 2νs

)∑ c3

Vb

]
(8)

where νs is the Poisson’s ratio of the solid grains and Vb is the bulk

volume. The summation in Eq.8 is over all open cracks. The aspect ratio

of penny-shaped (oblate spheroid) cracks, a = b/c with b << c, contains

the microstructural information of the pore geometry, with semi minor axis

b (crack aperture) and semi major axis c (crack radius).

The change in aperture of a 2D-penny shaped crack can be derived by
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elasticity theory (Walsh, 1965):

b = b0

[
1− 2(1− ν2s )

aE
P

]
(9)

where E is the Young’s modulus. The Eq.9 suggests that a penny-shaped

crack of initial aspect ratio a0 = b0/c0 will fully close when pressure reaches

a closure pressure P ∗2D = aE/(2(1− ν2s ).

Having the hydrostatic compression test performed, the initial crack poros-

ity and crack porosity change can be calculated from deviation of bulk vol-

umetric strain from the volumetric strain of the solid matrix (Walsh, 1965):

∆φc =
∆Vc
Vb

=

∫
1

Kd

dP ′ −
∫

1

Ks

dP ′ = εb(P
′)− εs(P ′) (10)

The crack porosity at each pressure level, less than that required to close

all the cracks, can be calculated by determining how many is closed in passing

through each pressure level. Morlier (1971) developed a method to derive

the aspect ratio distribution function where the crack density whose initial

aspect ratio lies between a and a + da is given by dΓ(a) = −γ(a)da. γ(a)

and Γ(a) represent the aspect ratio distribution function and the cumulative

distribution function of open cracks, respectively.

γ(a) = −dΓ(a)

da
=
−3

4π

[
3πKs(1− 2νs)

4(1− ν2s )

]2 [
d2V

dP 2

]
P ∗

(11)

where the derivative
[
d2V
dP 2

]
P ∗

should be evaluated at the crack closing
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pressure P ∗:

P ∗ =

[
3πaKs(1− 2νs)

4(1− ν2s )

]
(12)

P ∗ describes the closing pressure of a three-dimensional penny shaped crack

of initial aspect ratio a.

Zimmerman (1991) proposed an exponentially decreasing function for

evolution of bulk modulus (first derivative of strain-stress curve):

1

Kd

=
1

K∞d
+

[
1

Ki
d

− 1

K∞d

]
exp(−P

′

P̂
) (13)

where P̂ is a characteristic closure pressure corresponding to an aspect

ratio at the maximum of γ(a). The peak of γ(a) represents the cracks with

a higher population. The superscript i refers to relaxed state at low effective

pressures and the superscript ∞ refers to confined state at high effective

pressures. The second derivative of strain-stress curve can be derived by

differentiation of Eq.13 with respect to pressure at corresponding closing

pressure (Eq.12). Inserting the second derivative in Eq.11 leads to:

γ(a) =

[
9Ks(1− 2νs)

16â(1− ν2s )

] [
1

Ki
d

− 1

K∞d

]
exp(−a

â
) (14)

where â is the characteristic aspect ratio evaluated at P̂ .
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Thus, the crack porosity function can be written as:

C(a) =
dφ

da
=

4πa

3
γ(a) =

[
3πKs(1− 2νs)

4(1− ν2s )

] [
1

Ki
d

− 1

K∞d

]
a

â
exp(−a

â
) (15)

Consequently, the crack porosity can be calculated by the following formula

(Jaeger et al., 2007):

φcrack =

∞∫
0

C(a)da =

(
1

Ki
d

− 1

K∞d

)
P̂ (16)

The correlation between porosity and permeability requires that a detailed

description of pore geometry at micro scale is given. The following section

describes a new permeability model which relates the permeability of porous

medium to its microstructure through evolution of bulk modulus.

3 Permeability modeling

The permeability of the rock is a macroscopic concept defined at a Repre-

sentative Elementary Volume (REV). The mathematical description of per-

meability requires that microstructure of the porosity to be well-defined.

According to Scheidegger (1974), Guéguen and Dienes (1996) the porosity

and permeability could be correlated if the microstructure of the porosity is

described by a set of statistical distribution functions that describe pore ge-

ometry and pore size distribution. The pore geometry can be divided roughly

into two categories: equant pores and cracks. Albeit, there is no clear di-
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vision between these two categories. The low aspect ratio pores at grained

contacts can be viewed as crack porosity and the high aspect ratio pores may

represent the equant pores. In granular materials such as sandstone, both

equant pores and cracks coexist.

Bernabe (1986) assumed that permeability k is a single valued function of

Pc and Pp. It was assumed that the knowledge of permeability as a function

of confining pressure and zero pore pressure is enough to predict the value of

permeability at any pair of (Pc, Pp) and effective pressure Peff was defined

as confining pressure that would result in the same permeability k(Peff ) =

k(Pc, 0). If the effective pressure defined as a linear combination of Pc and

Pp, the k(Pc, Pp) would be a family of curves that can be approximated by

parallel straight lines. Bernabe (1986) suggested a differential form of the

permeability evolution:

dk =

(
∂k

∂Pc

)
Pp

dPc +

(
∂k

∂Pp

)
Pc

dPp (17)

Here, the permeability would be approximated as a function of Terzaghi

effective pressure:

k(P ′) = k(P∞)−
P∞∫
P ′

(
∂k

∂P ′

)
T

dP ′ = k(P∞)−
∞∫

P ′

(
∂k

∂φ

)(
∂φ

∂P ′

)
dP ′ (18)

where k(P∞) is high-pressure permeability where all the cracks are closed

and subscript T represents a constant temperature. The porosity depen-
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dence of permeability can be derived by employing Kozeny-Carman equation

(Eq.5):

dk

dφ
= c1d

2(3e2 + 2e3) (19)

where e is the void ratio defined as e = φ
1−φ . It is assumed that porosity de-

pendence of permeability dk
dφ

is governed by equant pores and is independent

of pressure, therefore can be taken out of the integral. The assumption that

pressure dependence of porosity is governed by cracks requires that ∂φ
∂P ′

is

given by Eq.7. Inserting Eq.7 in Eq.18 leads to:

k(P ′) = k(P∞) +

(
∂k

∂φ

) P∞∫
P ′

(
1− φ0

Kd

− 1

Ks

)
dP ′ (20)

and if the tangent drained bulk modulus is estimated by Eq.13, the following

equation would be obtained:

k(P ′) = k(P∞) +

(
∂k

∂φ

) P∞∫
P ′

(
(1− φ0)

K∞d
− 1

Ks

)
dP ′

+

(
∂k

∂φ

) P∞∫
P ′

(1− φ0)

(
1

Ki
d

− 1

K∞d

)
exp

(
−P

′

P̂

)
dP ′

(21)
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The integration of definite integral leads to:

k(P ′) = k(P∞) +

(
∂k

∂φ

)(
(1− φ0)

K∞d
− 1

Ks

)
(P∞ − P ′)

+

(
∂k

∂φ

)
P̂ (1− φ0)

(
1

Ki
d

− 1

K∞d

)[
exp

(
−P

′

P̂

)
− exp

(
−P

∞

P̂

)]
(22)

where P∞ is a sufficiently high pressure at which the confined bulk modulus

K∞d is obtained. The confined state pressure P∞ describes the maximum

effective pressure at which the elastic deformation of cracks may occur. Thus,

the only unknown parameters in Eq.22 are
(
∂k
∂φ

)
and k(P∞) or simply the

Kozeny-Carman term c1d
2 and high-pressure permeability k(P∞). Rewriting

of Eq.22 in terms of scaled pressure
(
P ′

P̂

)
as an independent variable results

in:

k(P ′) = k(P∞) +

(
∂k

∂φ

)
P̂

(
(1− φ0)

K∞d
− 1

Ks

)(
P∞

P̂

)
−
(
∂k

∂φ

)
P̂

(
1

Ki
d

− 1

K∞d

)
(1− φ0) exp

(
−P

∞

P̂

)
+

(
∂k

∂φ

)
P̂

(
1

Ki
d

− 1

K∞d

)
(1− φ0) exp

(
−P

′

P̂

)
−
(
∂k

∂φ

)
P̂

(
(1− φ0)

K∞d
− 1

Ks

)(
P ′

P̂

)
(23)

where the first three terms on the right hand side of the Eq.23 are indepen-

dent of pressure, however the fourth and fifth terms are nonlinear and linear

functions of effective pressure, respectively.
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4 Material and methods

In order to describe the fluid flow in a poroelastic medium, it is essential to

provide the relationships between microstructure of the porosity and strain,

and between strain and permeability. The permeability model developed

in section 3 represents the pore volume as a combination of spherical pores

and cracks. The spherical pores are connected by penny-shaped cracks and

the inter-connectivity between them is controlled by elastic closure of cracks.

The crack closure mainly influences in fluid pathways (tortuosity), and con-

sequently permeability. While the crack closure theory provide the relation

between microstructure of porosity (aspect ratio distribution) and strain, the

poroelasticity theory characterizes the relation between strain and applied ef-

fective pressure.

In the following, first the hydrostatic tests carried out will be explained

where the stress-strain curves not only characterize the bulk behavior of

the rock, but also provide valuable information about the microstructure of

porosity.

4.1 Sample material and setup

The experiments were carried out on two cylindrical core samples of Flechtinger

sandstone, having 50 mm diameter and 100 mm length. It is a Lower Per-

mian (Rotliegend) sedimentary rock in the North German Basin. Flechtinger

sandstone is a fine layered sandstone mostly composed of quartz, feldspar and
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carbonates. A convectional triaxial test system was employed to perform the

experiments (Fig.1). The set up is composed of a confining pressure intensi-

fier to fill and pressurize the triaxial cell up to 140 MPa, a set of Quizix pumps

which are operating independently and can increase the pore fluid pressure

up to 70 MPa, and a data monitoring and acquisition system. The circumfer-

ential and axial extensometers measured the lateral and axial strains. The

confining pressure was measured by fluid pressure transducers in triaxial.

The pore fluid pressure was measured by pressure transducers in drained

experiments and by a differential pressure transducer in permeability tests.

4.2 Experimental procedure, analysis and corrections

The pressure drop was measured at a steady state condition and a constant

flow rate of 0.02 ml/min was applied. An extra differential pressure trans-

ducer was installed to measure the pressure difference between upstream and

downstream through a bypass connection where the frictional pressure drop

in capillaries was reduced (see Fig.1).

First, the initial porosity of the samples were determined by imbibition

and Archimedes methods. The samples were dried in the 60 ◦C for 24

hours. Afterwards, the samples were saturated by first applying vacuum

to the samples, which were placed in a desiccator and then by drawing water

into desiccator where the water imbibes into the porous rock. The initial

porosity was calculated by measuring dry weight (Wd), the saturated weight

in air (Ws), and the suspended (Archimedes) weight in water (Wa) to be
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Figure 1: experimental set up: a conventional triaxial cell.

φ0 = (Ws −Wd)/(Ws −Wa). Then the sample was mounted in the triaxial

cell and the whole system was vacuumized. The vacuumized pressure in the

whole set up was monitored to be sure that all the fittings and capillaries

are well isolated and there is no leakage. Afterwards, the sample was satu-

rated by flowing water through it for at least 72 hours. The samples were

subjected to a cyclic seasonings (preconditioning) to minimize hysteresis and

inelastic effects. The preconditioning was composed of four pressure cycles

between 0 to 60 MPa with a rate of 1 MPa/min. Two different kind of ex-
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periments were carried out on the given specimens (table 1), a hydrostatic

drained test (FLG05, where FLG stands for Flechtinger sandstone) and a

permeability measurement test (FLG06). The confining pressure was cycled

from 2 to 55 MPa and temperature was increased step-wise from 30 ◦C to

140 ◦C. The range of experimental pressure and temperature were chosen

such that representing changes due to injection of water into a geothermal

reservoir in North German Basin (Hassanzadegan et al., 2011). During the

injection of cold water into a doublet geothermal reservoir, effective pressure

and temperature are chaining. The cold water of 60 ◦C will be injected into

a 145 ◦C reservoir and the cold thermal front will propagate through the

reservoir towards the production well. The effective pressure becomes more

compressive in the vicinity of production well due to a decrease in pore pres-

sure and becomes more tensile around the injection well due to an increase

in pore pressure. The pore pressure and downstream pressure were held at a

constant pressure of 1 MPa at drained and permeability tests, respectively.

Table 1: Specimen properties and achieved experiments

Experiment Porosity Grain density
Specimen Type [%] [gr/cm3]
FLG05 drained 10.75 2.66
FLG06 permeability 10.68 2.64

Data was recorded every 15 seconds which corresponds to 25 KPa in-

crease in confining pressure. The same sampling rate (four per minute) was

employed for the pump system. In order to minimize the effect of small fluc-
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tuations of the recorded data two approaches are common [27]: fitting data to

a mathematical function or averaging the data. The data was first smoothed

by averaging every 15 raw data and subsequently, the tangent derivatives of

stress-strain curve (tangent drained bulk modulus) was calculated (Kd = ∂Pc

∂εb
)

and were fitted to the functions of the form presented of Eq.13. The data

analysing was aimed at determining the pressure dependence of porosity and

permeability and relating them through the poroelastic and crack closure

theories. First and second derivative of stress-strain curves were obtained,

and the porosity and permeability were calculated.

The capillary (drainage) system was modified to minimize the thermal ef-

fects on stainless capillary tubes (Fig.1). A part of capillary tubes sits inside

the triaxial cell and the other part connects the triaxial cell to the pumps.

Three thermocouples were employed, two were placed close to the upper

and lower part of the sample within the triaxial cell and one thermocouple

was placed outside the triaxial cell to measure the atmospheric temperature.

Inside the cell, a uniform temperature distribution was a reasonable assump-

tion. The temperature measurement uncertainty was determined by relative

error, the ratio between standard deviation σ(T ) and the average measured

temperature T (see Table 2). The injected fluid was brought to the sample

temperature by placing a longer spiral shape capillary within the chamber.

However, a temperature distribution was established at capillary tubes out-

side, as the triaxial cell temperature and surrounding temperature stayed

constant. In order to minimize this temperature distribution effect, the heat

20



transfer surface area was extended by employing fins and a spring shaped

tube (see Figure 1).

Table 2: The uncertainty in temperature measurement was characterized by
relative error [%], the ratio between standard deviation σ(T ) and the average
measured temperature T .

Temperature Loading Unloading

[◦C] T σ(T ) [%] T σ(T ) [%]
30 31.5 0.3 1.0 30.7 0.2 0.8
60 59.5 0.1 0.2 58.8 0.1 0.2
90 89.7 0.2 0.2 89.0 0.2 0.2
120 120.0 0.4 0.3 119.3 0.3 0.2
140 139.4 0.9 0.7 139.4 0.3 0.2

5 Experimental results

A drained jacketed test and a permeability measurement test (see Table 1)

were performed. The porosity change was calculated by utilizing poroelastic

theory and permeability was calculated by employing Darcy’s law.

5.1 Porosity change

The porosity change was calculated by employing Eq.7. The tangent deriva-

tive of stress-strain curve was providing the tangent bulk modulus. The

stress-strain curves were measured while performing jacketed test and per-

meability test. The stress-strain curves while flowing water through the
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sample (Figure 2) showed that Flechtinger sandstone suffered from inelastic

deformation. That is, the stress-strain curves showed non recoverable strain

after each pressure cycle. The maximum inelastic strain was observant at

◦C. Table 3 summarize the inelastic strains and quantifies the consequent

porosity reduction. It was assumed that inelastic bulk strain εinb and pore

strain are equal and the initial porosity was corrected for inelastic deforma-

tion in both samples (Vp = V i
p − εinb × V i

p ). V i
p is the initial pore volume at

the beginning of each cycle.

The porosity change, calculated at drained conditions was compared with

porosity change while flowing water through the sample. Both specimens

showed a compatible porosity evolution (Fig.3). Therefore, porosity change

was evaluated by employing tangent drained bulk (first derivative of stress-

strain curve) while flowing water through the rock and using stress-strain

curves plotted in Figure 2. The porosity of Flechtinger sandstone decreases

with increasing effective pressure and after each pressure cycle (Table 3).

The rate of porosity change with pressure was as low as 0.055 [%]/[MPa].

Table 3: The inelastic deformation of Flechtinger sandstone.

Temperature Bulk inelastic strain Porosity reduction Porosity
[◦C] [-]×10−4 [-]×10−4 [%]
30 1.8 1.6 10.68
60 19 17 10.66
90 8.0 7.2 10.50
120 9.3 8.4 10.42
140 3.8 3.4 10.33
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Figure 2: Terzaghi effective pressure versus volumetric strain. The down-
stream pore pressure was maintained constant at a value of 1 MPa and
confining pressure was cycled.

5.2 Bulk modulus and crack porosity

The deformation of the specimen (FLG06) while performing the permeability

test was captured by one axial and two lateral extensometers. The derivatives

of stress-strain curve (Kd = ∂Pc

∂εb
) was calculated by numerical differentiation

of neighboring data points and plotted as a function of mean effective pres-

sure, the difference between confining pressure and average pore pressure

within the sample. The strain measurement accuracy meets the requirement

for calibration according to ISO 9513 class 0.5, where the strain measurement

accuracy is ± 0.5% of reading or ± 1µm of the indicated value, whichever is
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Figure 3: Porosity evolution as a function of effective pressure at drained
and flowing conditions.

larger. The pressure measurement was quite precise with 0.001 MPa devia-

tion. The error involved in calculating drained bulk modulus was estimated

by Eq.24 to be approximately 30 MPa.

(
∆Kd

Kd

)2

=

(
∆P

P

)2

+

(
∆εb
εb

)2

(24)

Having calculated the uncertainty in measurements of the bulk modulus,

the porosity-measurement error can be defined by the total derivative of the

Eq.7 or Eq.16: (
∆φ

φ

)2

=

(
∆Kd

Kd

)2

+

(
∆P

P

)2

(25)
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The error in porosity measurement was estimated to be 3×10−4 (Eq.25).

Afterwards, the data was fitted to the functions of the form suggested by

Zimmerman (1991) and model parameters were derived by the least squares

method where the overall solution minimizes the sum of the squares of the

errors made at each data point. Figure 4 shows that the modeled bulk

modulus adequately estimates the experimental data. A crossplot of Figure

4 was obtained (for all temperatures) by cutting the best fitting surface which

was interpolated through data points, at different pressure levels. Figure 5

presents the evolution of bulk modulus due to temperature and the applied

cyclic load. The bulk modulus slightly decreased with increasing temperature

at low pressures and lightly increased with temperature at high pressures.

The solid matrix parameters, solid bulk modulus and Poisson’s ratio of

the Flechtinger sandstone, were calculated by the Voigt-Reuss-Hill average to

be 41.2 GPa and 0.131, respectively (Hassanzadegan et al., 2012). The table

4 summarize the loading bulk modulus parameters and crack porosity at

different loading paths and temperatures. A 50% increase in crack porosity

was occurred at 60 ◦C. The characteristic closure pressure decreased after

60 ◦C pressure cycle. The value of the relaxed bulk modulus parameter Ki
d

decreased after each pressure cycle and with increasing temperature (except

from 60 ◦C), however the confined bulk modulus parameter was fluctuating.

The table 5 summarize the unloading bulk modulus parameters and crack

porosity. The value of K∞d increased after each pressure cycle and with

increasing temperature (except from 140 ◦C). The loading and unloading
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Figure 4: Loading bulk modulus as a function of effective pressure at 30
and 140 ◦C. The experimental data and modeled bulk modulus (Eq.13) fit
adequately.

values of K∞d were in the same range. The unloading parameters φc, P̂ and

Ki
d were smaller than those of loading path. Moreover, table 2 presents the

average value of measured temperature at loading and unloading paths and

its standard deviation.

Figure 6 compares the spectrums of the crack porosity function at loading

and unloading paths. The Morlier’s method was employed to determine

the crack porosity function. At unloading path the maximum of C(a) was

shifted towards the smaller values of the aspect ratio. The maximum value

at unloading spectrum was approximately two times of the loading one.
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Figure 7 shows loading spectrum of aspect ratio at different temperatures.

At loading path, the maximum value of C(a) was increased with increasing

the temperature, except from the 60◦C spectrum. Figure 8 displays the

unloading spectrum of aspect ratio at given temperatures. The maximum

value of function C(a) was shifted towards smaller value of a in comparison

to loading path and the maximum value of C(a) function increased with

increasing the temperature except from the 60 ◦C spectrum.
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Table 4: Loading bulk modulus parameters at given temperatures.

Temperature K∞d Ki
d P̂ φcrack

[◦C] [GPa] [GPa] [MPa] [-]
30 10.51 3.05 13.49 0.0031
60 10.73 2.24 13.01 0.0046
90 10.25 2.37 11.44 0.0037
120 9.84 2.32 9.95 0.0033
140 10.68 2.18 10.64 0.0039

Table 5: Unloading bulk modulus parameters at given temperatures.

Temperature K∞d Ki
d P̂ φcrack

[◦C] [GPa] [GPa] [MPa] [-]
30 10.06 1.98 6.68 0.0027
60 10.56 2.23 7.85 0.0028
90 10.94 1.99 7.63 0.0031
120 10.97 1.95 7.41 0.0031
140 10.90 1.91 7.43 0.0032

5.3 Permeability

Permeability was measured at a constant flow rate of 0.02 ml/min and down-

stream pore pressure was kept constant at 1 MPa. The permeability was

calculated by reading the pressure drop across the pressure transducer and

employing Darcy’s law (Eq.1). The permeability values are compatible with

those reported by Blöcher et al. (2009). The relative precision error of perme-

ability measurement, the ratio between standard deviation and average value,

was calculated at a constant effective pressure, flow rate and temperature.

The standard deviation, average value and relative error were calculated to
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Figure 6: The loading and unloading aspect ratio distribution function of
Flechtinger sandstone, as computed by Morlier’s method at 30◦C.

be 9.5 × 10−5, 0.0253 and 0.38 %, respectively. The viscosity of water was

corrected for temperature at 1 MPa. Figure 9 shows a good match between

measured and the estimated permeability (Eq.22).

Figure 9 presents the loading permeability evolution as a function of mean

effective pressure, the difference between confining pressure and average pore

pressure within the sample. Permeability was decreasing with increasing ef-

fective pressure. The loading permeability decreased with increasing temper-

ature and after first and second pressure cycles (30 and 60 ◦C) and slightly

increased with increasing temperature and after (90 and 120 ◦C) pressure

cycles. The rate of permeability change was high at relaxed state and per-

meability linearly decreased with increasing pressure at confined state. The
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Figure 7: The loading aspect ratio distribution function of Flechtinger sand-
stone at different temperatures.

experimental permeability data were fitted to proposed model (section 3)

and the validity of the model was confirmed by predicting appropriately the

permeability evolution.

Figure 10 shows the unloading permeability evolution. The unloading

permeability at 30 ◦C is partly presented due to the noise in the data. The

unloading permeability was lower than loading permeability and was non-

linear at relaxed state, effective pressures lower than characteristic pressure,

and was linear or approximately constant at confined state. The unloading

permeability slightly increased with increasing temperature and after 30 ◦C

pressure cycle and enormously decreased after 60 ◦C pressure cycle. The un-

loading permeability increased with increasing temperature and after 90 and
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Figure 8: The unloading aspect ratio distribution function of Flechtinger
sandstone at different temperatures.

120 ◦C pressure cycles. A crossplot of Figure 10 was obtained by cutting the

best fitting surface at different pressure levels. The permeability decreased

significantly up to 90 ◦C and slightly increased afterwards.

The terms P̂
(
∂k
∂φ

)
and k(P∞) were obtained as best fitting parameters

of Eq.23 and the Kozeny-Carman term c1d
2 was calculated. Then, assuming

a constant geometric factor c1 of 1000
180
× 9

4
= 12.5 (Bear, 1988), the charac-

teristic length d was calculated by employing Eq.4 (see Table 6). In general,

the quality of match for unloading path was better than loading path (see

Figure 10). The obtained confined state pressures P∞, the Kozeny-Carman

term c1d
2 and the characteristic length d at loading path were higher than

unloading path. The loading high-pressure permeabilities k(P∞) were higher
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Figure 9: The loading permeability as a function of effective pressure and
temperature. The solid lines show the matched permeability and scattered
data points are experimental data.

than unloading ones at 30 and 60 ◦C, however the loading high-pressure per-

meabilities were lower at 90, 120 and 140 ◦C.

6 Interpretation and discussion

Three types of stress-permeability relations have been distinguished by David

et al. (1994) and the mechanisms involved have been described: 1-low poros-

ity crystalline rocks where the cracks are dominant, 2-porous clastic rocks

where the relative movement of grains result in a decrease of permeability,

and 3-grain crushing in unconsolidated material at high pressures.
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temperature. The solid lines show the matched permeability and scattered
data points are experimental data.

The effects of applied pressure on the permeability depends on the pore

geometry and the degree of connectivity between pores. The effect of pressure

is not the same for all pore geometries, the flat pores close easily when the

pressure is applied, however the equant pores (high aspect ratio pores) are

stiffer. While the crack porosity had a little contribution in total porosity of

Flechtinger sandstone, but the cracks provided the interconnections between

pores and fluid pathways. According to Guéguen and Palciauskas (1994) the

closure of the cracks depends on the elastic processes up to a certain value

of pressure, after which the crack roughness and stiffness of equant pores
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crossplot of Figure 9 presents the permeability evolution. The new data
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preserve the permeability. In contrast, the crack volume is relatively a small

part of the total porosity and the total porosity is governed by other than

that caused by narrow cracks (Walsh, 1980).

Guéguen and Dienes (1996) presented two simple models, using 1D and

2D objects, pipes and cracks, respectively. The pore micro-structure was de-

termined by statistical distribution of three parameters: average pipe (crack)

length, average pipe radius (crack aperture) and average pipe (crack) spacing.

The introduced permeability model relates the microstructure of porosity,

strain and permeability through the key concept of effective pressure. The
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Table 6: The permeability fitting parameters. The Kozeny-Carman term
c1d

2 and high-pressure permeability k(P∞) were obtained as best fitting pa-
rameters of Eq.23.

Loading Unloading
Temperature P∞ c1d

2 × 10−8 d k(P∞) P∞ c1d
2 × 10−8 d k(P∞)

[◦C] [MPa] [m2] [µm] [mD] [MPa] [m2] [µm] [mD]
30 52.1 2.5 45 0.0232 31.7 1.1 29 0.0180
60 53.8 2.8 47 0.0199 35.1 0.4 19 0.0195
90 51.8 1.4 33 0.0067 38.2 1.5 35 0.0080
120 45.3 1.2 31 0.0083 36.8 0.6 21 0.0090
140 46.4 1.8 38 0.0109 37.5 0.8 26 0.0117

common approach to model pressure-dependence of the rock bulk modulus is

to introduce a crack aspect ratio distribution of penny-shaped cracks (Walsh,

1980). The Flechtinger sandstone was assumed to be embedded by equant

pores and penny-shaped cracks in a solid phase. The spherical pores (equant

pores) are the stiffest type of the pores and could be assumed non-closable

under typical elastic stress. The new model predicts the permeability evolu-

tion from a relaxed state, where the low aspect ratio cracks are open, to a

confined state, where the cracks gradually close. The presented model intro-

duce a characteristic closure pressure at which a transition from relaxed state

to a confined state will occur. At relaxed state, pressures lower than charac-

teristic closure pressure, the rock is more compliant and becomes stiffer with

increasing effective pressure (confined state).

The presented model describe the nonlinear behavior of stress-strain curve
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by crack closure, however does not include the other nonlinearities such as

Skempton effect (increase in pore pressure due to the applied confining pres-

sure). Moreover, the presented model assumes a quasi-static deformation and

does not include the transient response, where the pore pressure diffusion is

coupled with change in mass content.

The permeability model is compatible with percolation concept where

the occupancy probability p is proportional to the crack porosity φc and in-

versely proportional to the aspect ratio a ( Guéguen and Palciauskas, 1994).

The Eq.15 presents a differential form of the occupancy probability. Both

permeability and bulk modulus were assumed to be proportional to the cu-

mulative population of open cracks which their probability density function

can be derived by normalizing Eq.15. A relaxed bulk modulus, a confined

bulk modulus and a characteristic closure pressure (aspect ratio) are the

key parameters that characterize the bulk modulus and permeability model.

At relaxed state where the most cracks are open the probability to have a

connected network is high and by increasing the pressure the probability of

having a connected fluid path decreases.

The exponential bulk modulus functions were fitted to experimentally

measured tangent drained bulk modulus (Fig.4). At low effective pressures,

both cracks (low aspect ratio pores) and equant dimension pores affect the

elastic moduli and the rock exhibit compliant behavior, where the pressure

dependence of bulk modulus is large. However, by increasing the confining

pressure the cracks close and the spherical pores do not. The quality of the
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match is convenient for middle and high pressures, however at low pressures

a deviation can be observed. At high pressures and temperatures, the rock

is stiffer than predicted which can be assigned to inelastic behavior of the

Flechtinger sandstone. The inelastic behavior of the rock was observed to be

higher during 60 ◦C pressure cycle (see Table 3).

Figure 6 shows that the maximum value of crack porosity function is mov-

ing towards the higher aspect ratio at loading path. Accordingly, the loading

characteristic closure pressure is higher than unloading characteristic closure

pressure. That is, a higher effective pressure at loading path is required in

comparison to unloading path to close the high density cracks (the cracks

with a certain aspect ratio which have the highest population). It confirms

that the unloading moduli can be approximated to be elastic moduli at the

initial part of unloading path where the most of the cracks are closed.

The range of aspect ratio values is compatible with those derived for

Boise, Berea and Bandera sandstones (Zimmerman, 1991). The small value

of aspect ratios can be explained by the fact that crack closure theory does

not consider the interaction between cracks. Moreover, as presented in Eq.8,

the crack radius appears in third power. That is, a few long cracks may

strongly affect the rock behavior. David and Zimmerman (2012) reported

an order of magnitudes higher aspect ratios for Vosgas and Fontainbleau

sandstone, albeit the samples were subjected to a high confining pressure of

280 MPa.

The discrepancy in spectrums at loading and unloading paths, could ex-
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plain the hysteresis in permeability evolution as observed here and by Bern-

abe (1986, 1987). The number of cracks which are open to fluid flow at

loading and unloading paths at a same pressure is different. At unloading

path, more cracks are open at relaxed state while at loading path the num-

ber of cracks which are open at low or middle range pressure is higher. At

unloading path, the density of low aspect ratio cracks is high at relaxed state

(unloading maximum value) while at loading path, the density of higher as-

pect ratio cracks exceeds the unloading one (Fig. 6). The total crack porosity

at loading path is higher than unloading path (see Tables 4 and 5). Further-

more, the unloading spectrum of aspect ratio follows a special trend with

respect to temperature and the maximum value of aspect ratio distribution

function increases with temperature (Fig.8). The crack porosity increased

with temperature and after each pressure cycle, however the crack porosity

change was close to the calculated uncertainty (see Table 5). Creation of

new cracks due to applied thermal and mechanical loads could explain the

increase in crack porosity and observed permeability changes. In addition,

the calculated characteristic lengths d and Kozeny-Carman term c1d
2 were

lower at unloading paths than loading paths (see Table 6).

Figures 9 and 10 show that loading and unloading permeability decreased

after each pressure cycle and with increasing temperature. The inelastic

behavior of Flechtinger sandstone suggests that pore collapse or compaction

of grains lowers the total porosity and affects on how easily fluid flows within

the rock. This is in agreement with what has been observed by Fortin et al.
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(2005). Fortin et al. (2005) concluded that inelastic compaction leads to a

decrease in porosity and permeability, due to pore collapse. The permeability

of Flechtinger sandstone decreased considerably after 60 ◦C pressure cycle

where the highest amount of inelastic strain was observed (see Table 3). In

contrast, the thermo-mechanical loading increased the crack porosity (see

Table 5) and consequently affect on fluid flow.

7 Conclusion

A new permeability model was derived from the basic principles underlying

the theories of poroelasticity and crack closure. The strain (bulk modulus)

was related to microstructure of porosity and permeability was related to

strain (bulk modulus). The first and second derivative of stress-strain curves

were employed to connect permeability and microstructure of porosity. The

loading and unloading aspect ratio distribution described the hysteresis in

permeability during loading and unloading paths. The loading permeability

decreased with increasing temperature and after each pressure cycle.

Measurements of the mechanical behavior of the Flechtinger sandstone

showed that stress-strain curves were nonlinear and not all the strains were

recovered after unloading. The pressure dependence of the bulk modulus

and nonlinearity in stress-strain curves was assigned to presence of cracks.

The permeability was governed by cracks where the cracks not only provide

pathways to fluid flow but also guaranty the inter-connection between pores.
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The permeability decreased with increasing effective pressure and after

each pressure cycle. It was nonlinear at relaxed state (low effective pres-

sures) and linear at confined state (high effective pressures). In contrast, the

unloading crack porosity was slightly increased. It can be concluded that a

competition between Thermo-mechanical crack creation, and inelastic defor-

mation of the rock governs the permeability evolution under cyclic loading.
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Guéguen, Y., and Dienes J. (1989). Transport properties of rocks from statis-

tics and percolation. Mathematical Geology, 21(1):1–13.
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