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S U M M A R Y
Data on rock thermal conductivity (TC) are important for the quantification of the subsurface
temperature regime and for the determination of heat flow. If drill core is not retrieved from
boreholes and thus no laboratory measurement of TC can be made, other methods are desired
to determine TC. One of these methods is the prediction of TC from well logs. We have
examined the relationships between TC and standard well-log data (gamma ray, density, sonic
interval transit time, hydrogen index and photoelectric factor) by a theoretical analysis and by
using real subsurface data from four boreholes of the North German Basin. The theoretical
approach comprised the calculation of TC from well-log response values for artificial sets
of mineral assemblages consisting of variable contents of 15 rock-forming minerals typical
for sedimentary rocks. The analysis shows different correlation trends between TC and the
theoretical well-log response in dependence on the mineral content, affecting the rock matrix
TC, and on porosity. The analysis suggests the development of empirical equations for the
prediction of matrix TC separately for different groups of sedimentary rocks. The most valuable
input parameters are the volume fraction of shale, the matrix hydrogen index and the matrix
density. The error of matrix TC prediction is on the order of 4.2 ± 3.2 per cent (carbonates),
7.0 ± 5.6 per cent (evaporites), and 11.4 ± 9.1 per cent (clastic rocks). From the subsurface
data, comprising measured TC values (n = 1755) and well-log data, four prediction equations
for bulk TC were developed resembling different lithological compositions. The most valuable
input parameters for these predictions are the volume fraction of shale, the hydrogen index
and the sonic interval transit time. The equations predict TC with an average error between
5.5 ± 4.1 per cent (clean sandstones of low porosity; Middle Buntsandstein), 8.9 ± 5.4 per cent
(interbedding of sandstone, silt- and claystones; Wealden), and 9.4 ± 11 per cent (shaly
sandstones; Stuttgart Fm.). An equation including all clastic rock data yields an average error
of 11 ± 10 per cent. The subsurface data set also was used to validate the prediction equation
for matrix TC established for clastic rocks. Comparison of bulk TC, computed from the matrix
TC values and well-log porosity according to the geometric-mean model, to measured bulk
TC results in an accuracy <15 per cent. A validation of the TC prediction at borehole scale by
comparison of measured temperature logs and modeled temperature logs (based on the site-
specific surface heat flow and the predicted TC) shows an excellent agreement in temperature.
Interval temperature gradients vary on average by <3 K km–1 and predicted compared to
measured absolute temperature fitted with an accuracy <5 per cent. Compared to previously
published TC prediction approaches, the developed matrix and bulk TC prediction equations
show significantly higher prediction accuracy. Bulk TC ranging from 1.5 to 5.5 W (m K)–1 is
always predicted with an average error <10 per cent relative to average errors between 15 and
35 per cent resulting from the application to our data set of the most suitable methods from
literature.

Key words: Downhole methods; Heat flow; Sedimentary basin processes; Heat generation
and transport; Europe.
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2 S. Fuchs and A. Förster

1 I N T RO D U C T I O N

Thermal conductivity (TC, λ) is an intrinsic physical property of
minerals and rocks. In sedimentary basins, where the sedimentary
record usually is very heterogeneous exposing various lithotypes
of different mineralogy, rock TC can vary both laterally and ver-
tically thus altering the basin’s thermal structure locally and re-
gionally. Knowledge of the TC of geological formations and its
spatial variations is fundamental for quantifying the basin evolu-
tion, hydrocarbon maturation processes, but also for understanding
the geothermal condition of a geological setting. Furthermore, the
TC forms in conjunction with the temperature gradient (gradT), ac-
cording to Fourier’s law, the basic input parameter for the heat-flow
density (q) determination of an area, which in turn is a major input
parameter in temperature modeling at different scale, also including
deeper crustal levels.

Subsurface rock TC usually is determined by laboratory measure-
ments on drill cuttings or core samples recovered from boreholes.
Different techniques are available for these measurements, com-
prising steady-state and transient techniques (e.g. von Herzen &
Maxwell 1959; Beck 1965; Sass et al. 1971; Vacquier 1985; Popov
et al. 1999).

However, as rock samples are often restricted only to some target
reservoir, the TC for entire borehole profiles usually cannot be de-
termined. Therefore, methodologies are desired to quantify the TC
indirectly from a suite of other petrophysical properties measured
by well logs. Such an approach would allow the determination of TC
in a profile-wise fashion and, in the best situation, along an entire
borehole section. Various data sets and regression parameters are
known from several studies performed in different geological en-
vironments, but, up to date, no universal well-log based prediction
equation for TC is developed yet. Such a universally valid prediction
would need to be calculated from a global, comprehensive data set
of TC measured for a full spectrum of sedimentary rocks (Williams
& Anderson 1990) and, in turn, from a well-log data set that can
fully reflect and explain the TC variability within the ‘global data
set’.

In this paper, we address the indirect determination of TC from
petrophysical well-log properties obtained in sedimentary rocks.
The study specifically aims to answer the following critical ques-
tions: (1) what well-log data/parameters are most valuable in predict-
ing TC; (2) can any universally valid statistical prediction equation
be developed using conventional well logs, and if not, how can this
problem circumnavigated; (3) what are major limiting factors in the
well-log based approach and (4) what method shows the highest
prediction quality?

2 B A C KG RO U N D O N T C P R E D I C T I O N
F RO M W E L L L O G S

Several approaches exist to determine TC in boreholes. High-
precision equilibrium temperature logs can be inverted for an indi-
rect determination of TC by applying a value of heat-flow density to
the entire log after having calculated an interval heat-flow density
from TC measured on drill core and from an average temperature
gradient of this particular depth interval (e.g. Blackwell & Steele
1989; Fuchs & Förster 2010). However, the major drawback is that
measurements of equilibrium temperature logs are rarely available.
Up to now, this approach is still academic and not standard in the
exploration of resources.

The utilization of petrophysical well logs to determine TC is
another basic approach. One type of methods hereby applies an ap-
propriate mixing law to compute rock TC from the TC of mineral
constituents (e.g. provided by XRD analysis) and well-log-derived
rock porosity (e.g. Brigaud et al. 1990; Demongodin et al. 1991).
Other methods derive either the lithology or the major mineralogy of
a borehole section from well logs using an inverse solution and typi-
cal log-response values of each component (Savre 1963; Doveton &
Cable 1979; Quirein et al. 1986), and, in turn, apply an appropriate
mixing equation to calculate bulk TC for the respective lithotype
using textbook TC values (e.g. Merkel et al. 1976; Dove & Williams
1989; Brigaud et al. 1990; Demongodin, et al. 1991; Vasseur et al.
1995; Midttømme et al. 1997; Hartmann et al. 2005). Major uncer-
tainties with this method are linked with the well-log quality, the
local complexity of rock composition, and the log-reference values
selected. Another method applies the phonon-conduction theory to
predict TC for crystalline rocks using density, sonic velocity, and
temperature as predictor variables (Williams & Anderson 1990).
However, the temperature data required in this approach hinder an
application in wells, in which only standard well logs are measured.

Numerous authors have demonstrated for different rock types the
direct relation of TC and single petrophysical properties (mostly
density and sonic velocity) using statistical methods (e.g. Čermák
1967; Anand et al. 1973; Poulsen et al. 1981; Beziat et al. 1992;
Pribnow et al. 1993; Kukkonen & Peltoniemi 1998; Sundberg 2002;
Popov et al. 2003; Hartmann et al. 2005, 2008; Goutorbe et al. 2006;
Sundberg et al. 2009; Gegenhuber & Schön 2012). However, the
results gained for sedimentary as well as crystalline rocks show
inconsistencies, are inhomogeneous, and the observed correlation
trends differ significantly from one another. Some data show just
scatter, some a positive correlation and other a negative correlation
of bulk TC with different properties. Hence, no generally valid,
simple linear correlation between TC and density or sonic velocity
seems to exist, which is in accordance to conclusions by Kukkonen
& Peltoniemi (1998). The list of empirical relationships established
between well-log data and measured TC is long. Also the complex-
ity of the proposed equations is quite different due to the devel-
oped calculation models (e.g. Houbolt & Wells 1980; Gegenhuber
& Schön 2012) or because of different regression techniques ap-
plied. Simple linear regression (SLR; Dachnov & Djakonov 1952;
Zierfuss & Van der Vliet 1956; Bullard & Day 1961; Karl 1965;
Moiseyenko et al. 1970; Molnar & Hodge 1982; Lovell & Ogden
1984; Lovell 1985; Della Vedova & Von Herzen 1987; Griffiths
et al. 1992; Zamora et al. 1993; Sahlin & Middleton 1997; Popov
et al. 2011), multiple linear regression (MLR; e.g. Thornton 1924;
Anand et al. 1973; Goss et al. 1975; Goss & Combs 1976; Evans
1977; Molnar & Hodge 1982; Vacquier et al. 1988; Doveton et al.
1997; Popov et al. 2003; Hartmann et al. 2005; Goutorbe et al.
2006; Khandelwal 2010) as well as non-linear regression (NLR)
analysis (e.g. Tikhomirov 1968; Balling et al. 1981; Özkahraman
et al. 2004; Popov et al. 2011) were used. These regression-based
empirical equations are typically limited to the rocks on the basis
of which they were established (e.g. lithotype, stratigraphy) so that
they are not universally applicable (e.g. Goss & Combs 1976; Evans
1977; Molnar & Hodge 1982; Blackwell & Steele 1989; Hartmann
et al. 2005). Most recently, studies were published that use artificial
neuronal networks (ANNs) instead of linear or even NLR tech-
niques (e.g. Goutorbe et al. 2006; Singh et al. 2007; Singh et al.
2011; Khandelwal 2010). The ANNs often show higher accuracy
compared to common regression techniques. However, due the lack
of knowledge on the internal parameters deployed they do not allow
a third party to use them later on for their own TC prediction.
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Thermal conductivity of sedimentary rocks 3

Figure 1. Workflow for TC prediction from petrophysical properties of sedimentary rocks.

3 M E T H O D S

3.1 Workflow

Considering the limitations that past studies have shown in the well-
log based prediction of TC, we have selected a different approach
whose workflow is provided in Fig. 1. In a first step, for large sets
of mineral assemblages it is studied how the TC of the most typical
rock-forming minerals of sediments is correlated with individual,

conventional petrophysical well-log properties and how these corre-
lations are influenced by an assumed porosity. Matrix TC prediction
equations are derived, which are used to calculate bulk TC based
on porosities from well logs. In a second step, prediction equations
for bulk TC are developed using a set of conventional petrophysical
well logs and measured TC values from the Mesozoic section of
the NGB. The most accurate prediction equations in turn are used
to calculate TC profiles for full borehole sections. The calculated
TC profiles are validated by comparison with measured TC and by
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4 S. Fuchs and A. Förster

Table 1. Petrophysical descriptors combined with TC.

Petrophysical descriptor Unit Equation

Volume fraction of shalea — Vsh.GR = γmea−γmin
γmax−γmin

— Vsh.ND = φN−φD
φN.sh−φD.sh

Density porosityb p.u. φD = ρma−ρb
ρma−ρfl

Sonic porosityc p.u. φS = �T −�Tma
�Tfl−�Tma

Total porosityd p.u. φt = φN+φD
2

Effective porositye p.u. φe = φt(1 − Vsh)

Apparent matrix hydrogen index p.u. φN.ma = φN − φD

Apparent matrix densityf g cm–3 ρmaa = ρb−(φt·ρfl)
1−φt

Apparent matrix acoustic transit timef µs m–1 �Tmaa = �T −(φt ·�Tfl)
1−φt

Apparent photoelectric absorption indexf barns cm–3 Umaa = U−(φt·Ufl)
1−φt

aSerra (1984). bAsquith & Gibson (1982). cWyllie et al. (1958). dDoveton et al.
(1997). eDewan (1983). fWestern Atlas (1995).

comparison of measured temperature-gradient profiles with those
calculated according to Fourier’s law using predicted TC values.
Finally, previously published well-log based TC prediction methods
are evaluated by application to our data set of measured TC values.

3.2 Well-log parameters and TC

Various well-log parameters, for example, bulk density (ρb), natural
gamma-ray (γ ), sonic interval transit time (�T), hydrogen index
(neutron porosity, φN), photoelectric factor (Pe) and petrophysical
descriptors for example, volume fraction of shale (Vsh), density
porosity (φD), matrix density (ρma) are important for this work. The
basic well-log equations applied in this study are listed in Table 1.

In general, the total response of a geophysical tool (Ltotal) is de-
termined by the volume fraction of different formation components
(minerals and pore space with filling fluid, Vi) and their theoreti-
cal tool response (Li) with the constraint that

∑
Vi = 1 (eq. 1, e.g.

Savre 1963; Doveton & Cable 1979; Serra 1984)

L total =
∑n

1
Vi Li . (1)

Thus, the total log response of any user-defined rock composition
can be calculated (e.g. for ρb, U, φN and in the laminated case �T;
see Savre 1963; Serra 1984). Where several radioactive minerals
are present, the gamma-ray tool response is a function (eq. 2) of
the concentration by the weight of ith mineral in the rock and the
density of the rock matrix (Serra 1984):

GRρb =
∑n

1
ρi Vi Ai . (2)

Typical log-response values of minerals and fluids, valid for am-
bient conditions, are listed in Table 2. If volume fractions were
determined from well-log data, the KIWI-tool (Doveton 1986) was
used.

Following the experience of previous authors (e.g. Woodside &
Messmer 1961; Sass et al. 1971; Merkel et al. 1976; Brigaud &
Vasseur 1989) the geometric mean model, originally introduced by
Lichtenecker (1924), was used to calculate matrix TC (λma, eq. 3)
from the mineral constituents, as well as to calculate the saturated
bulk TC (λb, eq. 4) using the matrix TC and porosity (�) (e.g. Fuchs
et al. 2013):

λma =
∏n

1
λ

Vi
i , (3)

where Vi is the volume fraction of each component,

λb = λ1−φ
ma λφ

p , (4)

where λp is the TC of the pore-filling fluid.

3.3 Statistics

All data were randomly subdivided in two groups, one set of test
data (80 per cent of data) and one set of validation data (20 per cent
of total data). The test data set was used for statistical analysis,
while the validation data set was used to prove the statistical quality
of the deduced prediction equations (Fig. 1).

SLR, MLR and NLR analysis based on a least-squares estimation
were applied to predict the values on a quantitative outcome variable
(dependent variable: TC) using one or more predictor variables
(independent variable: well-log values). Levels of ‘F to enter’ and
‘F to remove’ were set to correspond to p levels of 0.05 and 0.1,
respectively.

The performance of the applied methods was evaluated by test
(values not reported) and validation data (reported fitting data) using
the arithmetic mean error (ame), the standard error of the estimate
(SE), and the coefficient of determination (R2) between predicted
and measured values, respectively. SE explains the excursions of the
given TC values from the computed regression line and is defined
as the rms value:

rms =
√

1

n

∑n

i=1
(TCmea.i − TCpred.i )2, (5)

where n is the number of samples.
R2 describes the dependent-variable variance (TC), which is ex-

plained by the independent-variable variance (log-response values).
In this study, the adjusted R2 value is reported, which is frequently
slightly smaller than R2, but more robust by taking into consid-
eration the number of observations and the number of predictor
variables. Coefficient of variation (cv) is given as the quotient of
rms value and arithmetic mean value of the measured TC. Coeffi-
cient of variation values <10 per cent are assumed as an indicator for
a valid prediction model. All prediction equations developed and
presented hereafter show an acceptable level of multicollinearity
(tolerance > 0.3), which means a low level of correlation between
two predictor variables, and the standardized residuals are always
(nearly) randomly distributed.
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Thermal conductivity of sedimentary rocks 5

Table 2. Petrophysical properties and logging-tool characteristic readings of rock-forming minerals typical in sedimentary rocks and of fluids.

Class Name Abbreviation TC [W (m K)–1] ρ (g cm–3) U (barns cm–3) �N (p.u.) �T (µs m–1) γ (API)

Carbonates Dolomite Dol 5.4a,b,c,d 2.88e 9e 0.02e 140e,f 0a

Calcite Cal 3.4a,b,c,d 2.71e 13.77e 0e 153e 0e

Clays Kaolinite Kln 2.7a,b 2.42e 6.17e 0.37e 211g 80e

Montmorillonite Mnt 1.85a,b 2.12e 4.3e 0.12e,g 212g 150e

Illite Ilt 1.8a 2.75e,h 11.05e 0.2e 211g 250e

Feldspats Orthoclase Or 2.25a,b,c 2.57h 7.5e –0.02e 233e 220e

Albite Ab 2c 2.62e 4.35e –0.01e 165e,f,g 0e

Anorthite An 1.9b 2.74e 8.58e –0.02e 145c 0e

Hallogenides Sylvite Syl 8.5b 1.98e 15.83e –0.02e 242g 747e

Halite Hl 6.5c 2.15e 9.48e –0.02e 229e 0e

Micas Muscovite Ms 2.33c,f 2.82e 7.33e 0.185e,g 151e,f,g 270e

Biotite Bt 2c 3e 19.8e 0.21e 195f 200e

Oxides Quartz Qz 7.7a 2.65e 4.79e –0.02e 182e 0e

Sulfates Anhydrite Anh 4.8b,c,d 2.96e 14.93e –0.02e 164b,e,g 0e

Gypsum Gp 1.3e 2.32e 9.37e 0.49e 174d 0

Fluid Air 0.025i 0.0012 – 0 3021b –
Water 0.604j 1.15 0.96 1.05 620e –
Oil 0.14b 0.88e 0.11e –0.02 770e –

aSerra (1984); bBrigaud & Vasseur (1989); cFertl & Frost (1980); dSchön (1996); eSchön (1983); fHorai (1971); gČermák & Rybach (1982);
hLemmon et al. (2005); iCrain (2013); jGröber et al. (1955). Mineral abbreviations after Whitney & Evans (2010).

3.4 Pressure and temperature correction
of laboratory-measured TC

The TC values predicted in this study from standard well-log pa-
rameters basically represent the physical properties of the rock
matrix plus porosity. Pressure and temperature influences on the
laboratory-measured TC are a priori not considered. For the valida-
tion of predicted bulk TC temperature-gradient plots from measured
temperature logs are compared with respective plots calculated on
the basis of predicted bulk TC and a site-typical value of surface
heat flow (cf. Section 5.2). For this purpose, the predicted TC values
are corrected to in situ values by applying pressure and temperature
corrections.

For the correction of the temperature effect the equation of
Somerton (1992) is used. The pressure correction was made with
a new equation that is based on various relations derived from lab-
oratory experiments on sedimentary rocks (sandstone, anhydrite,
greywacke, conglomerate, limestone and dolomite) and crystalline
rocks (granite, amphibolite and gneiss; Fig. 2):

T Ccor = (1.095 · TClab − 0.172) · p(0.0088·TClab−0.0067), (6)

where TClab is the zero-pressure TC in W (m K)–1 and p is the
assumed in situ pressure in MPa.

The pressure build-up TC values involved in the equation were
obtained under different experimental conditions (e.g. uniaxial, tri-
axial and (quasi-)hydrostatic pressure; air, water or oil as pore-filling
fluid) to maximum values of 400 MPa. With sufficient certainty, eq.
(6) can be applied to laboratory TC between 1.5 and 5.0 W (m K)–1.

4 A NA LY S I S

4.1 Relations of TC and petrophysical properties
of minerals

A data set was compiled, comprising TC values and logging-tool re-
sponse values (ρb, Pe, φN, �T and γ ) for 15 rock-forming minerals
most abundant in sedimentary rocks (Table 2), to study the inter-
relations between TC and these parameters. Fig. 3 shows that the
interrelations between the different petrophysical properties and TC

differ largely. The TC-density plot (Fig. 3a) for example is highly
diffuse; no global trend is apparent. Carbonate minerals show a
positive correlation with TC, which continues with increasing con-
tent of clay (e.g. the carbonate-mudstone facies), except of illite.
Clastic rocks, composed of quartz, mica, plagioclase and illite are
negatively correlated with TC; whereas rocks composed of quartz,
orthoclase, montmorillonite and kaolinite show a weak positive
correlation, respectively. The nonexistence of a unique global TC–
density correlation is in contradiction to the results of Horai &
Simmons (1969), who recognized a correlation for minerals with
the same mean atomic weight. Application of a regression equation
formulated by Schön (1996) based on the database of Horai and
Simmons did not reproduce any TC for the 15 rock-forming miner-
als used in this study. The difference to our results may be explained
by the fact that Horai and Simmons included in their database of 119
minerals also those that are not regarded as typical rock-forming
minerals of sedimentary rocks.

The interrelation between TC and sonic transit time (Fig. 3b)
is well described by the Debye theory and the Birch relationship
(Birch 1960, 1961). Horai & Simmons (1969) determined a pos-
itively correlated trend from the data of Birch (1960, 1961) and
Simmons (1964a,b). However, this trend cannot be observed for
all minerals included in this study. A negative correlation can be
observed within halogenides, while a positive correlation can be
observed in the carbonate–mudstone system. For clastic rocks, the
correlation trend largely depends on the most abundant mineral after
quartz.

The TC–photoelectric factor plot (Fig. 3c) shows a similarly
diffuse scatter as the TC versus density and sonic transit time.
However, Pe, ρb and �T are suitable for the separation between
evaporites, carbonates and clastic rocks.

A clear nonlinear trend is observed between TC and the hydrogen
index obtained from the φN-log (Fig. 3d). Halogenides, feldspars,
carbonate minerals and anhydrite comprise the entire spectrum of
TC values, but show only low hydrogen-index values. Only OH-
bearing sheet silicates (e.g. clay minerals, micas and gypsum), ex-
hibit a moderate or high hydrogen index (corresponding with low
TC values). Thus, TC prediction from the hydrogen-index values
alone is for most of the minerals impossible.
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6 S. Fuchs and A. Förster

Figure 2. Pressure dependence of rock TC. (a) Laboratory measured TC as function of pressure for selected lithotypes (dot: anhydrite, open triangle: dolomite,
open rectangle: limestone, open diamond: sandstone). Dashed lines are calculated from eq. (6). Eq. (6) originated from data by Woodside & Messmer (1961),
Walsh & Decker (1966), Hurtig & Brugger (1970), Balling et al. (1981), Buntebarth (1991), Seipold & Huenges (1998), Abdulagatova et al. (2009) and
Abdulagatova et al. (2010). (b) Measured versus calculated (eq. 6) TC.

Figure 3. TC versus petrophysical properties for 15 rock-forming minerals common in sedimentary rocks. Plotted mineral data are from Table 2.

The gamma-tool response values are completely uncorrelated
(Fig. 3e) to TC. However, it is remarkable that the most gamma-
active minerals (clay minerals, mica, alkali feldspar) show TC values
in a narrow range [between 1.5 and 3.0 W (m K)–1]. Owing to this,
incoherent negative correlations between TC and gamma ray can be
observed in quartz-dominated sediments. However, obviously this
cannot be regarded as universally valid.

The TC prediction capability of all five predictor variables is poor
[best case using MLR: Adj. R2 = 0.26, rms = 2.02 W (m K)–1],

which is no surprise. Changes of correlation trends within or be-
tween formations of different composition have a crucial impact
on the prediction results, if empirically equations with fixed regres-
sion coefficients are used. Those regression coefficients are equal
to the slopes for the different predictor variables, indicating the cor-
relation trends between dependent and independent variable. The
final predicted TC value is cumulative from the partial TC values
coming from each (input) predictor variable. The resulting mis-
fit coming from these trend changes results in a high inaccuracy
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Thermal conductivity of sedimentary rocks 7

Figure 4. Influence of rock porosity on the correlation trends for two-component systems (matrix minerals and porosity). Black diamonds: (A) sandstone
(matrix: 100 per cent quartz; 18 per cent porosity), (B) shaly sandstone (matrix: 75 per cent quartz, 25 per cent illite; 5 per cent porosity), (C) claystone (matrix:
100 per cent illite; 5 per cent porosity), (D) mudstone (matrix: 50 per cent calcite, 50 per cent illite; 3 per cent porosity), (E) limestone (matrix: 100 per cent
calcite; 10 per cent porosity), (F) dolomite (matrix: 100 per cent dolomite; 10 per cent porosity). Blue dotted line: no correlation, red line: negative correlation,
green line: positive correlation.

in SLR, which can possibly, at least partly, be compensated using
additional predictor variables in explanation of TC (using MLR).
However, such simultaneous change of predictor variables poses
an increased danger of multicollinearity for MLR techniques and,
therefore, instable estimates for the coefficients. Thus, the major
correlation trends are of great importance for the use of regression
techniques.

Curve fitting with NLR or the application of ANN techniques
(feedforward backpropagation neural networks) provides no better
fit than MLR. Obviously, there is no fundamental relationship be-
tween TC and other petrophysical properties that could be obtained
for the selected rock-forming minerals. Some pairs of petrophysi-
cal properties are clearly uncorrelated, while others show only poor
correlations. Thus, it is fair to assume, that in some situations other
factors must have influenced the relationships observed by various
authors on rock samples. Porosity and the type of pore-filling fluid
(e.g. water, air, oil and gas) are obvious factors.

4.2 Influence of porosity on the relations of TC
and petrophysical properties of rocks

The total log response significantly changes with different porosity
because of the contrast in properties of the pore-filling fluid com-
pared to those of the matrix mineral grains (Table 2). This fact is
well displayed in the cross-plots for different two-component (ma-
trix mineral and porosity) systems, exemplarily shown for ρb and
�T (Fig. 4). Depending on the TC value of the matrix component,
different porosity values result in different slopes and slope direc-
tions (correlation coefficients). Those changes in correlation trends
(positive or negative correlations) imply problems for regression
techniques as previously described. For example, the change from
a clay-free ‘quartz rock’ (representative of clean sandstone) of high
porosity to a quartz-illite mixture (argillaceous sandstone) result in
positive correlations between TC and density whereas negative cor-
relations can be expected for a low-porous ‘quartz rock’ (Fig. 4a).

The same effect can be observed for numerous other lithotype com-
binations. In contrast, the TC–�T relation, exemplarily shown in
Fig. 4(b), indicates only negative correlations. In conclusion, due
to the ambiguous influence of porosity on the correlation trends
we proceed in the TC prediction with the focus on the mineral
constituents of the rock matrix and thus the matrix TC.

4.3 Matrix-TC prediction for artificial rock compositions

For this purpose, the sedimentary rocks are classified into three
major groups (I) carbonates, including mudstones, (II) clastic rocks
and (III) marine evaporites (Table 3). For the groups (I) and (II),
multimineral rock compositions are defined, based on the stepwise
combination (in 10 per cent steps) of different rock-forming min-
erals common in sedimentary rocks. This procedure is performed
as long as each mineral was combined with each other within the
limitations defined in Table 3. For the group (III), the marine evap-
orites, an artificial data set of rock composition is generated by
stepwise combination of two minerals of the calcite–dolomite–
gypsum–anhydrite–halite–potassium–magnesium–salt sequence.

Petrophysical properties are calculated for each mineral combi-
nation shown in Table 3 using the mineral data given in Table 2,
which in turn formed the basis for the prediction equations of matrix
TC. Thus, for rocks with the same mineralogy, the matrix well-log
response, computed from the bulk tools response and the poros-
ity (applying eqs 1, 2 and 4, and typical log-response values from
Table 1), should be equal to the petrophysical properties calculated
for this mineralogy. Prediction equations for matrix TC are cal-
culated by using multiple regression analysis. Taking into account
the balance between the use of as few as possible different well
logs and the need to achieve a large explained variance (minimiz-
ing the prediction error), the ‘optimal log configuration’ for each
rock group and the deduced empirical relationships are described
in the following subsections. However, in many cases the ‘optimal
log configuration’ for determination of matrix TC is not available,
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8 S. Fuchs and A. Förster

Table 3. Groups of sedimentary rocks with respect to their assumed rock composition, and
the min-max range of the particular minerals.

Group Mineral Range

Carb. (per cent) Clast. (per cent) Evap. (per cent)

Oxides Quartz 0–50 50–100 —
Anorthite — 0–50 —

Feldspars Albite — 0–50 —
Orthoclase — 0–50 —

Micas Muscovite — 0–20 —
Biotite — 0–20 —

Kaolinite 0–70 — —
Clays Montmorillonite 0–70 0–100 —

Illite 0–70 0–100 —
Carbonates Calcite 0–100 0–20 0–100

Dolomite 0–100 0–20 0–100
Sulfates Anhydrite — 0–20 0–100

Gypsum — — 0–100
Chlorides Halite — — 0–100

Sylvite — — 0–100

Note: Carb., carbonates; Clast., clastic rocks; Evap., evaporites.

Table 4. Matrix-TC equations derived from regression analysis for major sedimentary rock types.

Rock group Matrix TC prediction equations R2 n rms ame SD cv T F Bs1 Bs2 Bs3 eq.
[W (m K)–1] (per cent) (per cent) (per cent)

Evaporites λm = 14.06 − 10.35φN.ma − 3.37ρma 0.92 51 0.45 7.0 5.6 8.8 0.99 237.4 –0.81 –0.50 — (7)
Carbonates λm = 5.058 − 0.1ρma − 2.915Vsh 0.95 2252 0.17 4.2 3.2 5.1 0.38 14891 0.46 –0.79 –0.67 (8)

λm = 3.093ρma − 2.727Vsh − 0.332Uma − 0.55 0.7 2252 0.39 9.2 6.8 10.6 0.58 2653 –0.15 –0.85 — (9)
Clastics λm = 5.281 − 2.961φN.ma − 2.797Vsh 0.43 3484 0.44 11.4 9.1 14.7 0.55 1336 –0.58 –0.11 — (10)

Note: All predictor variables are highly significant (p < 0.001). For statistics see Section 3.3, for abbreviations see the Appendix A.

in particular in old boreholes. Then, matrix TC can be predicted
by using one of the additional regression equations listed in the
Appendix B. The appendix comprises regression coefficient, sta-
tistical parameters and the expected prediction errors (for artificial
and subsurface data set) for each possible combination of well logs
used in this study. Considering larger prediction uncertainties, this
allows a TC prediction even if the required and recommended log
combination is not available.

4.3.1 Carbonates

In a first attempt, all matrix well-log properties (Table 2) are included
in the regression analysis (MLR). The result is a nearly perfect
coefficient of regression (R2 = 0.98). Considering that the largest
impact on the explained variance is by the first three predictor
variables, ρma, Vsh and Uma (R2 = 0.95), a prediction equation with
three variables (Table 4, eq. 8) is a proper choice if a minimal number
of well logs shall be included in the TC prediction. The matrix TC
is determined with an error of <10 per cent for >96 per cent of
the predicted values. This is that 95 per cent of the values show
deviations of <0.24 W (m K)–1]. The implementation of Uma in the
prediction equation results only in a slightly improved explained
variance. Furthermore, ρma and Uma show signs of multicollinearity
(tolerance ∼ 0.3). Thus, Uma could be ignored in the TC prediction
if the respective log is not available. The resulting, two-predictor-
equation (Table 4, eq. 9) shows no multicollinearity (tolerance >

0.5) and is able to predict >60 per cent of the values with deviations
<10 per cent. This is that 50 per cent of the values show deviations
of <0.25 W (m K)–1. The coefficient of determination (R2 = 0.70)
is high, indicating a good degree of tracking. The prediction errors
(ame, rms) are in the order of 9.2 per cent and 0.39 W (m K)–1.

4.3.2 Clastic rocks

The high variability of ρma and �Tma of major clay minerals (illite,
montmorillonite and kaolinite) are the main challenging factors for
a valid prediction equation for matrix TC using MLR. For these
properties, changes in the correlation trend from one clay mineral
to another as well as from one rock composition to another (see also
Fig. 3) do not allow a development of a valid empirical prediction
equation for matrix TC. Even for the simplest rock matrix model,
consisting of quartz and different clay minerals, the prediction failed
by using the full suite of available well-log parameters. Only for
rocks composed of quartz, feldspar, and mica and one clay mineral
only a nearly perfect coefficient of variation is achieved. That is
why ρma and �Tma were not taken into further consideration, and the
prediction model is reduced to the use of Vsh and φN.ma. The resulting
two-predictor-equation (Table 4, eq. 10) shows no multicollinearity
(tolerance > 0.55) and is able to predict >67 per cent of values
with deviations of <10 or 92 per cent with deviations <20 per cent,
respectively.

4.3.3 Evaporites

A stepwise MLR was performed using φN.ma, Uma, �Tma and ρma as
predictor variables. Regarding that none of the considered minerals
(Table 3) show an intrinsic natural gamma response, the gamma-ray
log, and thus the calculated Vsh are no useful TC predictors for the
evaporate sequence. However, they are certainly useful for a litho-
logical identification. The φN.ma log response delivers the largest
part of the shared explained variance for the predicted TC. Step 1
results in R2 = 0.67. In step 2, ρma was added as further predic-
tor variable, which improved the result significantly to R2 = 0.92
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Thermal conductivity of sedimentary rocks 9

Figure 5. Studied borehole sites in the North German Basin. (A) the Ketzin site; (B) the Hannover site. NEGB, Northeast German Basin, NWGB, Northwest
German Basin. Generalized stratigraphic column of the Mesozic with major geothermal sandstone aquifers and major aquitards (modified Feldrappe et al.
2008). Red bars indicates the section studied in this paper.

(Table 4, eq. 7). �Tma and Uma provided no further explained vari-
ance and thus were not implemented in the prediction equation.
Using this equation, >80 per cent of the predicted values show
deviations <10 per cent. This is that 60 per cent of values show
deviations <0.25 W (m K)–1. The ame value is in the order of
7.0 per cent.

4.4 Bulk-TC prediction from laboratory measured TC
and well-log data of the NGB

For the TC prediction, well-log data were used from two sites
(Fig. 5). At site A, the Ketzin site, data were available from three
wells (the Ktzi 200, Ktzi 201 and Ktzi 202 boreholes) drilled to
a total depth of approximately 800 m as part of the CO2SINK
project (Norden et al. 2010). The wells bottom in the Upper Triassic
(Stuttgart Formation, Middle Keuper). At site B, the Hannover site,
well-log data from the Groß-Buchholz well (GT 1) are used (Hübner
et al. 2012; Schäfer et al. 2012). The well, drilled in the framework
of the GeneSys project, has a total depth of approximately 3900 m
and bottoms in the Lower Triassic (Middle Buntsandstein). Thus,
the four boreholes represent a combined subsurface section of the
whole Mesozoic in the NGB.

A total of 1755 TC values were measured under ambient labo-
ratory conditions on drill cores retrieved from these boreholes and
used in this study to develop prediction equations for bulk TC from
well logs. 733 TC values (B. Norden, personal communication 2013)
are from the Stuttgart Formation (∼80 m thick) at the Ketzin site.
The Stuttgart Formation is lithologically heterogeneous and made

up of fluvial sandstones (feldspathic litharenites and lithic askoses)
and siltstones interbedded with mudstones showing remarkable dif-
ferences in porosity caused by high contents of anhydritic cementa-
tion in some extent (Förster et al. 2006, 2010; Norden et al. 2010).
1022 values are from the Wealden Formation (190 m thick, cored
between 1208 and 1223 m) and the Middle Buntsandstein (250
m thick) at the Hannover site (Orilski et al. 2010). The Wealden
Formation is dominated by sandy siltstones and silty claystones,
which are interbedded by thin well-sorted sandstones (subarkoses
and sublitharenites). Medium porosity values (10–15 per cent), low
densities, and clay-mineral, carbonate and silicaceous cementation
were commonly observed (Hesshaus et al. 2010; Hübner et al.
2012). Middle Buntsandstein samples from this site are dominated
by carbonate and anhydrite cemented, fine- to medium grained,
well-sorted sandstones of low porosity (<3 per cent; Röhling &
Heinig 2012), siltstones and claystones (Hesshaus et al. 2010), re-
spectively. On both locations, the neutron porosity was logged as
limestone porosity.

For the Ketzin site, measurements of water-saturated bulk TC
(n = 733) on drill-core samples were performed by B. Norden
(personal communication, 2013). For the Hannover location, bulk
TC was measured (n = 1022) on dry drill-core samples by Oril-
ski et al. (2010). Both sets of TC data were obtained under am-
bient conditions (T ∼ 293 K; atmospheric pressure) using the
high-resolution optical scanning method developed by Popov et al.
(1999). The dry measured TC data from the Hannover location
were converted to water-saturated bulk TC using well-log de-
rived porosity and the corrected geometric mean model (Fuchs
et al. 2013).
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10 S. Fuchs and A. Förster

Figure 6. Cross-plots of well-log data and measured bulk TC (y-axis on the left) for the NGB data set. Colored bars (histogram) represent the relative frequency
(y-axis on the right) of the petrophysical property values. R, Pearson’s correlation coefficient. Yellow cross, Middle Buntsandstein; blue rectangle, Wealden
Fm.; grey diamond, Stuttgart Fm.

The data set was analyzed for the relations of measured bulk TC
and single petrophysical well-log parameters (Fig. 6). Density and
photoelectric factor show different correlation coefficients for the
three geological formations analyzed. TC is negatively correlated
with ρb and Pe for the Middle Buntsandstein (R = –0.67 and –0.7)
and weakly positive correlated for the Stuttgart Fm. (R = 0.17 and
0.23), respectively. For gamma ray (and thus Vsh), �T and φN only
positive correlations are observed, whereby Stuttgart Fm. samples
show always significantly lower correlation coefficients than the
other two formations.

The data set of measured bulk TC formed the basis for develop-
ment of a prediction equation of bulk TC using the petrophysical
well-log properties shown in Fig. 6. This analysis was performed
for the full data set on the one hand and individually for the three
geological formations on the other hand.

4.4.1 Analysis of the full data set

A first MLR with all five predictor variables resulted in a moder-
ate coefficient of determination of approximately 0.79. However,
caused by the large number of input variables, a high level of mul-
ticollinearity was present (tolerance < 0.4), so that the model was
rejected. The largest impact on the explained variance was by φN

and Vsh. MLR including only these two variables (Table 5, eq. 11)
shows a somewhat lower coefficient of determination (R2 = 0.75)

and a very low level of multicollinearity (tolerance = 0.96) com-
pared to the five-variable model. Both the ame value [0.33 ± 0.26
W (m K)–1] and the cv value (12.8 per cent) are acceptable. More
than 70 per cent of samples show deviations <20 per cent.

4.4.2 Analysis of Wealden formation

A first stepwise regression analysis showed that φN, ρb, Vsh and U
were useful predictor variables. However, Vsh and U provided only
a low additional explained variance (�R2: 0.041). Thus, a reduction
of the regression model to φN and ρb (Table 5, eq. 12; Fig. 7a)
results in a somewhat larger error [�rms: 0.017 W (m K)–1], which,
however, is insignificant for applications. More than 76 per cent
of samples show deviations <10 per cent and nearly all samples
(98 per cent) show deviations <20 per cent.

4.4.3 Analysis of Stuttgart formation

The most accurate bulk-TC prediction using MLR was obtained
by using Vsh, φN and �T as predictor variables. The coefficient
of determination (R2 = 0.53) indicated a good degree of tracking
(Table 5, eq. 13; Fig. 7b). The additional use of ρb and U as predic-
tor variables would result in a statistically significant improvement
of the prediction quality, which, however, is insignificant for appli-
cations. The average error [ame: 0.16 ± 0.15 W (m K)–1] is low,
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Thermal conductivity of sedimentary rocks 11

Table 5. Bulk-TC equations derived from regression analysis for subsurface data.

Data set Bulk TC prediction equations R2 n rms ame SD cv T F Bs1 Bs2 Bs3 eq.
[W (m K)–1] (per cent) (per cent) (per cent)

Full data set λb = 4.75 − 4.19φN − 1.81Vsh 0.75 1755 0.43 11 9.9 13 0.9 2024 –0.64 –0.40 — (11)
Wealden Fm. λb = 4.97 − 2.24Vsh − 1.87φN 0.65 288 0.33 6.8 5.3 8.7 0.7 260 –0.55 –0.35 — (12)
Stuttgart Fm. λb = 4.05 − 0.48Vsh − 2.06φN − 0.003�T 0.53 325 0.28 9.4 11 9.8 0.3 123 –0.34 –0.29 –0.26 (13)
M. Buntsandst. λb = 11.95 − 1.81Vsh − 0.038�T 0.84 734 0.25 5.5 4.1 6.7 0.6 1843 –0.58 –0.43 — (14)

Note: All predictor variables are highly significant (p < 0.001). For statistics see Section 3.3, for abbreviations see Appendix A.

more than 73 per cent of samples show deviations <10 per cent and
nearly all samples (96 per cent) show deviations <20 per cent.

4.4.4 Analysis of Middle Buntsandstein

Bulk density and the Vsh are the most important predictor variables
for these samples (Table 5, eq. 14). The coefficient of determination
(R2 = 0.83) is high, indicating a fair degree of tracking for the
full formation (Detfurth and Volpriehausen samples). The error
distribution is small [ame: 0.2 ± 0.14 W (m K)–1], resulting in
cv of approximately 7 per cent. The qualitative agreement between
measured and predicted values (Fig. 7c) is obvious with most of the
predicted conductivities within ±10 per cent. More than 88 per cent
of samples show deviations <10 per cent and nearly all samples
(99 per cent) show deviations <20 per cent.

In summary, four equations for bulk-TC prediction are developed.
They display different errors of determination. The application of an
overall prediction equation for clastic rocks results in errors (ame)
on the order of 11.2 ± 9.9 per cent. Significantly smaller errors can
be achieved by the application of individual prediction equations for
the specific geological formations (ame values between 5.5 ± 4.1
and 9.4 ± 10.6 per cent).

4.5 Discussion

The weak positive correlation of TC and density obtained for the
Stuttgart Fm. (Fig. 6c) is in line with previous results for shaly
sediments (e.g. Beziat et al. 1992, clay–sand mixtures; Hartmann
et al. 2005, shaly sands and carbonates). In contrast, the strong
negative correlation of TC and density observed for the clean sand-
stones of the Middle Buntsandstein and the interbedded sandstones
of the Wealden was not previously known, but was reported for
crystalline rocks (e.g. Pribnow et al. 1993; Kukkonen & Peltoniemi
1998; Sundberg 2002). The negative correlation trends are consis-
tent with the theoretical models including the rock-forming min-
erals (Fig. 3a). Thus, given the ambiguity in the observed trends
for different rock types, the density does not seem to be a useful
discriminator for clastic rocks to overcome the known limitations
of previously published equations.

The weak to strong negative correlations of TC with sonic sonic
interval transit time (Fig. 6e) and, vice versa the positive correlation
with sonic velocity, observed for shaly sediments and low-porosity
sandstones support previous observations (e.g. Sahlin & Middleton
1997; Hartmann et al. 2005; Goutorbe et al. 2006; Gegenhuber &
Schön 2012). They also correlate with the theoretical observations
presented in this study (Fig. 4b). However, the wide range of negative
correlations caused by porosity hinders the use of this well-log
parameter as a predictor variable for clastic rocks. Therefore, it is
expected that most of the approaches published in literature using
�T as a predictor variable (Table 7) will not work for our data set,

especially if the standardized beta-coefficient for �T from MLR
analysis is large.

The weak to strong negative correlations of TC with Vsh observed
on the full data set (Fig. 6d) are generally comparable to the results
of Brigaud & Vasseur (1989), who obtained similar results for sand-
stones of variable clay content. Also the TC–Vsh data scatter of the
Ketzin samples and of the shaly rocks of Sahlin & Middleton (1997)
are similar. Sahlin & Middleton (1997) found no obvious prediction
trend for bulk TC for shales and claystones, which they explained
by the large range of TC of clay minerals. On the contrary, Vsh is
important for each of the deduced bulk-TC equations in this study
(eqs 11–14) and for matrix TC calculated for clastic and carbonate
rocks (eqs 8–10), respectively.

The negative correlation between TC and φN (Fig. 6f) has not
yet been widely discussed in the literature. As the analysis of the
(matrix) TC–φN interrelation indicates a nonlinear behavior for the
group of major minerals itself, quartz-dominated rock compositions
consistently generate this range of negative correlations.

The photoelectric factor was suggested by many authors (e.g.
Doveton et al. 1997; Sahlin & Middleton 1997; Goutorbe et al.
2006) to be a valuable predictor variable. Our observation however
delineate both positive and negative correlations with TC (Fig. 6a)
making it questionable to include this variable into prediction equa-
tions for clastic rocks. In addition, following Fig. 3c, the correla-
tion between TC and Pe in carbonate–mudstone systems strongly
depends on the major carbonate and clay minerals, respectively.
All in all, Pe may be more useful for the discrimination between
the major depositional groups than as predictor variable in MLR
analysis.

In general, different types of electrical resistivity logs are com-
monly available in deep wells. Thus, the implementation of this
petrophysical property would be an attractive option to enlarge the
application range of the proposed method. However, the method pre-
sented herein based on reliable and largely invariant log-response
values of the selected minerals. Following the data of Serra (1984),
that cannot be assumed for the most important minerals selected
in this work (cf. the large resistivity range of quartz, calcite and
halite, respectively). Depending on the chosen reference value the
correlation of matrix resistivity with matrix TC might be positive,
negative or neutral for the same composition. Thus, resistivity log
was not considered in this study.

5 VA L I DAT I O N

5.1 Comparison of measured and calculated TC data

The validation of the prediction equations for TC of clastic rocks
by comparison of calculated and measured TC values is made on
the validation data set (Fig. 1). Matrix TC values are calculated
from eqs (8) and (10) (Table 4) for carbonates and clastic rocks and
transposed to water-saturated bulk TC using the geometric mean
model (eq. 4) and log values of effective porosity. In addition, bulk
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12 S. Fuchs and A. Förster

Figure 7. Comparison of well-log based TC (three right tracks). Predicted bulk TC (red line) versus laboratory-measured bulk TC (measured values: grey
dots, moving average (1 m): dashed line) for three selected well sections. For abbreviations see Appendix.
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Thermal conductivity of sedimentary rocks 13

TC values are calculated using eq. (11) (developed for clastic rocks
independent of rock type) and using eqs (12)–(14) (developed for
single rock types/geological formations).

In general, the calculated TC values mimic very well the trends
of TC changes along geological sections (Fig. 7). Bulk TC calcu-
lated from eq. (13) for the Stuttgart Fm. match well measured bulk
TC, but slightly overestimate those layers exhibiting a low hydrogen
index. The quantification of error (Fig. 8) shows that the misfit due
the hydrogen index (deviations of >50 per cent) pertains only to
<8 per cent of the data. Bulk TC values calculated from eq. (11)
slightly underestimate measured TC in the Wealden Fm. especially
in the layers with high hydrogen index values. The rms value of the
bulk TC values predicted by eqs (10)–(14) for sections shown in
Fig. 7 (full data set) is between 0.24 and 0.41 W (m K)–1. This error
is comparable to the values noted by Hartmann et al. (2005). The
lowest rms value was achieved for the Middle Buntsandstein [eq.
(14): 9.8 per cent; eq. (10): 7.8 per cent] of homogeneous composi-
tion and the highest for the heterogeneous Stuttgart Fm. [eq. (13):
12.5 per cent; eq. (10): 28 per cent], respectively.

Although it was originally assumed that empirical equations for
the calculation of TC are valid only for the geological formations
for which they were determined (e.g. Goss & Combs 1976; Evans
1977; Molnar & Hodge 1982; Blackwell & Steele 1989; Hartmann
et al. 2005), the results from using eq. (10) (Fig. 7) seem to be valid
for all formations analyzed in this study. This can be explained by
the use of an artificial data set for model development. Thus it is
likely to assume that eq. (10) also can be successfully applied for any
clastic rock. The use of such an artificial data set in combination
with MLR is different to other approaches (e.g. Goutorbe et al.
2006), which favor nonlinear techniques such as neural networks as
ultimate technique for ‘universal’ TC estimations.

The validation of the matrix TC equation for carbonates was
made against the Doveton et al. (1997) data. The data set consists
of matrix values for density and sonic transit time, gamma ray and
calculated total porosity as well as bulk TC (originally published by
Blackwell & Steele 1989). The ame value between measured and
predicted bulk TC is 22 ± 13 per cent (eq. 9), which is comparable
to the error (ame: 19 ± 16 per cent) that would stem from the
application of the Doveton et al. (1997) TC prediction equation.
Both error estimates are acceptable, given the uncertainties linked
with the original data (TC measurements on cuttings using the chip
technique described by Sass et al. 1971, sampling in 10-ft intervals,
log-depth matching, upscaling, etc). Indeed, significantly smaller
prediction errors could be achieved if eq. (9) would be applied to a
data set of higher quality.

For both equations, ρma and Vsh have the largest impact on TC
prediction in carbonate-shale systems. All in all, more data would
be useful to further verify prediction equations developed in this
paper for both carbonate and evaporite rocks.

5.2 Comparison of measured and calculated
temperature profiles

The value of any predictive TC equation must be based on its ability
to reproduce the thermal characteristics of a section logged by a
high-resolution temperature device to within an acceptable error
tolerance (Doveton et al. 1997). We assume that an acceptable error
would be on the order of <5 per cent, which is <1.5 K km–1 for an
average temperature gradient of 30 and <2 K km–1 for a gradient
of 40 K km–1, respectively.

Figure 8. Scatter plots of predicted versus measured bulk TC. (a) Wealden
Fm., (b) Stuttgart Fm. and (c) Middle Buntsandstein. The histogram shows
the distribution (right y-axis) of percent errors (lower x-axis) between mea-
sured and predicted bulk TC [crosshatched bars; eqs (12)–(14), see Table 5]
and for combination of theoretically derived matrix TC equations and geo-
metric mean [dashed-bordered, unfilled bars; eq. (10), see Table 4].
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14 S. Fuchs and A. Förster

For both borehole locations in the NGB (Fig. 5), high-precision
temperature logs are available (Hannover location: Orilski et al.
2010) that are processed as temperature–gradient plots and com-
pared with temperature gradients calculated from predicted TC.
The temperature logs were measured at 0.01 m recording intervals;
the logging systems had a precision of 0.001 K. The logs were ob-
tained at least 1 yr after borehole completion, and thus are regarded
as to reproduce thermal borehole equilibrium.

For the calculation of full borehole TC profiles a differentiation
between various types of sedimentary rock into evaporite, carbon-
ate, and clastic rock is made using standard lithology mapping
techniques (e.g. Asquith & Gibson 1982; Serra 1984). In situ bulk
TC then is calculated according to eqs (7), (8) and (10). In addition,
the universal equation (eq. 11) is applied to intervals of clastic rock.
The computation was performed for borehole sections of ∼630 m
length at the Ketzin location and of ∼1.7 km length at the Hannover
site. The predicted TC values are corrected for in situ temperature
and pressure.

The predicted TC profiles are used together with a site-specific
value of surface heat flow to calculate temperature-gradient profiles
according to Fourier’s law of heat conduction (eq. 15):

gradT = q

TC
, (15)

where gradT is the temperature gradient, q is heat flow and TC is
thermal conductivity.

For the Ketzin site a heat-flow value of 70 mW m–2 was de-
termined using measured laboratory values of TC that were pres-
sure and temperature corrected. For the Hannover site, a value of
82 mW m–2 was used (Orilski et al. 2010).

The theoretical temperature-gradient plots for the two sites
fully reflect the lithological pattern changes of the sedimentary
succession. There is also a good agreement in absolute values
between measured and calculated temperature-gradient plots. At
the Hannover site, differences in the temperature gradients ob-
tained for the four intervals (Middle Keuper: 2460–2540 m, Mid-
dle Muschelkalk: 2960–3040 m, Upper Buntsandstein: 3165–3250
m, Middle Buntsandstein: 3440–3590 m) are on the order of
<2 K km–1 (Fig. 9). For the Ketzin site, similar results are ob-
served (Table 6). The maximum difference in absolute temper-
ature (measured versus calculated, Fig. 9) on both sites is <0.8
and <1.3 K. This yields an average error in absolute temperature
of 2.4 per cent (Hannover location) and 5.8 per cent (Ketzin lo-
cation). The error is within the threshold of accepted prediction
accuracy.

6 E VA LUAT I O N O F P R E V I O U S
A P P ROA C H E S

None of the previously published prediction equations seems to
be valid universally for all types of sedimentary rocks. As the last
comprehensive comparison work in this field dates back to Goss
& Combs (1976) and the current state of knowledge on the ap-
plicability and prediction quality of other data sets is poor, it is
timely to evaluate in this work the validity of the available predic-
tion equations on a defined data set comprising clastic rock of the
NGB.

Owing to the results of theoretical analysis performed in this
paper, SLR equations considering just one predictor variable were
excluded from the evaluation. Also excluded are those equations
that have not fully disclosed the regression coefficients (e.g. Sahlin
& Middleton 1997; Goutorbe et al. 2006), equations in which matrix

Figure 9. Comparison of measured and calculated temperature and temper-
ature gradients. Depth in metres. Lithology is from drill core and cutting
analysis as well as from well-log interpretation. Rock-group classification is
a simplification of lithology consisting of clastic (yellow), carbonate (blue)
and evaporites (green).
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Table 6. Comparison of logged and computed temperature inverted from bulk TC profiles.

Well No. Depth interval Logged T Predicted T Error

Top (m) Bottom (m) Length(m) Top (◦C) Bottom (◦C) � (◦C) Bottom (◦C) � (◦C) Interval (per cent) Total (◦C km–1)

Ketzin 200/07 1 168.0 775.0 607.0 17.12 39.68 22.56 40.99 +1.31 5.8 2.2
Groß Buchholz GT 1 1 1172.0 1363.0 191.0 69.24 76.02 6.78 75.57 –0.45 6.6 2.4

2 1642.0 1743.5 101.5 87.05 91.07 4.02 90.27 –0.8 19.9 7.9
3 2321.5 3748.0 1426.5 121.55 164.38 42.83 164.61 +0.23 0.5 0.2

Total length: 1719.0 m Mean: 4.4 per cent 1.6 ◦C km–1

Note: Temperature was predicted starting in each interval from top downwards. �predicted T is the difference between the bottom-logged and bottom-predicted
temperature value. The intervall error was calculated as quotient of �predicted T and �logged T. The total error was calculated as quotient of �predicted T and the
length of the depth interval.

TC values were assumed (e.g. Griffiths et al. 1992), and approaches,
which included well logs not considered in this study (e.g. Khandel-
wal 2010). Thus the comparison of TC prediction includes equations
from Tikhomirov (1968), Goss et al. (1975), Goss & Combs (1976),
Evans (1977), Vacquier et al. (1988) and Hartmann et al. (2005).
Equations were reformulated to SI-units if necessary and listed in
Table 7. In addition, the inverse method was applied, which derives
the lithology or major mineralogy of rocks from well logs (Savre
1963; Doveton & Cable 1979; Quirein et al. 1986), and, in turn,
applies an appropriate mixing equation to calculate bulk TC for the
respective lithotype using textbook TC values (e.g. Merkel et al.
1976; Dove & Williams 1989; Brigaud et al. 1990; Demongodin,
et al. 1991; Vasseur et al. 1995; Midttømme et al. 1997; Hartmann
et al. 2005).

Bulk TC, calculated by implementing the well-log parameters of
the NGB into these approaches is compared to measured TC, and
the deviations are quantified as a prediction error (Fig. 10). The
smallest prediction error is achieved by using eq. (11, this study)
(ame: 11 ± 10 per cent) and by applying the matrix–TC equation
(eq. 13, ame: 16 ± 15 per cent) and the geometric mean model. Both
equations show a similar structure by using φN and Vsh as predictor
variables and by avoiding the problematic ρb and �T.

Agreements of less quality are achieved for the full data of clas-
tic rock by application of the Vacquier et al. (1988) equation (eq.
21; ame: 20 ± 13 per cent) developed for argillaceous rocks. Eqs
(20), (22) and (23) (also from Vacquier et al. 1988) show bet-
ter agreements for selected lithotypes only. For example, eq. (20)
shows valid results only for sandstone of the Middle Buntsandstein
(ame: 8 ± 6 per cent), and eq. (22) for interbedded sandstone and
argillaceous rock of the Wealden Fm. (ame: 15 ± 24 per cent). The
observed ame values fit into the range originally provided by these
authors. Surprisingly, the equation proposed to be valid for mixtures
of clastic and carbonate rocks (eq. 23) completely fails on our data
set.

Application of a simple inverse model, consisting of four com-
ponents (clay, sand, carbonate, and porosity), on the full data set
results in an ame of 20 ± 16 per cent (Fig. 10). Application of
an advanced inverse model to the Stuttgart Fm., consisting of nine
components derived from elemental log analysis and detailed core
analysis (Norden et al. 2010), results in a much lower ame value of
9 ± 12 per cent. However, it is expected, that in situations of less
data on the formation mineralogy and petrography, the use of such a
multi-component advanced model may cause larger errors. Indeed,
the quality of the predicted TC is directly related to the prediction
quality of the component volume fractions (Hartmann et al. 2005).

The application of the approaches of Tikhomirov (1968, eq.
16), Goss et al. (1975, eq. 17), Goss & Combs (1976, eq. 18),
Evans (1977, eq. 19) and Hartmann et al. (2005, eqs 24–25) show

reasonable agreements (ame: <15 per cent, rms: <20 per cent) only
for the low-porosity sandstone samples of the Middle Buntsand-
stein, but failed completely for all other litho-stratigraphical units
(ame: >23 per cent, rms >30 per cent). None of these presented
equations shows an acceptable match for the full data set of clastic
rocks. This could result from the implementation of sonic velocity
and/or bulk density into the equations as predictor variables, for
which strongly varying correlations were observed for the NGB
data set (Fig. 6).

7 C O N C LU S I O N S

(1) Standard well-log data (bulk density, natural gamma-ray,
sonic interval transit time, hydrogen index and photoelectric fac-
tor) and petrophysical descriptors derived from these are obviously
not able to sufficiently reflect and explain the TC variability of an
artificial ‘global data set’ of sedimentary rocks. Thus we conclude
that no universally valid TC-prediction equation can be developed
with standard well-log data and regression techniques.

(2) However, a subdivision into clastic, carbonate and evaporite
rocks resulted in individual equations that predict matrix TC with a
high accuracy (ame: between 4 and 9 per cent). Volume fraction of
shale (carbonate and clastic rocks), matrix hydrogen index (evapor-
ite and clastic rocks) and matrix density (carbonate and evaporite)
predominantly show the largest potential as predictor variable, while
sonic and photoelectric factor log often provide no additional ex-
plained variance. By combining the results of these equations (eqs
7–10), entire borehole profiles can be calculated for sedimentary
successions with an error on average <9.2 per cent. In this ap-
proach, knowledge of single lithotypes or mineral composition is
dispensable. We recommend to use the equations (Table 4) that are
fully based on matrix log-response values for predicting matrix TC
of borehole profiles.

(3) The approach of using subsurface data (well logs and mea-
sured TC) restricted to clastic rocks results in a suggestion to de-
lineate bulk TC prediction equations for different geological for-
mations representing a typical composition of different lithotypes.
Formation-specific equations show slightly smaller prediction un-
certainties (ame: between 5 and 9 per cent), than the equation devel-
oped for the available, full subsurface data set of clastic rocks (ame:
11 per cent). For bulk TC prediction of clastic rocks, hydrogen index
and volume fraction of shale show the largest potential as predic-
tor variable. Bulk density and sonic-log data are questionable input
parameters and even the implementation of the photoelectric factor
log provides no advantage for reducing the errors. We recommend
the use of formation-specific bulk TC equations as developed in
this paper for TC prediction in formations that are similar to those
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Figure 10. Comparison of results from different prediction methods. Rel-
ative ame (blue solid line), relative rms (black dotted line), bars represent
proportion of deviations less than 20 per cent.

described in this study. Although afflicted with some error, eq. (11)
seems to be a good approximator for clastic rocks in general.

(4) All presented prediction equations show better prediction ca-
pabilities than any other previously published approach.

(5) Computed borehole TC profiles may be used as prerequi-
sites for the calculation of temperature profiles with high accuracy
(<5 per cent error). This opens up new opportunities, for example
(i) to quantify the paleoclimatic effect on a local scale; to estimate
the heat-flow density (ii) in the absence of detailed temperature logs
and (iii) by using bottom-hole temperature measurements and (iv)
to validate temperature maps provided by web-based geothermal
information systems.

(6) More work is needed to extend the multimineral rock com-
position approach to crystalline rocks.
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A P P E N D I X A : N O M E N C L AT U R E

Subscripts:

b bulk
fl fluid
i index of point
lab laboratory
ma matrix
maa apparent matrix
max maximum
mea measured
min minimum
ND neutron–density
p pore
sh shale
z depth level

Litho:

AS anhydrite
CS claystone
DO dolomite
GW greywacke
LI limestone
M mudstone
MA marlstone
sh shale
SiS siltstone
SS sandstone
SSH sandy shale
SSS shaly sandstone

Statistics:

am arithmetic mean
ame arithmetic mean error

Bsi standardized beta coefficients for input variable i
cv coefficient of variation
df. degree of freedom
F F-value
n number of samples
p significance level
rms root mean square error
R2 coefficient of determination
SD standard deviation
T tolerance

Well logging:

ANN artificial neural networks
�T sonic interval transit time (DT) [µs m–1]
γ (natural) gamma ray (GR) [API]
gradT temperature gradient [K km–1]
MLR multiple linear regression
NLR non-linear regression
φD density porosity [p.u.]
φe effective porosity (Phie) [p.u.]
φN neutron porosity (hydrogen index, PHIN) [p.u.]
φS sonic porosity [p.u.]
φt total porosity [p.u.]
p pressure [MPa]
Pe photoelectric factor log [pe]
q heat-flow density [mW m−2]
ρb bulk density (RHOb) [g cm–3]
ρm matrix density (RHOma) [g cm–3]
SLR simple linear regression
TC thermal conductivity [W (m K)−1]
T temperature [◦C; K]
U photoelectric absorption index [barns cm–3]
VP sonic velocity [km s–1]
Vsh volume fraction of shale [–]
WAT water content [–]

Conversion:

Thermal conductivity: 1 W (m K)–1 = 2.388 mcal (cm s K)–1

= 0.578 Btu (hr ft F)–1

Sonic interval transit time: 1 μs ft–1 = 304.799 km s–1

A P P E N D I X B : M AT R I X - T C E Q UAT I O N S
F O R VA R I A B L E W E L L - L O G
C O M B I NAT I O N S
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