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Abstract – We have developed neural network models that predict Kp from upstream solar wind data. We
study the importance of various input parameters, starting with themagnetic component Bz, particle density n,
andvelocityVand then adding totalfieldB and theBy component.Aswealso notice a seasonal andUTvariation
in average Kp we include functions of day-of-year and UT. Finally, as Kp is a global representation of the
maximum range of geomagnetic variation over 3-hour UT intervals we conclude that sudden changes in the
solar wind can have a big effect onKp, even though it is a 3-hour value. Therefore, 3-hour solar wind averages
will not always appropriately represent the solarwind condition, andwe introduce 3-hourmaxima andminima
values to some degree address this problem. We find that introducing total field B and 3-hour maxima and
minima, derived from 1-minute solar wind data, have a great influence on the performance. Due to the low
number of samples for highKpvalues there canbe considerable variation inpredictedKp for different networks
with similar validation errors. We address this issue by using an ensemble of networks from which we use the
median predictedKp. Themodels (ensemble of networks) provide prediction lead times in the range20–90min
givenby the time it takes a solarwind structure to travel fromL1 toEarth.Twomodels are implemented that can
be runwith real time data: (1) IRF-Kp-2017-h3 uses the 3-hour averages of the solarwind data and (2) IRF-Kp-
2017 uses in addition to the averages, also the minima andmaxima values. The IRF-Kp-2017 model has RMS
error of 0.55 and linear correlation of 0.92 based on an independent test set withfinalKp covering 2 years using
ACE Level 2 data. The IRF-Kp-2017-h3 model has RMSE=0.63 and correlation= 0.89. We also explore the
errorswhen tested on another two-year periodwith real-timeACE datawhich gives RMSE= 0.59 for IRF-Kp-
2017 and RMSE=0.73 for IRF-Kp-2017-h3. The errors as function of Kp and for different years are also
studied.

Keywords: Kp index / forecasting / neural network / verification
1 Introduction

The planetary Kp index (Bartels et al., 1939; Mayaud,
1980) is widely used as a general indicator of geomagnetic
disturbances for mid-latitude regions, and as a general
geomagnetic alert and hazard scale. The index is based on
vector measurements of the geomagnetic field from 13 mid-
latitude stations. The Kp index, or the equivalent ap index, is
also used as input for numerous models due to the availability
of historic values, near real-time data, and forecasts, but also
due to the simplification it offers to characterise the
magnetosphere with a single number. The latter is also
supported by the interpretation of Kp as an indicator of
magnetospheric convection (Thomsen, 2004). For example,
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the Kp index is used as input to atmospheric density models
(Bruinsma, 2015) used for satellite drag calculations;
thermosphere/ionosphere models (TIE-GCM; Qian et al.,
2014); plasmapause models (Heilig and Lühr, 2013); and
auroral precipitating electron models (Zhang and Paxton,
2008). During the recent two decades the magnetospheric
community has developed a number of robust parameter-
isations that are based on Kp. Parameterisations that are based
on a single index significantly simplifies model calculations.
Model parameters can be easily precomputed and do not
require real time estimations as calculations for the
parameterisations that are based on multiple parameters of
the solar wind or geomagnetic indices. The first realistic
empirical model of the magnetic field (Tsyganenko, 1989) is
still often used to predict the dynamics of the magnetic fields
when only one input variable needs to be used and magnetic
field structure needs to be pre-computed. Simple prediction
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1 http://www.srl.caltech.edu/ACE/ASC/level2/.
2 http://www.gfz-potsdam.de/en/kp-index.
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models of the ULF activity with Kp index (Brautigam and
Albert, 2000) allowedShprits et al. (2005, 2006) to perform long
term simulations of the radiation belt with a simple model for
radial diffusion.Kp-based parameterisations of VLF chorus and
ELF/VLF hiss allowed for comprehensive and detailed long-
term simulations of the dynamics of the radiation belts (Tu et al.,
2013, and references therein). Recent studies of Orlova and
Shprits (2014) and Orlova et al. (2016) further improved the
accuracyof theKpbasedmodels andprovidedparameterisations
that can be used for quiet times and disturbed conditions.
Introductionofmore sophisticatedmodels of theprocesses in the
inner magnetosphere based on solar wind conditions and
combination of other indexes may potentially lead to
improvements as is the case for the global models of the
magnetic field (Tsyganenko and Sitnov, 2005, 2007). There
are also recent attempts to infer parameters of the
magnetospheric processes by remote sensing or indirect
measurements (Murphy et al., 2016). However, inaccuracies
associated with indirect measurements, measurement errors,
and incomplete coverage of measurements may in fact result
in parameterisations that are less accurate than models based
on the global Kp index. While future research should strive to
provide improved parametrisations based on solar wind data
and various indices, Kp based empirical models are likely to
remain the workhorse of space physics and space weather
models. Kp also remains the single most used geomagnetic
index by satellite operators.

Thus, there has been a lot of effort to develop prediction
models for the Kp index. Models have been developed that
predict Kp from solar wind data at different temporal resolution
and for different lead times using different algorithms, such as
neural networks (Boberg et al., 2000;Wing et al., 2005;Bala and
Reiff, 2012); support vector machines (Ji et al., 2013);
probabilistic models (Wang et al., 2015); andmodels developed
from system identification called non-linear autoregressive
moving-average with external inputs (NARMAX and variants)
(Ayala Solares et al., 2016). The different methods have in
common that they derive the mathematical relations from the
provided data and that they consist of non-linear functions with
multi-dimensional inputs. The differentmodels are very capable
and thus it is difficult to decide on any specific methodology
which is superior for the task. More important is the selection of
representativedatasetsand inputparameters,which isnon-trivial
as it should include estimates of the multi-dimensional
probability distribution, but often one resorts to the one-
dimensional case. The relevant inputs canbe exploredduring the
training of the models where either the individual physical
plasma and magnetic field parameters are used, or some
combination like the Boyle index (Bala and Reiff, 2012).
Selecting the “best”model fromverificationmeasures is also not
trivial, as different measures will lead to different choices. The
measures-oriented approach may even lead to the selection of a
non-optimal model (Murphy, 1993).

Several models have previously been implemented for
real-time operation and have been running for many years
(Boberg et al., 2000; Wing et al., 2005; Bala and Reiff, 2012).
The three cited models are based on different types of neural
networks. The inputs to the first model are 3-hour averages of
solar wind density, velocity, and interplanetary magnetic field
(IMF) component Bz in geocentric solar magnetospheric
(GSM) coordinates. The second model uses 15min averages
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of solar wind plasma and IMF to predict 15-minute linearly
interpolated Kp values. The third model uses the hourly
averages of the Boyle index, which is defined as F = 10�4

V2þ 11.7B sin3 u/2, with solar wind speed V, IMF magnitude
B, and IMF clock angle u, and with the oversampled Kp (the
same Kp value is repeated 3 times) as target output.

For atmospheric/magnetospheric models driven by Kp the
response time may be many hours or days implying that a Kp
prediction model with short lead time is less useful. However,
both observations and models may also show an immediate
response to changes in Kp (Shprits et al., 2006) motivating the
short lead time predictions.

We describe here our latest prediction models developed
within the EU/H2020 project PROGRESS. The purpose of this
work is to improve our existing Kp prediction model and to
provide predicted Kp as input to radiation belt models that are
developed within PROGRESS. The Kp prediction models are
drivenby solarwindplasmaandmagneticfielddata. In this study
we use onlymeasured solar wind at L1, but in the future the goal
is to drive the Kp prediction model with predicted solar wind.

2 Data

The data sets consist of ACE (Stone et al., 1998) 64-second
resolution plasma data (McComas et al., 1998), 16-second
resolution IMF data (Smith et al., 1998),1 and the definitive 3-
hourKp values2 (Mayaud, 1980).We resample the ACE data to
1-minute resolution. The ACE data are then propagated from
the location of the spacecraft at L1 to Earth using the velocity
in the GSE-x direction. This corresponds to the “flat delay”, the
simplest method out of four described in Mailyan et al. (2008).
More specifically, we propagate the solar wind by shifting the
timestamps. If a particular solar wind sample i at ACE has
timestamp and data (ti, xi) the propagated sample will have

ðsi; xiÞ ¼ ðti þ ti; xiÞ; ð1Þ

where ti= ri/vi, r is the distance from ACE to 10 Earth radii
(10RE) upstreamfromEarth and v is the speed.Weuse 10RE as an
approximate location of the bow shock, although it will vary by
severalRE fordifferent solarwindconditions (with typical timing
errors less than a minute). We call t the propagation lead time.
Note that the si series will not have constant temporal cadence as
both r and v changes with time. The observed propagation lead
times t are distributed bi-modally with peaks at 44 and 58min,
andwithminimumandmaximumat 20 and 90min, respectively.
Note that siþ1 can be earlier than si (siþ1< si) if there is a large
enough speed increase from one sample to the next, but this will
have a minor effect as 3-hour values are created from the series.
For each 3-hourKp interval the corresponding intervals in the (s,
x) solar wind series are identified and representative measures,
e.g. 3-hour averages, are computed.

3 Models, time resolution and lead time

From an algorithmic perspective it can be advantageous to
increase the temporal resolution by linear interpolation of the
f 12



Fig. 1. An example showing the ACE solar wind data andKp. The top two panels show the IMFBz (GSM) and B 1-minute averages (blue curve),
3-hour averages (dashed line segments), and 3-hour minima and maxima (solid line segments). The middle panel shows the solar wind speed.
The fourth panel shows final Kp. The solid blue line segments show the Kp values over their 3-hour intervals. Each dot shows the Kp value at the
end of the 3-hour interval, with linearly interpolated values connecting the dots (dashed lines). The red horizontal lines show nowcast Kp
determined from geomagnetic data up to 22:50UT and up to 23:00UT, respectively. The bottom panel shows the horizontal geomagnetic field at
NGK with 1-minute resolution. The ACE 1-minute averages are the propagated values from L1 to Earth using the solar wind speed. The
timestamp at the top indicates the location of the vertical dotted line.
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3-hour Kp index in order to provide more timely predictions
(Wing et al., 2005). However, it should be noted that Kp is
calculated from theK values from the 13Kp stationsworldwide,
where K represents the maximum range of geomagnetic
variation with 1-minute resolution over a 3-hour UT interval.
To obtain the geomagnetic variations, a quiet curve has to be
estimated and subtracted from the recordings at the station. The
variation is then projected along magnetic North (horizontal
component), magnetic East and the vertical component and the
maximum variation of these three components is translated into
the corresponding K value (usually, the horizontal component
shows the strongest variation). Therefore, it becomes unclear
what an interpolated value represents.

Another approach to increase the temporal resolution is to
use sub-3-hour-averages of the solar wind with Kp values
repeated, e.g. in Bala and Reiff (2012) hourly solar wind
averages are targeted against Kp values that are repeated 3
times for each 3-hour interval.

We take the approach of developing a prediction model in
accordance with the original 3-hour definition of Kp. But
relying on 3-hour averages of the solar wind (Boberg et al.,
2000; Ayala Solares et al., 2016), to match the 3-hour Kp, may
be problematic under certain conditions as there can be
considerable change in the parameters that will be lost in the
Page 3 o
average. However, other 3-hour transformations can be used
instead of the average. In this work we use, in addition to 3-
hour averages, the 3-hour minimum and maximum values of
the solar wind data. Figure 1 shows IMF and speed propagated
from L1 to Earth, the Kp values, and the horizontal
geomagnetic field at Niemegk (NGK) geomagnetic observa-
tory for an event on 26–27 July 2004. Each point in the solar
wind plots is the measured value but shifted in time using
observed velocity. If the velocity is missing the other
parameters will also be missing as the lead-time cannot be
determined. Note that when there is a sudden increase in
velocity there may be multiple points for the same timestamp,
but this does not affect the calculation of the minimum,
average, or maximum values. Note also that the solar wind
plots have the shifted time as timestamps, while the Kp and H
plots show the true time. Thus, before 22:27UT the velocity is
around 600 km/s giving a lead time of about 40min with
shifted timestamps extending to 23:02UT, then at 22:27UT the
velocity jumps to above 900 km/s reducing the lead-time to
about 25min with shifted timestamp at 22:52UT thereby
causing shifted time to go “backwards”, clearly seen in the
velocity plot. There is a storm sudden commencement (SSC) at
22:50UT (H component at NGK) which is caused by the
“shock” in the solar wind, and it is close to the estimated time
f 12
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of the propagated shock at 22:52UT. We use the term “shock”
here without actually showing that it is a shock, we simply note
that there is a sharp jump in speed. The SSC is then followed by
the geomagnetic storm. As the SSC takes place in the 21:00–
00:00UT interval there is a corresponding increase inKpwhich
reaches 7o. As the shock occurs in the later part of the 3-hour
interval the solar wind averages do not capture the relevant
physical properties, and can therefore not be used to predict the
Kp= 7o. However, looking instead at the 3-hour maxima of the
solar wind speed it can be associated with the Kp increase.

To explore the immediate effect on Kp from the sudden
change in the horizontal geomagnetic field we compute a
nowcast Kp with 10-minute cadence for the event in July 2004
over the interval 21UT through23UT (Fig. 1). The reconstructed
nowcast Kp is based on K values calculated using the FMI
method (Menvielle et al., 1995) from definitive 1 minute data of
the contributing observatories, which we obtained from
INTERMAGNET. Computing Kp using geomagnetic data for
the interval 21:00–22:50UT results in the value Kp= 3�.
Extending the interval to 23:00UT givesKp= 6þwhich is close
to thefinalKp= 7o for that 3-hour interval. Thus, in the short 10-
minute interval 22:50–23:00UTwhich contains the SSCmost of
theKp increase has already taken place.A consequence of this is
that we cannot expect, in the general case, that any further
prediction lead time is possible than that given by the
propagation lead time, when measured solar wind data is used.

4 Algorithms

In general terms, during model development and evalua-
tion, the solar wind and Kp data are treated as series of values.
The temporal alignment of the data are determined from each
value’s associated timestamp. As each value is generated by
measurements over some time interval there will be some
ambiguity in setting the timestamp. For the data selection and
model development we define the timestamp as the time at the
beginning of a measurement interval. For a real-time
application it may be more convenient to put the timestamp
at the end of the interval, in which case the timestamp of
predicted Kp marks the end of the 3-hour interval.

The algorithm used is a feed-forward neural network with
one hidden layer, similar to that used by Boberg et al. (2000).
The mapping from input to output is captured by the function

yðxÞ ¼ aþ vgðbþWxÞ ¼ aþ
Xm
i¼1

vig

�
bi þ

Xn
j¼1

wi;jxj

�
ð2Þ

where a is a scalar, v is the row matrix [v1,..., vm], b is the
column matrix [b1,..., bm]

T, W is the m� n matrix

� w1;1 ⋯ w1;n

..

.
⋱ ..

.

wm;1 ⋯ wm;n

�
ð3Þ

and x is the input column matrix [x1,..., xn]
T. The transfer

function g is the bounded non-linear tanh function. The
network can be viewed as being composed of several
processing units organised in layers, where there are n input
units, m hidden units, and one output unit.
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The target output is the observedKp, where Kp is treated as
a continuous variable, although in reality it is a categorical
variable with 28 different classes, Kp∈ {0o, 0 þ , 1�, 1o,...,
9� , 9o}. The Kp categories are mapped to the variable
y∈ {0.0, 0.3, 0.7, 1.0,...,8.7, 9.0}.

Finding the inputs xj that are useful for Kp forecasts is part
of the network development. The solar wind plasma and IMF
acts on the magnetosphere through different processes that
results in the temporal variation of the ground magnetic field
fromwhich Kp is derived. From the vast number of solar wind-
magnetosphere studies the commonly used parameters for
predictions are solar wind magnetic field component Bz, or
both By and Bz, particle density n, and speed V, or expressed as
the dynamic pressure p∝ nV2 and the convective electric field
component Ey≈�VBz. The dynamic pressure plays an
important role in the creation of the global geomagnetic
disturbances known as sudden impulses (SI) (Segarra et al.,
2015), which becomes classified as a SSC if there is a
subsequent storm, while the solar wind electric field Ey is
generally considered to control the reconnection rate
(Pulkkinen et al., 2007), although it has been suggested that
it is not the solar wind electric field that controls the
reconnection rate but it works due to a coincidence (Borovsky
and Birn, 2014). As the neural network can approximate
continuous functions arbitrarily well (Cybenko, 1989) the
individual solar wind parameters can be provided as inputs
from which the relations are found. In this work we study the
magnetic magnitude B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
x þ B2

y þ B2
z

q
, the By and Bz

components, particle density n, and speed V.
Once the optimal network has been identified, all the

parameters a, v, b,W are fixed to constant values and the output
depends only on the input data. The parameters are calledweights.

5 Results

5.1 Selection of datasets

The ACE solar wind data set used in this work extends
from 1998 to 2015, during which there is also complete
coverage of definitive Kp data. From a training and verification
perspective it is desirable to have sub-sets with similar Kp
statistics. In principle the sub-set selection can be made by
treating the samples individually with the constraint that the
statistics should be similar. However, as we also would like to
study the performance for individual storms further constraints
are required for the sub-set selection. We do this by performing
the sub-set selection on 1-year chunks of data and studying the
distribution. The full dataset is divided into three independent
datasets which we call the training set, validation set, and test
set. The three sets are composed of data for the years (1998,
1999, 2002–2005, 2007–2010, 2013–2015), (2000, 2006,
2012), and (2001, 2011), respectively. As the solar wind
variables numerically have very different ranges they are
normalised to lie in the range [�1, þ 1], where the minimum
and maximum values for each solar wind parameter get the
values �1 and þ1, respectively. The normalisation constants
are determined from the training set.

5.2 Training procedure

A specificnetwork isdeterminedby thenumberof inputsand
thenumberofhiddenunits, andbyacertain realisationof random
f 12



Fig. 2. The validation set RMS error as function of different
combinations of solar wind inputs.

Fig. 3. Scatter plot of 3-hour Vmax vs. 3-hour Bz,min for the training set
(small blue dots) with samples marked with rings for Kp> 6. A storm
event from the test set for the period 30 March 2001–1 April 2001 is
shown as red dots connected with lines.
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weights. During the training phase the training set is iteratively
used to adapt the weights in order to minimise the summed
squared errors (SSE) between the predictedKp and the observed
Kp. Given a large enough network this error will approach zero
and the network would work as a table-lookup with very poor
generalisation capabilities. Therefore, at each iteration in the
training phase the SSE is also computed using the validation set.
The number of iterations in the training phase is experimentally
determined to continue well beyond the minimum in the
validation SSE tomake it plausible that the global minimum has
been reach, although it cannot be guaranteed. The specific
weights that lead to the minimum validation SSE defines the
optimal network given the number of inputs and hidden units,
and initialweights.Note that the test set has not been used during
this phase but is left for the final evaluation.

5.3 Model inputs

The temporal evolution of Kp is determined by the solar
wind driven processes and by internal magnetospheric
processes, where the latter can be referred to the memory of
the system. As the network in equation (Eq. (2)) has no internal
memory the dynamics are instead coded into the inputs using
past solar wind values. A dynamic network, like the Elman
neural network (e.g. Lundstedt et al., 2002; Wintoft et al.,
2015), could have been used instead, however, the manipula-
tion of the time series becomes simpler when a non-dynamic
network is used.

For each time shifted (Eq. (1)) solar wind parameter B, By,
Bz, n, V , the 3-hour minimum, average, and maximum are
calculated. Here we denote the magnitude of the vector
magnetic field B with B. The timestamps ti follow the cadence
of Kp. The corresponding solar wind samples j with
ti� sj< tiþ 3 hours are selected and the 3-hour values are
computed. Thus

BminðtiÞ ¼ min fBj; 8j where ti � sj < ti þ 3hg ð4Þ

BavgðtiÞ ¼ 〈 fBj; 8j where ti � sjtiþ3hg 〉 ð5Þ

BmaxðtiÞ ¼ maxfBj;8j where ti � sj<tiþ3hg ð6Þ

and similarly for By, Bz, n, and V. We can then collect any
combination of solar wind input at time ti into a vector u giving
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the seriesfuðtiÞg ¼ fuig and the corresponding target
seriesfKpig .

Using all the above solar wind parameters we first explore
the required number of past solar wind inputs, i.e. the length of
the timedelay line.The input vectorx for sample i (time ti) is thus
created as xi ¼ ½ui�N ; . . . ; ui� consisting of Nþ 1 3-hour
segments. We train and validate a large number of networks
with time delays extending from N= 0 to 8 and find that N= 2 is
sufficient.We then fix the time delay line to N= 2 and study the
effect of the various inputs. There is a large number of
combinations that can be studied but we limit our search to the
following six combinations: (Bz, n,V ); (Bz, n,V, td); (By,Bz, n,V,
td); (B,Bz,n,V, td); (B,By,Bz,n,V, td); and (B,By,Bz,n,V, td,mm).
Thefirst is the sameasusedbyBoberg et al. (2000). In the second
case we include inputs indicated by the label td that corresponds
to functions of local time and day of year according to

sin 2pT=24; cos 2pT=24; sin2pD=365; cos2pD=365 ð7Þ

where T and D are UT hour and day of year, respectively. We
included this case as Kp show a similar dependence on local
time and season as the Dst index (Cliver et al., 2001). The third
case is similar to Bala and Reiff (2012) that uses (B, u) which
can be transformed to (By, Bz). In the fourth case we use the
magnitude B instead of By, while in the fifth case we include
both B and By. The final case with the parametermm represents
the inclusion of the minimum andmaximum values of the solar
wind parameters based on 1-minute data. Going through the
training and validation procedure for the above combinations
results in the RMS errors on the validation set as shown in
Figure 2. We see that there is a decrease in error when time
information (td) is added. There is further decrease when By is
added, however, the decrease is much larger when total field B
is used instead. Including both B and By makes a very little
difference compared to using only B. Finally, including the
maximum and minimum values makes a big improvement.
f 12



Fig. 4. The RMS error (RMSE) as function of observed Kp.

Table 1. Measures and scores for predicted Kp vs. observed Kp using
all data.

BIAS MAE RMSE CORR MSESS:PERS

Pers 0.02 0.67 0.89 0.79 0.00

IRF-Kp-2000 0.39 0.72 0.88 0.83 0.02
IRF-Kp-2017-h3 0.00 0.46 0.59 0.91 0.56
IRF-Kp-2017 0.00 0.41 0.52 0.93 0.66

Fig. 5. The RMS error (RMSE) for each year. The validation set and test set are indicated with the light blue and dark blue shaded areas,
respectively. The left plot is based on all data and the right plot only data for which Kp ≥ 2.

3 http://lund.irf.se/forecast/kp/.
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For each of the six input combinations a large number of
networks are trained with different initial random weights and
different number of hidden units nh (3–15), and in Figure 2 the
RMSE for the networks with the smallest validation errors are
shown. Selecting a set of networks with inputs (b, by, bz, n, v,
td, mm), all with validation RMSE close to the optimal, we
notice that there can be considerable differences in predicted
Kp from different networks at large Kp values. The reason for
this is due to the following. The distribution ofKp falls off with
increasing Kp and the input space is sparsely populated for
large Kp. In Figure 3 we plot Vmax vs. Bz,min for the training set,
but we could also selected any other pairs of parameters. There
is a large number of data points around the central cluster of the
distribution and for the extreme values the density is low. All
training samples with Kp> 6 are also marked. During training
the network tries to model this distribution and providing
reliable generalisation becomes more difficult as the sample
density goes down. An event from the test set (dots connected
with lines) indicates the movement in the (Vmax, Bz,min) space:
It starts at Bz close to zero and small Vand as the CME hits the
Earth it moves into the low density region. Thus, even though
different networks have similar validation RMSE the fitted
functions in the low density regions may be quite different. In
Page 6 o
Figure 3 we only plot two variables, but in reality we have five
variables making the distribution even sparser. To improve on
the situation we use an ensemble of the 10 networks that have
the lowest validation RMS errors and use the median predicted
Kp, and also compute the variance of the predictions. It should
be noted that the variance is very small in the densely
populated region while it grows for the more extreme events.

In the following we define two models that have slightly
different inputs. In both cases we use an ensemble of neural
networks with all solar wind parameters and the UT-DOY
functions. The difference is in whether the maximum and
minimum values derived from 1-minute data are used or not. In
the IRF-Kp-2017 model we include the max/min values, while
the IRF-Kp-2017-h3 model only relies on the averages.

5.4 Verification of models

The models developed here are compared against each
other, and against the Boberg et al. (2000) model that is
currently running at RWC-Sweden3. The simple persistence
model, predicted Kp is equal to the previous Kp, is also
f 12



Table 2. Measures and scores for observed Kp and predicted Kp
using test data.

BIAS MAE RMSE CORR MSESS:PERS

Pers 0.01 0.67 0.90 0.78 0.00

IRF-Kp-2000 0.31 0.68 0.84 0.83 0.14
IRF-Kp-2017-h3 −0.04 0.48 0.63 0.89 0.52
IRF-Kp-2017 −0.04 0.42 0.55 0.92 0.63

Table 3. RMS error before onset (pre), after onset (post), and the
average of the two. There is in total 368 events. Numbers
inparenthesis are computed from the test set for which there are
45 events.

pre post average

Pers 1.09 (1.22) 2.76 (2.96) 1.92 (2.09)

IRF-Kp-2000 1.00 (0.85) 1.47 (1.77) 1.24 (1.31)
IRF-Kp-2017-h3 0.79 (0.81) 1.27 (1.73) 1.03 (1.27)
IRF-Kp-2017 0.70 (0.60) 0.92 (1.10) 0.81 (0.85)

Table 4. RMSE and CORR for predictedKp using ACE Level 2 data (L2) and ACE real-time data (RT) as inputs for the period 1 April 2011 to 1
March 2013. Coverage indicates whether samples corresponding to timestamps of the L2 or RT set have been used in computing RMSE and
CORR. Median indicates whether the 5-minute median filter to n and V has been applied.

Model Input Coverage Median RMSE CORR

1 IRF-Kp-2017 L2 L2 False 0.49 0.92

2 IRF-Kp-2017 RT L2 True 0.51 0.91
3 IRF-Kp-2017 RT RT True 0.59 0.89
4 IRF-Kp-2017 RT RT False 0.65 0.86
5 IRF-Kp-2017-h3 L2 L2 False 0.54 0.91
6 IRF-Kp-2017-h3 RT L2 True 0.56 0.90
7 IRF-Kp-2017-h3 RT RT True 0.73 0.85
8 IRF-Kp-2017-h3 RT RT False 0.75 0.84
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included in the comparison, where the observed Kp are the
final Kp. We apply 5 statistical measures on the complete
dataset covering the years 1998 and onwards (Tab. 1). The
measures are: the BIAS, or mean error; mean absolute error
(MAE); root mean square error (RMSE); linear correlation
(CORR); and the mean squared error (MSE) skill score
1�MSEmodel/MSEpersistence with persistence as the reference.
We do not consider persistence a useful model in itself,
however, on many scores it performs very well due to
autocorrelations in the series.

From Table 1 it is seen that the Boberg et al. (2000) (IRF-
Kp-2000) performs poorer than the persistence model with
respect to BIAS and MAE, while the RMSE are similar, and
the CORR are slightly better. Both IRF-Kp-2017 models show
significant improvements on all scores compared to the IRF-
Kp-2000 model.

The statistics in Table 1 are computed on all available data,
thus including all three sets: training set, validation set, and test
set. We therefore also compute the measures using only the test
set (Tab. 2) and the result is similar.

We further explore the model performance over the range
of Kp values. In Figure 4 the RMSE is plotted as function of
Kp. The IRF-Kp-2000 model has small errors in a quite narrow
interval ofKp values. The performance is quite poor below 1þ,
which is also reflected by the positive BIAS in Tables 1 and 2.
The IRF-Kp-2017 models show a much more consistent
behaviour over the full Kp range, and at all points they are
better than the persistence model.

It is also interesting to study the performance as function of
time. In Figure 5 the RMSE is computed on each year from
1998 to 2015, where we have also indicated the years
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belonging to the training set (white background), validation set
(light blue), and test set (darker blue), respectively. A striking
feature is the huge increase in RMSE for IRF-Kp-2000
centered on year 2008 (left plot). However, that is an effect of
the poor performance forKp< 2 and those years are dominated
by low Kp. Including only data with Kp≥ 2 (right plot)
removes the peak. The IRF-Kp-2017 model performs
consistently well over all years. Note also that the RMSE
for the validation and test sets are similar to that of the training
set.

Finally, we study the errors around instances when there is
an increase in observed Kp from one 3-hour interval to the
next. We identify all events when Kp(t)�Kp(t�3h)> 2 and
compute the RMSE for each model for the pre-event 3-hour
interval, and the post-event 3-hour interval. The results are
summarised in Table 3. Here we clearly see that the persistence
performs poorly, as expected, and that the IRF-Kp-2017
models performs best. When the min/max values are not used
(IRF-Kp-2017-h3) the predictions will be temporally smoother
and therefore miss some of the Kp increases.

In Bala and Reiff (2014) several different Kp prediction
models were validated with different statistical measures for
data over the period April 2011 to February 2013. The models
are driven by solar wind using various combinations of
parameters with lead times from 1 to 4 h. The evaluation of
their 1-hour forecast model resulted in RMSE= 0.83, CORR=
0.77 (Tab. 1 in Bala and Reiff, 2014). In our Table 2 (test data)
we obtain RMSE= 0.55 and CORR=0.92 for the IRF-Kp-
2017 model, and more specifically for the same years (2011–
2013) we see that RMSE varies between 0.48 to 0.51 (Fig. 5,
left plot) and between 0.52 to 0.58 without min/max inputs
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Fig. 6. Four events from the test set (2001) covering 4 days each.
Observed Kp (blue thick line), predicted Kp from the IRF-Kp-2017
model (red thin line), and the s (grey regions) are shown.
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(IRF-Kp-2017-h3). However, the Bala and Reiff (2014) model
was evaluated on ACE real-time data. We therefore run our
models for the same time period (April 2011 to February 2013)
using both ACE Level 2 data (L2) and ACE real time data (RT)
which results in the statistics shown in Table 4. The RMSE
using L2 data is consistent with the RMSE in Figure 5, but we
see that there is an increase in errors for both models when RT
data is used. This is an effect of that the RT data are preliminary
and contain larger measurement errors. The largest differences
are seen between the L2 and RT plasma density, the correlation
is only 0.88 while the other solar wind parameters have
correlations between 0.94 to above 0.99. There are also several
instances when the L2 density is below 20 cm�3 while the RT
density lies between 50–150 cm�3. Single spikes in the RT data
can be removed with a 5-minute median filter and has a
significant effect on the results (Median column). Rows 3 and 4
show that the median filtering has a larger effect on the IRF-
Kp-2017 model as compared to the IRF-Kp-2017-h3 model
(rows 7 and 8). Another issue is that there are fewer available
records for the L2 density data than for the RT density data,
thus comparing the prediction statistics directly between the
L2 and RT driven models is not useful. Therefore, when the
models are run with RT data we compute the statistics for the
samples in the full RT set, but also for the smaller set that
overlaps with the timestamps in the L2 set (coverage column).
Thus, the statistic can be compared between rows 1 and 2, and
5 and 6.

5.5 Dependence on distance from line-of-sight to
spacecraft

The ACE spacecraft orbit around the L1 location can bring
it far from the Sun-Earth line-of-sight (LOS). The distance is
R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
in GSE coordinates and can reach about

300 Mm corresponding to an angle of 12� as seen from Earth.
Thus, we would like to study if the LOS distance can have an
effect on the prediction accuracy. A possible dependency of the
errors on the line-of-sight distance should affect both models
therefore we only study the most accurate model. The
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prediction errors from the IRF-Kp-2017 model are binned as
function of R and for each bin the RMSE and maximum error
are computed. The bins are chosen so that each contain 5% of
the data (approx. 1800 samples each). However, no systematic
variation as function of R can be seen.

5.6 Case studies

We select four events from the test set for year 2001, each
extending over four days, and run the IRF-Kp-2017 model
using the ACE Level 2 one-minute data. The results are
shown in Figure 6. The events have different characteristics
with the event in March–April 2001 being the strongest with
observed Kp = 9� (blue thick curve). In the pre-storm period
Kp varies between 2o to 3þ while the predicted Kp (red thin
curve) varies between 1 and 1.5. At midnight Kp jumps to 7�
with the prediction at ≈6, followed by another jump to 9�
where predicted Kp first reaches 7.5 and then comes close to
9�. As this is an ensemble prediction we also compute the
standard deviations (s) which are shown with grey bars. For
low Kp values the s is very small and increases with
increasing Kp. It should be noted that the s value does not
provide any information on how accurate the prediction is, it
instead reflects the model uncertainty due to the low density
sample space from which the models were derived (Fig. 3). In
regions in the input space with high sample density, usually
corresponding to low Kp values, all the models in the
ensemble provide very similar predictions and thereby small
s values. The April–May event is also a clear storm with a
large increase in Kp but weaker than the March–April event.
In June there is a weak more gradual storm that is followed by
very quite conditions that the model captures well. The
September–October event shows more extended activity at
medium levels.

It is interesting to study how the models operate when
continuously fed with solar wind data at 1-minute cadence.
The same event as in Figure 6 (top, left) is shown in Figure 7
but in more detail around the event onset. The prediction
models are run with 1-minute cadence by sliding the 3-hour
filter on the 1-minute solar wind data. As mentioned before, the
timestamps identifying each 3-hour interval can be defined to
be any time within the interval, but once defined needs to be
consistently applied. For the purpose of Figure 7 we define the
timestamps to mark the end of each 3-hour interval. At the time
indicated by label 1 in the solar wind data (top panel) the last 3-
hour solar wind input extends three hours back in time from
that point. The IRF-Kp-2017 model provides a predicted Kp
and predicted lead time t giving the point 1 in theKp plot (third
panel). At point 2 the shock has passed and at that time the
predicted Kp and t gives the point 2 in the Kp plot. The red
curve in theKp plot traces each prediction for each minute, and
the timestamps of the predictions will not be sorted in
increasing order as the lead-time varies. As we put the
timestamps at the end of the 3-hour input intervals it also
means that the predicted Kp marks the end of each 3-hour
interval, and the 3-hour intervals have been indicated by the
red horizontal bars ending at each point. Clearly, we could have
chosen the timestamps to mark the start of each interval on the
inputs and then the points in the Kp plot would be shifted left
by 3 h, but the red horizontal bars would be unchanged.
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Fig. 7. Predicted Kp at 1-minute cadence. From top to bottom: solar wind velocity at spacecraft location; horizontal geomagnetic field at NGK;
final and predicted Kp; prediction lead time t in minutes. In the third panel, the red solid curve is predicted Kp from IRF-Kp-2017, and green
dashed curve using IRF-Kp-2017-h3. The labels 1, 2, and 3 (first and third panels) mark three moments with observed inputs and corresponding
predictions. The three horizontal red lines indicates the corresponding 3-hour intervals that the forecasts represent.
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The shock in the solar wind arrives at the spacecraft just
after 00:20UT on the 31st (label 1, top panel). There is an SSC
observed at NGK with peak at 01:00UT (second panel). The
observed Kp is 3þ in the 3-hour interval preceding the interval
with the SSC and then increases to K= 7o (blue step curve,
third panel). At 00:20UT the solar wind speed is 420 km/s
(label 1), giving a prediction lead time of t≈ 55 min, thus
providing the predicted Kp= 3.7 as shown by label 1 in the Kp
plot. During the shock passage the lead time decreases to
t≈ 40min and predicted Kp increases to 8.0 (label 2). Note
that the last pre-shock predictedKp (1) is further into the future
than the first predicted post-shock Kp (2). Naturally, in a real-
time setting only the latest predicted Kp is used. Also note that
the SSC indicates that the shock arrives earlier than predicted,
which can be seen in that the peak in H (second panel) comes
before label 2 in theKp plot. However, the prediction still gives
a warning of the event although the lead time is shorter than
40min. For comparison, the predictions from the IRF-Kp-
2017-h3 model (without min/max values) are also shown
(green dashed). The model performs similar but smoother and
with some lag.

6 Discussion and conclusions

Kp prediction models driven by measured solar wind
inevitably provide short lead times, around 20–90min, even
though Kp has a resolution of 3 h. The short lead time is
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determined by events with sudden changes in the solar wind,
like shocks, that may cause sudden changes in the geomagnetic
field to which Kp is sensitive as it measures the range of
variability. Models that rely on 3-hour averages (Boberg et al.,
2000), or interpolated values at higher cadence than 3 h (Wing
et al., 2005), will not be able to capture that characteristic of the
Kp index. However, the impact of this effect will depend on the
time within the fixed 3-hour interval (00:00–03:00, 03:00–
06:00, ...) at which substantial changes in the solar wind, like
shocks, occur. In real-time operation (where the 3-hour
window glides) the effect will always become more apparent.
We find that the only available prediction lead time, when
using measured solar wind, is that given by the propagation
lead time from the spacecraft to Earth. With the single case
shown here it is evident that the physics underlying the
increase in Kp can be directly linked to the SSC and precursor
solar wind disturbance.

The improvement seen in the IRF-Kp-2017 and IRF-Kp-
2017-h3 models over the IRF-Kp-2000 has several causes. In
Table 11 the RMSE is 33% lower for IRF-Kp-2017-h3
compared to IRF-Kp-2000, and 41% lower for IRF-Kp-2017.
The IRF-Kp-2000 model includes only the solar wind inputs
Bz, n, V. Figure 2 shows the decrease of RMSE when further
inputs are added, reducing the error with 9% with all inputs
excluding the min/max inputs, and with 19% when the min/
max inputs are included. Further, the 2000 model was trained
on a smaller data set (about 10,000 samples) compared to the
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2017 models (about 25,000 samples). Finally, the 2017 models
consist of an ensemble of neural networks that further improve
the accuracy. It should also be noted that a large fraction of the
RMSE decrease is caused by the improvement for Kp< 2, and
when only considering Kp≥ 2 the improvement over IRF-Kp-
2000 is 12% and 21% for IRF-Kp-2017-h3 and IRF-Kp-2017,
respectively (Fig. 5).

To extend the prediction lead time, but still using measured
solar wind at L1, one can make forward projections based on
the recent solar wind history reaching lead times up to 3–4 h
(Boberg et al., 2000; Wing et al., 2005; Bala and Reiff, 2012).
However, for events with solar wind disturbances causing
strong SSC the onset of the Kp storm will be missed.

Much effort is also put into the prediction of the solar wind
using numerical models that are driven by solar observations.
The current operational model ENLIL (Odstrcil, 2003)
predicts the solar wind speed and density, but not magnetic
fields.4 Within PROGRESS models are developed that will
predict the solar wind plasma and vector magnetic fields at L1
using GONG solar magnetograms. At this stage only quasi-
static features like coronal streamers and coronal holes are
considered. The model consist of the AWSoM model (van der
Holst et al., 2014) up to about 30 solar radii coupled with the
Lare3d/SWIFT model (Arber et al., 2001; Arber, 2016) out to
L1. As both plasma and vector magnetic fields will be
predicted they can be used as inputs to the IRF-Kp-2017-h3
model to extend the prediction lead time to a couple of days.
This will be tested within the PROGRESS project using
predictions from the AWSoM/SWIFT model. However,
current solar wind predictions are still quite crude and it will
be interesting to see how close to 3-hour averages they will
come.

From measured solar wind data at L1 the prediction lead
time is determined by the time it takes the solar wind
disturbance to reach the Earth’s bow shock and magnetopause.
Our approach is to use only the solar wind speed and the
spacecraft-Earth distance to compute the lead time, the “flat
delay”. This is a robust approach that can be used on real-time
solar wind data, but there are also several sources of errors. The
“flat delay” assumes a planar structure orthogonal to the
propagation direction along the spacecraft-Earth direction.
Based on a set of 198 events in the solar wind, with a clear
change in magnetic field direction within a minute, it was
found that the “constrained minimum variance” method
(Mailyan et al., 2008) achieved the best result for propagating
discontinuities between two solar wind spacecraft. However,
for both the “flat delay” and the “constrained minimum
variance” methods about 90% of the events had timing errors
less than 10min, although the latter method has a larger
fraction with errors close to 0min. But, the method can only be
applied when a clear discontinuity can be identified and data
points in a time interval around the discontinuity must be used,
decreasing further the lead time. Another issue is that the
dynamical evolution from L1 to Earth is not considered, and in
cases of shocks (Viñas and Scudder, 1986) there may be
additional timing errors when using the bulk speed instead of
the shock speed.
4 http://www.swpc.noaa.gov/products/wsa-enlil-solar-wind-predic-
tion.
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The two models presented here (IRF-Kp-2017 and IRF-
Kp-2017-h3) react differently on sudden changes in the solar
wind. The IRF-Kp-2017 model responds promptly as can be
seen in Figure 7, while the IRF-Kp-2017-h3 shows a delay.
Models relying on hourly averages (Bala and Reiff, 2012) will
perform somewhere in between. Other averages could also be
considered, but when an average is used it will affect the lead
time. It is clear that the IRF-Kp-2017 model shows a greater
degree of variability in its predictions as it responds to sudden
changes in the solar wind. It should be noted that when the
models are driven at 1-minute cadence the inputs still have 3-
hour resolution and targets the 3-hour Kp giving 3-hour Kp
predictions every minute. The performance measures in
Tables 1 and 2 are based on one prediction per 3-hour
interval, but not necessarily the best prediction, just the
prediction that happen to coincide with the official 3-hour
interval. As there exist no 1-minute Kp it is not possible to
compute statistics for the model driven by 1-minute data.
However, as is seen from the specific event in Figure 7 the IRF-
Kp-2017 predictions are on average closer to the observed Kp
as compared to IRF-Kp-2017-h3 predictions. It would be
interesting in a future study to construct a series with high-
resolution Kp against which the IRF-Kp-2017 predictions can
be compared.

It is interesting to see that the magnitude of the solar wind
magnetic field B has a large influence (Fig. 2) and that the
importance of By is very small when B is used. In the work by
Borovsky and Birn (2014) it is argued that it is not the electric
field E, and thereby (By, Bz), that is at work in solar wind-
magnetosphere coupling. Instead, when they derive the
reconnection rate they find a relation containing the magnitude
B. Our results seems to be in line with this.

In Table 4 it is seen that the prediction accuracy drops when
using ACE RT data instead of ACE L2 data, in particular it is
the RT density data that have the largest errors. In some cases
the errors are due to short spikes (1–2 min duration) which can
be efficiently removed using a 5-minute median filter, but
which also reduces the prediction lead time with 2min. For the
IRF-Kp-2017 model the RMSE drops from 0.65 to 0.59 when
the median filter is applied on the RT plasma data. However, to
compare with the L2 predictions the RT samples are chosen
from the same timestamps when L2 data exist and now the
statistics are quite close. But, in real-time operation the
additional information provided in the L2 set cannot be used,
therefore, it is more reasonable to assume an RMS error of 0.59
when the median filter is applied, whereas the evaluation on the
L2 set gives a theoretical limit of the model.

As noted above there are differences between the ACE RT
and ACE L2 data that will degrade the accuracy of the Kp
predictions. It is also seen that in the RT data set, and only
using records with plasma status flag equal to zero, a large
number of plasma density measurements have been removed
after the processing to the science level L2 set for the two years
analysed. It is difficult to detect these erroneous measurements
in a real-time situation, although the 5-minute median filter
removes all short lived spikes. In situations when real-time
data is missing, e.g. for the ACE spacecraft during strong
proton events, it is clear that the Kp predictions will not work,
however, when there are incorrect measurements the models
will produce Kp predictions although the accuracy will be
lower, see rows 3 and 7 in Table 4.
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In real-time operation both IRF-Kp-2017 and IRF-Kp-
2017-h3 can be driven with a cadence determined by the solar
wind input data. The real-time ACE or DSCOVR data are
provided with a 1-minute cadence and hence the predicted Kp
can be provided once per minute. Due to the construction of the
prediction algorithm the predicted Kp is still valid over 3-hour
intervals but sliding with the input cadence. For example, a
prediction given at 13:00UT with lead-time t = 55 min will
provide a Kp prediction valid for the interval [10:55UT,
13:55UT]. From a practical perspective the published
predicted Kp can be given for the [12:00UT, 15:00UT] official
Kp interval. The next minute this interval will be shifted by 1-
minute plus any change in lead-time. This means that
published prediction for the last 3-hour Kp interval will
possibly change until all predictedKp values belong to the next
interval.

The new models (IRF-Kp-2017 and IRF-Kp-2017-h3) will
be implemented for real time operation using the DSCOVR
solar wind data. As the IRF-Kp-2000 forecast and GFZ
nowcast Kp are already implemented comparisons between the
different implementations can be made in real-time operation.
The first estimate of Kp is available 100min into the 3-hour
interval and then continuously updated for many hours after
the corresponding time interval as the later data will affect the
determination of the quiet curve. In the coming years it will be
interesting to track the prediction accuracy using DSCOVR
and to compare with ACE predictions. The prediction lead
time will vary between 20–90min and the predictions can be
issued once per minute.
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