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Abstract 14 

The fusion of hyperspectral imaging sensor (HSI) and airborne lidar scanner (ALS) 15 

data provides promising potential for applications in environmental sciences. Standard 16 

fusion approaches use reflectance information from the HSI and distance 17 

measurements from the ALS to increase data dimensionality and geometric accuracy. 18 

However, the potential for data fusion based on the respective intensity information of 19 

the complementary active and passive sensor systems is high and not yet fully 20 

exploited. Here, an approach for the rigorous illumination correction of HSI data, based 21 

on the radiometric cross-calibrated return intensity information of ALS data, is 22 

presented. The cross-calibration utilizes a ray tracing-based fusion of both sensor 23 

measurements by intersecting their particular beam shapes. The developed method is 24 



 2

capable of compensating for the drawbacks of passive HSI systems, such as cast and 25 

cloud shadowing effects, illumination changes over time, across track illumination and 26 

partly anisotropy effects. During processing, spatial and temporal differences in 27 

illumination patterns are detected and corrected over the entire HSI wavelength 28 

domain. The improvement in the classification accuracy of urban and vegetation 29 

surfaces demonstrates the benefit and potential of the proposed HSI illumination 30 

correction. The presented approach is the first step towards the rigorous in-flight fusion 31 

of passive and active system characteristics, enabling new capabilities for a variety of 32 

applications.   33 

Keywords: airborne laser scanning (ALS); de-shadowing; imaging 34 

spectroscopy; in-flight; mosaicking; pixel-level fusion; pre-processing; 35 

radiometric alignment; ray tracing; sensor alignment, sensor fusion;  36 

1 Introduction 37 

Data fusion is a promising approach for producing remote sensing data sets with 38 

improved quality and dimensionality. The combination of data from airborne 39 

hyperspectral imaging sensors (HSIs) and airborne lidar scanners (ALSs) has been 40 

previously addressed in the literature [1], [2], [3], [4], [5], [6], [7], [8]. The particular 41 

focus is their complementary sensor characteristics, yielding increased data 42 

dimensionality and improved classification. The combination of the high spectral 43 

resolution of the HSI and the structural information provided by the ALS can yield more 44 

complete and improved surface characteristics for a wide range of applications. 45 

Fusion processes are complex, and there are different methods and levels of detail to 46 

achieve data-type combinations. All approaches rely on an accurate geometric co-47 

alignment of both data sources [9]. In general, fusion methods are categorized as either 48 

physical or empirical approaches [10]. Physical approaches aim to combine both 49 
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sensors on a raw data level. Their focus is a parametric representation of particular 50 

rigorous sensor models, as well as external conditions. In contrast, empirical 51 

approaches combine both data sets based on inherent, observable information, 52 

without the need for supplementary information. Most approaches, whether physical 53 

or empirical, focus on the enhancement of information content by adding the surface 54 

elevation information, ALS point classification, and spatial-statistic information as 55 

additional dimensions. Additionally, physical approaches consider exclusively 56 

structural and geometric information [11], [12]. However, ALS systems are not limited 57 

to this specific information content. Similar to HSI systems, they also provide intensity 58 

information, but usually only for a single ALS wavelength. In contrast, the intensity 59 

information is acquired actively and is unfortunately not internally calibrated. Due to 60 

the different sensor characteristics, the combination of intensity information is 61 

challenging and has often not been taken into account. Several recent studies [13], 62 

[14], [15] systematically compare data from both intensity information sources and note 63 

both opportunities and challenges for the adaptation of both sensor responses for 64 

heterogeneous surfaces. An overview of the benefits of using the LAS intensity 65 

information is given in [16]. Nevertheless, the full use of data from both imaging 66 

sensors requires some type of radiometric cross-calibration. A cross-calibration 67 

between HSI and ALS creates a consistent relative radiometric calibration scale, in 68 

which the ALS intensities are converted to physical units through comparison with the 69 

calibrated HSI data. This process ensures and enhances the temporal, spatial and 70 

spectral comparison of two different sensor systems and is, in addition to the geometric 71 

alignment, one of the essential steps for comprehensive data fusion. 72 

The purpose of this sensor fusion is to compensate for solar illumination and 73 

atmospheric conditions, as well as directional and shadow effects, to derive improved 74 

and realistic at-surface reflectance. This is achieved by the rigorous radiometric 75 
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calibration of the ALS intensity data with the HSI data and the subsequent correction 76 

of the amount of direct solar radiation within the atmospheric correction of the HSI data. 77 

We have designed and implemented new software for efficient HSI and ALS fusion, 78 

with special focus on the radiometric calibration of ALS intensity data and HSI 79 

illumination correction. Detailed descriptions of the basics, methodology, results and 80 

discussion are provided in this paper. 81 

2 Background  82 

2.1 Radiative transfer characteristics 83 

The two sensors have different radiation transfer paths, individual spatial sampling and 84 

sensor characteristics. Therefore, the alignment of different sensor characteristics on 85 

a raw level requires a physical radiative transfer-based cross-calibration. Fig. 1, in 86 

combination with Table 1, provides an overview of the different radiative transfer paths 87 

and interactions with the exposed surfaces of the two sensor systems. 88 

 89 

Fig. 1: Conceptualization of the radiative transfer paths of ALS and HSI sensors. See 90 

Table 1 for notification and symbol explanations. 91 
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Table 1: Notation used for relevant radiative transfer parameters 92 

Notation Explanation Units 

0E  Terrestrial solar irradiance [W/m2] 

sτ  Atmospheric transmittance sun-surface [ ] 

atmτ  Atmospheric transmittance surface-sensor [ ]  

dirE  Direct radiation [W⋅sr−1
⋅m−2] 

difE  Diffuse radiation [W⋅sr−1
⋅m−2] 

adjE  Adjacency radiation [W⋅sr−1
⋅m−2] 

HSIL  Electromagnetic intensity measured by the HSI [W⋅sr−1
⋅m−2] 

pL  Path radiance [W⋅sr−1
⋅m−2] 

sΘ  Solar zenith angles [deg] 

solβ  Solar incidence angle  [deg] 

HSIθ  Viewing angle of the HSI [deg] 

d  Relative sun-to-earth distance [] 

tP  Emitted pulse intensity of the ALS [dB] 

rP  Backscattered laser pulse of the ALS [dB] 

ALSα  Incidence and viewing angle of the ALS [deg] 

 93 

The atmospheric conditions influencing the measured signals are not the same due to 94 

their different atmospheric transfer paths (see Fig. 1). Thus, atmospheric conditions 95 

(e.g., cirrus and clouds) above the flight level influence only the HSI transfer path. In 96 

addition to cloud shadowing, HSI radiances are influenced by cast shadows, 97 

introducing a continuous shadow field exclusively illuminated by diffuse radiation ( difE98 

). Compared to direct irradiation, diffuse radiation caused by scattering is not a discrete 99 

status and is strongly spectrally variable and dependent. For example, the blue parts 100 

of the spectrum are scattered more strongly, and they are thus represented 101 

significantly more strongly in the cast shadow [17]. However, lidar intensities are not 102 

influenced by the cast shadow due to their active character. This enables active cast 103 

shadow detection and correction with a physical approach based on the overlapping 104 

wavelength domain and the proportional assignment to the remaining wavelength 105 

range of the HSI sensor system. 106 

In general, airborne spectroscopy attempts to identify the true reflectance or absorption 107 

property of a surface object at the bottom of the atmosphere (BOA). However, the 108 
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electromagnetic intensity ( HSIL ) measured by HSI sensors is influenced by the solar 109 

illumination (terrestrial solar irradiance ( 0E ) and solar zenith angles ( sΘ )), its path 110 

through the atmosphere (atmospheric transmittance sτ ) starting at the top of the 111 

atmosphere (TOA), its incidence angle from the object ( solβ ), its path back through the 112 

atmosphere ( atmτ ) to the sensor at flight level and the resulting path radiance ( PL ) (Fig. 113 

1). The HSI BOA surface reflectance ( HSIρ ) of a Lambertian surface can be modelled 114 

as: 115 

           
)(

)(
2

difdiratm

PHSI
HSI

EE

LLd

+
−=

τ
πρ .                (1) 116 

The different terms in Eq. 1 are listed in Table 1. The diffuse radiation ( difE ) also 117 

includes spherical atmospheric albedo reflected from the surface towards the sensor 118 

and adjacency radiation ( adjE ). The direct radiation ( dirE ) can be calculated by: 119 

      
ssdir EE Θ= cos

0
τ .        (2)      120 

In addition, surface roughness and anisotropic object properties are also relevant for 121 

the radiative transfer.  122 

Without geometric and morphometric information of the surface object, HSI data can 123 

only be corrected to Lambertian-equivalent reflectance, where directional effects and 124 

shadows are not taken into account. 125 

Alternately, a large advantage of ALS data is that the surface normal (n) of an object 126 

surface can be calculated by the analysis of neighbouring point measurements, 127 

enabling the reconstruction of the incidence angle of the laser pulse. This circumstance 128 

can also be exploited within the radiometric calibration of ALS intensity data. Several 129 

studies devote themselves to the absolute radiometric calibration of ALS data [18], 130 

[19], [20] and a review of lidar radiometric processing is given in [21]. Most approaches 131 
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rely on the basic lidar equation (3) and substitution of unknown terms with ground-132 

based in-situ reflectance measurements: 133 

        σττ
βπ atmsys

t

rt
r

R

DP
P

24

2

4
= .    (3) 134 

In general, the measured backscattered laser intensity is analogous to HSI systems 135 

influenced by sensor parameters, atmospheric conditions and surface properties. The 136 

backscattered laser pulse ( rP ) is the result of the emitted pulse intensity ( tP ) and its 137 

direction, range ( R ) or path through the atmosphere and return, its atmospheric 138 

transmittance ( atmτ ), and the effective target cross-section (σ ) considering the 139 

incidence angle ( ALSα ). Sensor-dependent parameters (e.g., the beam width angle (140 

tβ ), receiver aperture size ( rD ), and system transmittance factor ( sysτ ) describing 141 

sensor specific attenuation, such as the transmittance efficiency and sensitivity of the 142 

detector) and basic sensor specifications (e.g., wavelength, bit depth, multiple 143 

returns/full-waveform, an amplifier for low-reflectivity surfaces, attenuation for near 144 

targets and automatic gain control) are required. Additional overall influential factors 145 

are solar background radiation and the size, angle of incidence, roughness and 146 

wetness of the illuminated surface. Usually, the emitted pulse intensity, some sensor 147 

parameters, and the atmospheric conditions are unknown. Rigorous approaches 148 

assume that these parameters are constant over the entire flight campaign. Thus, they 149 

can be represented by a calibration constant (Ccal), which can be estimated by in-situ 150 

reflectance measurements [19], [12]. Based on the lidar equation (3) for every return 151 

signal, the backscatter coefficient ( iγ ) can be calculated. The backscatter coefficient 152 

is independent of range ( R ) and beam divergence ( tβ ) because it is normalized to the 153 

laser’s transverse area [18], [19].  154 
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3 Methodology 155 

The proposed approach is the first step towards an in-flight, physically based fusion of 156 

airborne radiometric measurement capabilities by combining an active ALS sensor with 157 

a passive HSI sensor. Most of the influential parameters are wavelength-dependent, 158 

and the overlapping wavelength domain thus defines the comparability of the sensor 159 

responses. The data fusion is performed by intersecting the pointing of a HSI sensor 160 

element, represented by a cone, with the ALS point cloud. Hence, the complete set of 161 

ALS point properties inside one HSI beam can be accessed and adequately adapted, 162 

considering the full radiometric and structural information.  163 

The complete in-flight radiative transfer-based cross-calibration of the ALS and HSI 164 

intensity signal can be split into three principal parts (see Fig. 2): 165 

• Input data acquisition and pre-processing (including the geometric co-alignment 166 

of the sensors) 167 

• Cross-calibration and BOA reflectance calculation 168 

• Output data generation  169 
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 170 

Fig. 2. Overview of the simplified cross-calibration workflow (rectangles represent data 171 

products; processing procedures are represented by rhombs; yellow outlines indicate 172 

steps applied to ALS data only; blue outlines indicate steps used for HSI data only, 173 

grey outlines indicate levels associated with both datasets; and central fusion steps 174 

are outlined in red).    175 

3.1 Input data generation and pre-processing 176 

For the purpose of developing the in-flight sensor fusion, a test dataset with a specially 177 

adapted measurement setup, sensor operation, and flight planning was generated. In 178 

addition to the HSI system, consisting of two HySpex sensors (VNIR-1600 and SWIR-179 

320m-e [22], [23]), an ALS (LMS-Q560 [24], [25]) and an IMU/GPS (AEROcontrol-IId 180 

IMU in combination with a NovAtel OEM4-G2 GPS) for measuring the position and 181 
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attitude of the airplane were integrated inside a Cessna 207 Skywagon. Table 2 gives 182 

an overview of the HSI and ALS specifications.  183 

Table 2: Comparison of relevant sensor parameters 184 

 VNIR and SWIR HSI (Hyspex) ALS (LMS-Q560) 

Principle passive active 

Sensor design Pushbroom Whiskbroom (polygon mirror) 

FOV 
(Field of View) 

VNIR: 35.5° 
SWIR: 27.2° 

45° (up to 60°) 

IFOV 
(instantaneous field of view) 

VNIR: across track 0.18 mrad 
along track  0.36 mrad 

 
SWIR: across track 0.75 mrad 

along track 0.75 mrad 

- 

Laser beam divergence  < 0.3 mrad 

FWHM (spectral) 
VNIR: 1.0-2 pixels 
SWIR: 1.5-2 pixels 

 

Spectral range 
VNIR: 400 - 1000 nm 

SWIR: 1000 – 2500 nm 
1550 nm 

(Laser class 1) 

Frames per second (HSI) 
Pulse frequency (ALS) 

VNIR: 135 fps 
SWIR: 100 fps 

240 kHz 
(160 lines/s) 

Spectral sampling 
VNIR: 3.7 nm 
SWIR: 6 nm 

monochromatic 

Pulse length  < 4 ns at half maximum 

Echo sampling interval  Full-waveform (1 ns) 

Intensity digitization 12 bit 16 bit 

Spectral bands 
VNIR: 160 
SWIR: 256 

1 

Spatial pixels HSI 
VNIR: 1600 
SWIR: 320 

 

 185 

Four flight lines were acquired at an altitude of 800 m above ground over an airfield 186 

with bordering suburban development in Kamenz, Germany (51.29063°N 187 

14.12107°E). The acquired suburban objects (buildings, roads, trees, fields, and 188 

moving objects) represent a radiative as well as a morphometrically diverse test site. 189 

The achieved ground sampling distances of approximately 1.2 m for SWIR and 0.6 m 190 

for VNIR, as well as a point density of approximately 5 points/m² delivered by the ALS 191 

in non-overlapping areas, sufficiently represent the spectral and morphological surface 192 

heterogeneity. The HSI test data are strongly influenced by cloud shadows and cast 193 
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shadows that limit any HSI analysis (Fig. 3 (A)). Accordingly, this test site represents 194 

an ideal benchmark to show the capabilities and limitations regarding the fusion of 195 

active and passive system characteristics. 196 

 197 

Fig. 3: Overview of the four geocoded flight lines (1-4); HSI footprint coloured in black, 198 

ALS footprint coloured in blue; (A) HSI SWIR radiance image (1550 nm); (B) ALS 199 

intensity image (1550 nm). 200 

In addition to the elevation information, ALS range, amplitude and echo width are 201 

provided to meet the requirements of the proposed method. For state-of-the-art full-202 

waveform ALS systems, these attributes are easily accessible. 203 

The full-waveform ALS, the IMU/GPS measurement unit and the HSI (VNIR and SWIR) 204 

provide the input database. The pre-processing includes the calculation of trajectories 205 

(see rhomb 1 in Fig. 2), the geometric pre-processing of the ALS data including filtering 206 

of outliers and ALS returns introduced by atmospheric interactions (see rhomb 2 in Fig. 207 

2), and the radiometric correction of the HSI data (see rhomb 3 in Fig. 2). Additionally, 208 

the cross-calibration requires a proper geometric co-alignment of the HSI intensity 209 

information with the ALS point cloud. This co-alignment of the HSI sensor data to the 210 
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ALS data is created with a parametric approach using the adapted ALS intensity 211 

information as a geometric reference. The applied approach is described in detail in 212 

[9] and also includes a detailed description of the necessary spectral response 213 

adaptation (SRF) [26], system integration, data acquisition and pre-processing. The 214 

ray tracing-based approach delivers a subpixel co-alignment in heterogeneous urban 215 

areas, as well as a look-up table (LUT) for all ALS points that intersect a particular HSI 216 

beam.  217 

3.2 Cross-calibration procedure 218 

As shown in Fig. 2 (rhomb 5), the cross-calibration itself is implemented in four major 219 

steps:  220 

I. Calculation of incidence, illumination and viewing geometry for both sensors 221 

II. Calculation of HSI bottom of atmosphere (BOA) reflectance at 1550 nm 222 

III. Radiometric calibration of the ALS sensor 223 

IV. Calculation of the transfer factor ( crossX ) and HSI BOA reflectance 224 
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 225 

Fig. 4. Detailed workflow of the four cross-calibration steps. Rectangles represent input 226 

and output data products (A-D). Rhombs represent the applied processing modules 227 

(1-8). 228 

3.2.1 Calculation of incidence, illumination and viewing geometry for both sensors 229 

The calculation of the incidence, illumination and viewing geometry is the first step in 230 

the cross-calibration workflow (see Fig. 4 (I)). The ALS incidence angles ( ALSα ), solar 231 

illumination angles ( solβ ) and HSI viewing angles ( HSIΘ ) are essential to characterize 232 

the interaction between the sensors and the sun with the local surface (see Fig. 1). In 233 

general, the calculation of the angles is carried out by a ray tracing-based intersection 234 

of the sensor beams with the local surface model.  235 
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The ALS incidence angle ( ALSα , Fig. 6 (1)) is calculated in a first step by intersecting 236 

each ALS beam with its neighbouring ALS beams. The ALS beam is defined by its 237 

beam divergence, the position of the transmitter and the position of the surface target. 238 

A least squares approach fits a plain through all points that fall into one ALS beam. For 239 

every plain representing the local underlying surface that is intersected by an ALS 240 

beam, the surface normal is calculated. The angle between this ALS beam and the 241 

surface normal represents the ALS incidence angle ( LIDARα ).  242 

For the calculation of the solar illumination angles ( solβ ) (see Fig. 6 (2)), the surface 243 

intersected by the HSI beams and their surface normal are calculated with the same 244 

procedure used for the calculation of the ALS incidence angle. The viewing angles (245 

HSIΘ ; see Fig. 6 (3)) between the HSI beams and the surface normal are calculated, 246 

as well as the terrain slope angle ( TΘ ) and the topographic azimuth angle ( Tϕ ). 247 

Additionally, the solar azimuth ( sϕ ) and solar zenith angles ( sΘ ) are calculated based 248 

on the acquisition date and the position. By applying all these angles, the solar 249 

illumination angle is given for every HSI beam [27]:  250 

  ))cos(sinsincosarccos(cos sTsTsTsol ϕϕβ −ΘΘ+ΘΘ= .     (4) 251 

 252 

3.2.2 HSI Bottom of atmosphere (BOA) reflectance calculation (Fig. 4 (3)) 253 

For the radiometric calibration of the ALS, the HSI BOA reflectance must be known for 254 

the overlapping wavelength domain (1550 nm). Therefore, the TOA HSI radiance data 255 

cube is transformed to BOA reflectance (Fig. 2, rhomb 5 II). This atmospheric 256 

correction is realized with in-house correction algorithms [28] [29], [26] based on the 257 

radiative transfer code MODTRAN4 [30]. Thereby, the BOA surface reflection ( HSIρ ) is 258 

calculated with the standard formulas (1) and (2). Shadows and rough terrain are not 259 
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considered in this correction step (Fig. 6 (3)). HSIρ , dirE  and difE are provided 260 

separately for the overlapping wavelength domain (1550 nm), to enable the 261 

subsequent calculation of crossX . 262 

3.2.3 ALS radiometric calibration (Fig. 4 (4)) 263 

The calculated HSI reflectance from the previous processing step is now used for the 264 

calibration of the ALS intensity signal applying the calibration constant ( calC ) [19], [20], 265 

[21], [18]. Based on the lidar equation and the use of the backscatter coefficient ( iλ ) 266 

[19], the surface reflectance ALSρ
 
can be directly calculated: 267 

4cos

2

ALSatm

r
calALS

PR
C

ατ
ρ = .                                     (5) 268 

The constant sensor parameters are combined into one calibration constant ( calC ). 269 

 
sysrt

cal
DP

C
τ2

16= .                 (6) 270 

To determine the calibration constant ( calC ), we solve equation (8) for calC : 271 

r

ALSatmALS
cal

PR
C

2

4cosατρ= .        (7) 272 

Several approaches (e.g., [19], [18]) substitute ALSρ  with in-situ reflectance 273 

measurements to determine calC . Instead of an empirical calibration based on the in-274 

situ reflectance measurements of surface targets, our approach aims to create an in-275 

flight cross-calibration with the wavelength overlapping HSI sensor. The criteria for 276 

every HSI beam includes that the calibration surface is a homogeneous target that can 277 

be assumed to be a Lambertian reflector representing stable radiation conditions and 278 

that it is not influenced by shadows. For the test data, which are strongly influenced by 279 
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cloud shadows, an area of interest (AOI) was manually defined that covers the directly 280 

illuminated part of the runway. Within this AOI, only HSI beams were selected 281 

automatically, which have viewing angles °≤Θ 5.0HSI , intersect at a minimum with five 282 

ALS points, and have incidence angles °≤ 5.0ALSα .  283 

The requirement for substituting ALSρ  with HSIρ  in equation (7) is that the spatial 284 

response of the ALS sensor must be adapted to the spatial response of the HSI sensor. 285 

Therefore, ALS points that fulfil the mentioned criteria and intersect with the selected 286 

HSI beams are spatially adapted. The spatial response adaptation is described in 287 

3.2.4. Therefore, both sensor responses can be regarded as analogous at this point. 288 

This adaptation is created for all HSI beams ( HSIN ) that satisfy the mentioned criteria 289 

to calculate the mean calibration constant calC : 290 

         ∑
= +

−
=

HSI

jjj

jjj

N

j rjdifdir

ALSPHSIj

HSI

cal
PREE

LLd

N
C

1
2

2

)(

4cos)(1 απ
.     (8) 291 

Using calC
 
for the radiometric calibration of the ALS intensities within equation (5) 292 

results in cross-calibrated ALS reflectances (Fig. 4 (5) and Fig. 6 (6)). 293 

3.2.4 Spatial response adaptation of ALS points 294 

To compare both sensor signals, the cross-calibrated intensity signal of the ALS point 295 

cloud has to be adapted spatially, considering the point spread function (PSF) of the 296 

HSI sensor (Fig. 4 (6)). It is created with a ray tracing-based approach intersecting the 297 

HSI cones with the ALS point cloud. The received ALS signal ( rP ) is weighted relative 298 

to its distance to the cone centre with a Gaussian PSF centred along the centre axis 299 

of the HSI cone. A detailed description of the spatial response adaptation is given in 300 

[9]. With this method, the spatial response function is correctly approximated regarding 301 
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the spatial footprint projection and orientation. All calculations are realized in SWIR 302 

sensor geometry (Fig. 10) and back-projected to ALS points and VNIR data. This 303 

strategy avoids the resampling of the HSI data and thus the associated degradations. 304 

Due to the ray tracing-based intersection approach, a filtering and adaptation of the 305 

point cloud are created separately for every single HSI beam. The discrete return 306 

intensities are filtered based on their elevation variance inside one HSI beam (Fig. 5). 307 

Every time the elevation variation inside an HSI beam exceeds a threshold, the 308 

variance is minimized by separating the point cloud into two continuous surfaces by 309 

histogram filtering. This approach results in two continuous surface representations: 310 

the ALS points representing higher regions in the canopy, and the bare ground points. 311 

Only if sparse first pulse returns and dense higher order returns are detected inside 312 

one HSI beam, the higher order returns are also considered in the sensor response 313 

adaptation (Fig. 5).  314 

 315 

Fig. 5: Interaction between the canopy, ALS pulses (red lines; returns are indicated 316 

with numbered dots) and HSI beam (blue beam); blue outlined dots are used to build 317 

the reflectivity information representing the corresponding HSI information; blue 318 

dashed lines inside the HSI cone represent the two return levels integrated into the 319 

reflection representation of this HSI cone.    320 

This procedure accounts for the attenuation correction in the surroundings of dense 321 

vegetation where sparse vegetation splits the ALS energy into multiple returns (Fig. 5). 322 
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For HSI beams with dense first pulse returns caused by the canopy and sparse returns 323 

of higher order inside or underneath the vegetation, the top first pulse returns are used 324 

to build a continuous surface. Only these top first pulses represent the canopy parts 325 

influencing the area integrating the sensor answer of the HSI system. 326 

3.2.5 Calculation of the transfer factor crossX  327 

For the transfer of the cross-calibration between the overlapping wavelength domain 328 

of 1550 nm (Fig. 4 (7)) and the remaining wavelength, an additional factor ( crossX ) is 329 

introduced into equation (1). crossX
 
is intended to represent differences in illumination 330 

between shaded and fully illuminated areas. In fully illuminated areas, dirE  and difE
 
are 331 

present. In shaded areas, dirE
 
is absent, and only difE

 
is present. Thus, crossX adjusts 332 

the amount of dirE
 
based on the calibrated and adapted ALS intensity data. Therefore, 333 

Equation (1) with the introduced factor crossX
 
is solved by substituting HSIρ  for 1550 334 

nm with the cross-calibrated ALS reflectance ( ALSρ ) (9) 335 

  
dir

dif

atmALSdir

PHSIHSI
cross

E

E

E

LLd
X −−=

τρ
π

**

)(
2

.                 (9)  336 

The determined factor crossX
 
(Fig. 6 (7)) is then used to calculate HSIρ  for all remaining 337 

wavelengths. This results in corrected HSI reflectance (Fig. 6 (D)). 338 
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 339 

Fig. 6: Geocoded overview of the input/output data products (A-D) and results of the 340 

processing modules (1-7) using non-consecutive numeration corresponding to the 341 

detailed workflow diagram (Fig. 4). 342 

3.3 Requirements and Assumptions 343 

Considering the following four requirements and assumptions, the presented generic 344 

method can be applied to the complete flight campaign, as well as to other system 345 

configurations and characteristics. First, one of the main pre-requisites for the cross-346 

calibration is an accurate spectral and geometric co-alignment, which includes the 347 

adaptation of the overlapping wavelength domain considering the central wavelength 348 
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and bandwidth. Second, it has to be assumed that both sensor systems are 349 

geometrically and radiometrically stable during the entire flight campaign. Third, the 350 

characteristic of the laser pulse regarding amplitude, echo width, and shape of the 351 

reflected echo should be known. Thus, the complexity of the underlying object 352 

reflection is fully represented, and a radiometric correction is also possible for non-353 

horizontal targets [19]. Consequently, the detection of return echoes and the 354 

separation into different reflections out of the full-waveform information can be created 355 

with Gaussian decomposition [25], [19]. Fourth, the approaches for the radiometric 356 

calibration of ALS intensities assume that all surface objects diffusively reflect 357 

according to the Lambertian law. This assumption enables the calculation of diffuse 358 

reflectance, which depends on only the object properties, not on the viewing angle. 359 

4 Results 360 

The introduced radiometric cross-calibration generates an HSI reflectance data cube 361 

with reduced shadowing and illumination influences. In the following, these results are 362 

presented and evaluated for the test data set, which is strongly influenced by 363 

illumination effects. The chapter is divided into a comparison of the adapted intensity 364 

information of the overlapping wavelength domain of 1550 nm, an investigation of the 365 

corrected HSI data cube, and an evaluation of the potentials for HSI data quality and 366 

classification improvements. 367 
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4.1 Comparison between the overlapping wavelength domain of 1550 nm 368 

A rough visual comparison between the standard reflectance results for HSI (Fig. 7 A) 369 

and the reflectance calculated based on the cross-calibration approach (Fig. 7 B) for 370 

the wavelength domain of 1550 nm clearly shows the successful correction of 371 

illumination influences in the HSI-ALS fused data. Despite the complex illumination 372 

situations caused by cloud shadowing, low solar elevation and heterogeneous object 373 

exposure, the correction appears consistent thanks to the radiometrically calibrated 374 

active ALS signal.  375 

 376 
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Fig. 7: Overview of one corrected flight line of 1550 nm, with red marked subsets and 377 

profiles used for further accuracy assessment; (A) HSI BOA reflectance of 1550 nm 378 

(no shadow correction); (B) HSI BOA reflectance of 1550 nm (all corrections applied); 379 

(C) Correction factor Xcross calculated for the atmospheric transformation to all HSI 380 

wavelengths.  381 

A closer inspection of the reflectance (1550 nm) based on three transects (marked in 382 

Fig. 7 B with red arrows) confirms the consistency. Transect 1 (Fig. 8) indicates the 383 

impact of the cross-calibration to the reflectance values representing the concrete 384 

runway in the along-track direction of the flight stripe. Compared to the uncorrected 385 

reflectance values (red plot), the blue plot alternates at a constant level of 386 

approximately 30 % reflectance. The high frequency contrast between the pixels is 387 

preserved or enhanced due to a higher signal level, whereas the low frequency 388 

contrast introduced by illumination differences is compensated for. The same is valid 389 

for transect 2 at a lower reflectance level of approximately 8 %, representing the 390 

across-track influence intersecting a relatively homogeneous asphalt road. Additional 391 

spikes become apparent due to moving cars and retroreflective lane markings not 392 

represented equivalently in both sensor responses. Transect 3 extends in the along-393 

track direction over the complete flight stripe representing its inherent heterogeneity. 394 

This transect confirms the results of transects 1 and 2.  395 
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 396 

Fig. 8: Along and across track transects representing reflectance for 1550 nm (red 397 

uncorrected, blue corrected), x-axis represent the underlying pixel (1.2 x 1.2 m); (A) 398 

along track intersecting the concrete runway; (B) across track intersecting asphalt 399 

road; (C) along track intersecting various surface materials.    400 

The two scatter plots in Fig. 9 (A) and (B) show the relation between the received ALS 401 

power ( rP ) (y-axis) and reflectance (x-axis) for the original HSI reflectance (A) and 402 

cross-calibrated HSI reflectance (B). The regression lines (in red) and their equation 403 

(y), as well as the Pearson correlation coefficient (R), are presented. Plot (A) depicts 404 

highly uncorrelated information due to the different illumination conditions and 405 

differences in the sensor response. However, after the cross-calibration, a close-to-406 

linear relationship is observed (B). As expected, the spatial distribution of the nonlinear 407 

values (under the regression line marked in red Fig. 9 B right) have no correlation with 408 

solar illumination conditions. The differences between radiometrically uncorrected ALS 409 

intensities and cross-calibrated intensities due to varying ALS point density and overall 410 

surface heterogeneity become apparent. It highlights the indispensability of the 411 

radiometric calibration of the ALS data. 412 
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 413 

Fig. 9: Various scatter plots indicating the relationship between ALS data and HSI data 414 

in the overlapping wavelength domain of 1550 nm; (A) shows the relation between 415 

original HSI data (x-axis) and ALS received power (y-axis); (B) shows the relation 416 

between the cross-calibrated data (x-axis) and uncorrected ALS received power (y-417 

axis); (C) (D) show the influence of different calibration targets ((C) runway, (D) grass) 418 

and their overall non-linear relation between original HSI data (x-axes) and cross-419 

calibrated data (y-axes). The blue reference lines (x=y) separate the data sets into two 420 

parts: black clusters represent pixels that have expectedly higher values after the 421 

cross-calibration; red clusters represent pixels that have smaller values after cross-422 

calibration; the spatial distributions of the red clusters are shown in the flight stripes on 423 

the right. 424 

Scatter plots (C), (D) represent the relations between the original HSI (x-axes) and the 425 

cross-calibrated (y-axes) reflectance for two different calibration targets. Plot (C) 426 

results from the calibration on selected pixels from the runway and (D) from grassland. 427 

Both plots also show that the relation between ALS and HSI is highly uncorrelated and 428 

affected by noise due to the differences of the respective radiation paths and the 429 

interaction with the surface objects. Red marked clusters separated by the blue 430 

reference line (x=y) indicate pixels with unrealistically smaller values after the cross-431 

calibration. Their spatial distribution is also shown in the flight lines on the right side. In 432 
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addition to complex anisotropic surface behaviour (e.g., solar array, sheet-metal 433 

roofing), the smaller values result from a small overestimation of the first HSI 434 

reflectance calculation (Fig. 4 (3)) caused by an underestimation of complex diffuse 435 

illumination conditions inside small gaps in the clouds. Both plots (Fig. 9 C and D) 436 

indicate that the different reflectance characteristics of grassland and concrete due to 437 

anisotropy and roughness generate differences in the sensor responses of the two 438 

sensors. It is caused by the fact that the calibration targets do not strictly fulfil the 439 

requirements of a Lambertian surface, and thus both sensor systems still have a 440 

surface-dependent characteristic difference in their sensor responses. Also Fig. 7 C 441 

representing the correction factor crossX  does not only change with direct illumination 442 

variation. Different anisotropy and roughness characteristics of the different surfaces 443 

are still apparent in the factor. Nevertheless, it is assumed that the runway most likely 444 

fulfils the Lambertian surface criteria and serves as the final cross-calibration target for 445 

all further results. This target sensitivity highlights the relative character of the cross-446 

calibration but also emphasizes the opportunity to optimize for different surface 447 

characteristics. 448 
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4.2 Corrected HSI data cube 449 

The spatial pattern of the derived correction factor ( crossX ) shown in Fig. 7 C is used to 450 

compensate for the unwanted illumination patterns for the remaining wavelength of the 451 

HSI sensors. The result of this proposed transformation is shown in Fig. 10 B in 452 

comparison to the uncorrected HSI reflectance (A). The visual comparison indicates 453 

the overall good performance of the method. The patterns of illumination differences 454 

that are clearly visible in the HSI reflectance data (A) are eliminated without any 455 

recognizable artefacts in the transition zones. This fact is also confirmed by the 456 

comparison of the selected spectral profiles (Fig. 10, middle). The first spectral 457 

comparison of the grassland surface (1) shows that the corresponding spectra are 458 

nearly identical before and after the correction. This is due to illumination by direct and 459 

diffuse radiation without the influence of shadows. All other example spectra are 460 

influenced by shadows (red spectra in 2, 3, 4, and 5), exhibiting a clear attenuation. 461 

They are located in areas where only diffuse illumination exists, which is not considered 462 

in Eq. (9). After the correction, the spectra (blue spectra in 2, 3, 4, and 5) indicate that 463 

this lack of direct illumination is compensated for, and the spectra are raised to 464 

plausible reflectance values. 465 
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 466 

Fig. 10: Atmospheric corrected HSI reflectance (back-projected to SWIR sensor 467 

geometry; R = 702 nm, G =1249 nm, B = 586 nm); (A) without cross-calibration (red 468 

label); (B) cross-calibrated corrected data (blue label); (middle) Comparison of 469 

uncorrected (A) and corrected (B) reflectance spectra for different surface materials (1, 470 

2, 3, 4, 5) influenced by various illumination conditions. 471 

Fig. 11 shows the spatial pattern of the cross-calibration-induced reflection 472 

modification by two difference images (A and B) calculated for 2 different wavelengths 473 

(549.3 nm (A) and 1651.8 nm (B)). Both images demonstrate the correction of the 474 
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illumination conditions. However, different surface objects are also visible in 475 

homogeneous illuminated areas. This can be explained by small illumination and 476 

viewing differences caused by surface roughness and anisotropic behaviour. Despite 477 

the sensor adaptation, these effects, which influence the sensor responses, are still 478 

inherent in the data. 479 

 480 

Fig. 11: Reflectance difference (Δ=cross-calibrated reflectance - original HSI 481 

reflectance) between adjacent wavelength with their respective colour slices and 482 

histograms; (A) for 549.3 nm; (B) for 1651.8 nm; locations of reflectance spectra shown 483 

in Fig. 10 are marked with black crosses. 484 

4.3 HSI data quality and classification improvements 485 

A detailed visual comparison of subsets 1 and 2 (red boxes Fig. 7) is presented in Fig. 486 

12. It is clearly visible that the illumination influence inherent in the original HSI data (A 487 
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and D, red border) is corrected (B and E, blue border) without any visual artefacts in 488 

the transition areas. This circumstance is also confirmed by the difference images (C 489 

and F) where the transition between directly illuminated areas and cast shadow areas, 490 

as well as cloud shadow areas, is very smooth and reasonable. The correction of the 491 

solar illumination influence is especially visible at saddle roofs exposed on one side 492 

towards the sun, and on the other side, only diffuse radiation is present. In Fig. 12 B, 493 

these patterns are entirely compensated for. Fig. 12 E indicates that the shadow 494 

influencing the canopy representation of the large tree can also be compensated for. 495 

All of this indicates the potential of the proposed method, especially for advanced 496 

vegetation and canopy studies [31], [4], [32], as well as for urban mapping [33], [5]. 497 

 498 

Fig. 12: Detailed comparison of the fusion procedure, and all images are displayed with 499 

1 % linear global stretch; (A) uncorrected HSI reflectance image (RGB) transition zone 500 

between direct illumination and cloud shadow; (B) corrected HSI reflectance image 501 

(RGB) without any illumination artefacts; (C) greyscale difference image (A - B) 502 

indicating areas with less (black) and strong (white) solar illumination influence; same 503 

for (D), (E), (F), except for displaying CIR false colour for (D) and (E).   504 

Overall, it is perceptible that the internal contrast inside homogeneous areas, for 505 

example, the asphalt road (Fig. 12 B) or the field (Fig. 12 E), is enhanced. However, 506 

the difference images (Fig. 12 C and F) indicate relatively homogenous internal 507 
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patterns for these regions. These enhancements can be explained by contrast 508 

stretching due to the elimination of shadow information. Artefacts or structures that are 509 

not visible in the original HSI data are not generated. Thus, the cross-calibration 510 

enhances the local contrast but does not add inherent ALS speckle to the results. It 511 

seems that the spatial sensor adaptation (section 3.2.4) successfully suppresses such 512 

artefacts. 513 

 514 

Fig. 13: Spectral comparison between two adjacent and overlapping flight stripes; (A) 515 

uncorrected HSI reflectance; (B) corrected HSI reflectance; (1, 2, 3, 4) sample spectra 516 

from overlapping pixels (orange and violet = spectra of left flight strip, red and blue = 517 

spectra of right flight strip.     518 

One of the benefits of the cross-calibration is its inherent inter-flight stripe adjustment. 519 

It results in a seamless mosaic (Fig. 13 B) with a remarkable reflectance match in the 520 

overlapping pixels (Fig. 13 1, 2, 3, 4). Despite the data acquisition not being 521 
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perpendicular to the solar principal plane, across-track illumination gradients are not 522 

observed (Fig. 13 B and Fig. 8, transect 2). The modifications caused by the cross-523 

calibration and their spatial, radiometric and spectral characteristics are also visible in 524 

Fig. 14, where the differences between the two overlapping adjacent flight stripes are 525 

analysed for two wavelengths (549.3 nm (A, C) and 1651.8 nm (B, D)). The differences 526 

for the uncorrected reflectance (red border A and B) show strong illumination patterns. 527 

However, the differences between the cross-calibrated flight stripes (C, D) do not 528 

exhibit these patterns. The histograms and statistic assessments indicate a clear 529 

tendency towards smaller differences and a more homogeneous distribution. For the 530 

relatively short VNIR wavelength of 549.3 nm (A, C), minor reflectance differences 531 

caused by illumination are still perceptible due to the stronger diffuse scattering of 532 

smaller wavelengths. However, the overall tendency towards smaller differences is 533 

present. Especially for the SWIR wavelength (B), the illumination patterns are 534 

eliminated in the cross-corrected SWIR differences (D). The spatial distribution 535 

indicates that only transition areas between surface objects are causing reflectance 536 

differences of ±3.7 % standard deviation. The comparison between the adjacent flight 537 

stripes indicates that across-track illumination gradients are compensated independent 538 

from shadow influence. 539 
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 540 

Fig. 14: Reflectance difference (colour slice) between overlapping adjacent flight 541 

stripes (grey scale); Δ=left flight stripe(1) - right flight stripe(2); histograms indicate the 542 

distribution of the resulting differences; (A, B) difference between uncorrected HSI 543 

reflectance (red border) for overlapping (A) 549.3-nm and (B) 1651.8-nm bands; (C, 544 

D) difference between cross-calibrated HSI reflectance (blue border) for overlapping 545 

(C) 549.3-nm and (D) 1651.8-nm bands. 546 
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 547 

Fig. 15 Subsets (in sensor coordinates) of supervised Support vector machine 548 

classification results (7 classes, 3 iterations) and their corresponding confusion matrix; 549 

(A) based on reflectance without cross-calibration; (B) based on cross-calibrated 550 

reflectance. 551 

To assess the benefits for application and classification purposes, a supervised 552 

support vector machine (SVM) classification [34] has been carried out for the original 553 

HSI data (Fig. 15 A) and the cross-calibrated data (B) (Fig. 15). For the cross-calibrated 554 

data, the classification results in an overall accuracy of 98.56 % and a kappa coefficient 555 

of 0.98. This contrasts with the overall accuracy of 78.79 % and kappa coefficient of 556 
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0.71 for the original HSI data. The corrected data clearly shows a classification 557 

improvement. Based on the confusion matrix (Fig. 15 A), it can be shown that for the 558 

original HSI data, concrete pixels are often falsely classified as asphalt and vice versa. 559 

Additionally, grass surfaces are often misclassified as trees and vice versa. Also 560 

remarkable are the tin roofs, which are often falsely classified as asphalt. These 561 

misclassifications can be explained by a higher spectral similarity between these 562 

classes, especially under shadowed conditions. After the correction (Fig. 15 B 563 

confusion matrix), misclassifications are significantly reduced, and the classifications 564 

of concrete, asphalt, trees, grass and tin roofs especially profit from the corrections. 565 

Additional tests with a spectral angle mapper (SAM) classification, usually more robust 566 

to variations of albedo, performed poorer for the corrected data then SVM classification 567 

performed for the uncorrected data. The overall poorer SAM classification results for 568 

the uncorrected data also indicate nearly identical problems with the separation of trees 569 

and grass as well as with the separation of soil, asphalt and concrete. These 570 

classification results imply that the cross-calibrated reflectance clusters representing 571 

certain surface objects are more separated and have smaller cluster variability. These 572 

are promising results for any type of more specialized application dealing with 573 

vegetation or urban classifications, where the influence of shadows always hampers 574 

the results. 575 

5 Discussion 576 

The results of the proposed illumination correction of the HSI data based on the cross-577 

calibration with the ALS intensity data seem promising for all urban and vegetation 578 

settings influenced by cast shadows. Additionally, extreme complex illumination 579 

conditions, such as cloud or terrain shadowing, can be improved. A significant 580 

enhancement is indicated compared to the exclusive use of HSI data. The cross-581 
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calibration is only a relative calibration; nevertheless, the combination has the potential 582 

to eliminate typically disturbing effects in passive sensor data. The benefits of 583 

compensating for illumination differences are evident when considering de-shadowing, 584 

across-track illumination correction, albedo levelling, and mosaicking. With the active 585 

support, illumination changes over time beside shadow influences are compensated. 586 

This is especially beneficial for the interpretation and classification of data acquired 587 

during long-lasting flight campaigns. 588 

However, some requirements and assumptions considering the sensor systems, 589 

characteristics and flight parameters have to be fulfilled to generate such results. The 590 

ray tracing-based approach is necessary to compensate for the influence of the 591 

different sensor responses, especially concerning tree canopies. Additional work must 592 

be performed to fulfil the requirements for an operational application in HSI data pre-593 

processing. The overall radiative interaction between the sensors and various surface 594 

objects considering anisotropic behaviour and roughness differences must be 595 

addressed. In addition, the sensor adaptation by filtering the point cloud should be 596 

evaluated in detail. Additionally, the influence of the enhanced HSI data on more 597 

specific classification applications should be addressed in the future. The proposed 598 

method can be helpful, especially for the exploration of the different sensor responses. 599 

Due to the physically based adaptation, the method is generic and can be adopted to 600 

different ALS wavelength. All of these efforts will profit from upcoming multiple-601 

wavelength ALS systems and thereby bring airborne imaging spectroscopy closer to 602 

real reflectance measurement. 603 

Conclusion 604 

Three key findings can be drawn from the in-flight cross-calibration of ALS and HSI 605 

sensors: 606 
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1. In general, de-shadowing, illumination correction, albedo levelling and 607 

mosaicking during HSI pre-processing can be enhanced by using ALS intensity 608 

information. 609 

2. As a consequence, classification can be improved by the fusion of intensity data 610 

from ALS and HSI. For example, the classification of heterogeneous urban and 611 

vegetated surfaces, which are spectrally confirmed under shadowed conditions, 612 

benefit from the data fusion. 613 

3.  A point-cloud based combination and adaptation of both sensor responses on 614 

a raw data level is necessary, to properly characterize the morphological 615 

heterogeneity of vegetated and urban surfaces. 616 

The proposed method is the first in-flight airborne HSI and ALS intensity data fusion. It 617 

is based on a rigorous radiometric correction of the ALS intensity data and cross-618 

calibration with the HIS data. The physically based correction results in realistic HSI 619 

reflectance values where relief, illumination, shadows and directional effects have 620 

been compensated and corrected for. The method provides a suitable basis to explore 621 

and adapt the sensor responses and develop unexploited synergies concerning the 622 

radiometric enhancement of both sensors. The results show that a combination of 623 

active ALS and passive HSI systems can strengthen the overall data quality and 624 

classification accuracy of HSI reflectance, especially for heterogeneous vegetation 625 

structures and all urban settings. The data fusion is useful for complex illumination and 626 

shadowing situations, for example, clouds and rough terrain. The presented 627 

methodology and promising results can be applied for various specialized applications, 628 

such as tree-species identification and high-spatial resolution urban mapping, which 629 

rely on constant and comparable illumination conditions. Our results give evidence 630 

that, beyond the ALS accurate range measurement, these systems can support and 631 
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enhance HSI pre-processing with intensity information, especially for heterogeneous 632 

urban and vegetation surface coverage. The combination of both sensors achieves a 633 

true reflectance measurement that accounts for shadowing, directional effects and 634 

atmospheric heterogeneities. With future advances, such as multispectral ALS 635 

systems, a rigorous data fusion approach will be essential to extract high-resolution 636 

information and increase the quality of mapping applications. 637 
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