
 

 

 

 

   Originally published as: 

 

 

 

 

 

 

 

 

Ryberg, T., Haberland, C. (2018): Bayesian inversion of refraction seismic travel-time data. - 
Geophysical Journal International, 212, 3, pp. 1645—1656. 

 
DOI: http://doi.org/10.1093/gji/ggx500 



Geophysical Journal International
Geophys. J. Int. (2018) 212, 1645–1656 doi: 10.1093/gji/ggx500
Advance Access publication 2017 November 21
GJI Seismology

Bayesian inversion of refraction seismic traveltime data

T. Ryberg and Ch. Haberland
Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences, Telegrafenberg, Potsdam, Telegrafenberg, D-14473 Potsdam, Germany.
E-mail: trond@gfz-potsdam.de

Accepted 2017 November 20. Received 2017 November 15; in original form 2017 July 7

S U M M A R Y
We apply a Bayesian Markov chain Monte Carlo (McMC) formalism to the inversion of re-
fraction seismic, traveltime data sets to derive 2-D velocity models below linear arrays (i.e.
profiles) of sources and seismic receivers. Typical refraction data sets, especially when using
the far-offset observations, are known as having experimental geometries which are very poor,
highly ill-posed and far from being ideal. As a consequence, the structural resolution quickly
degrades with depth. Conventional inversion techniques, based on regularization, potentially
suffer from the choice of appropriate inversion parameters (i.e. number and distribution of
cells, starting velocity models, damping and smoothing constraints, data noise level, etc.) and
only local model space exploration. McMC techniques are used for exhaustive sampling of
the model space without the need of prior knowledge (or assumptions) of inversion param-
eters, resulting in a large number of models fitting the observations. Statistical analysis of
these models allows to derive an average (reference) solution and its standard deviation, thus
providing uncertainty estimates of the inversion result. The highly non-linear character of
the inversion problem, mainly caused by the experiment geometry, does not allow to derive
a reference solution and error map by a simply averaging procedure. We present a modified
averaging technique, which excludes parts of the prior distribution in the posterior values due
to poor ray coverage, thus providing reliable estimates of inversion model properties even in
those parts of the models. The model is discretized by a set of Voronoi polygons (with constant
slowness cells) or a triangulated mesh (with interpolation within the triangles). Forward trav-
eltime calculations are performed by a fast, finite-difference-based eikonal solver. The method
is applied to a data set from a refraction seismic survey from Northern Namibia and compared
to conventional tomography. An inversion test for a synthetic data set from a known model is
also presented.
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1 I N T RO D U C T I O N

Refraction seismic data sets have been widely used to construct im-
ages of the Earth’s crust and uppermost mantle (Prodehl & Mooney
2012). Traveltimes from refracted seismic P- and S-wave first ar-
rivals (diving waves and turning rays) and secondary arrivals (reflec-
tions) are used to infer the velocity structure of the subsurface. Typi-
cally waves from controlled sources are recorded along lines where
seismic sensors are deployed. Since all sources and receivers are
located at the surface, the resulting inversion problem is highly ill-
posed and, as one of the consequences, structural resolution quickly
decreases with depth. Trial-and-error-based methods utilizing trav-
eltime calculations along rays have been used in early times to
search for a single ‘best-fitting’ velocity model which would be
in agreement with the observations. These methods, also because
the number of traveltime picks was progressively increasing, have
later been complemented by inversion techniques, which include
tomographic techniques, full-waveform inversions, etc.

For several decades, traveltime tomography is a widely and suc-
cessfully used inversion technique to investigate the Earth’s inter-
nal structure. It is applied at all scales, from the local to the global
scale (Romanowicz 2003), using signals from artificial sources and
earthquakes (Rawlinson & Sambridge 2003; Rawlinson et al. 2010;
Liu & Gu 2012). Traditionally, the traveltime values ‘picked’ from
the observed waveform signals (of seismic waves emerging from
artificial sources or from earthquakes) are inverted for the distribu-
tion of the seismic velocity (or slowness) in the subsurface, either
along 2-D profiles or in 3-D volumes (Thurber & Aki 1987). Typi-
cally, formal inversion routines like damped least squares (DLSQ)
or regularized inversions using conjugate gradient methods are in-
voked to solve the large number of linear equations (e.g. Thurber
1993; Zelt & Barton 1998). To allow for the use of these methods,
the tomographic inversion problem is linearized, and the traveltime
differences (residuals) between the observed data and synthetic trav-
eltime data related to an initial (or previous) model are minimized
in an iterative way (see e.g. Menke 1989). Usually, the subsurface
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is parametrized by 2-D or 3-D cells of fixed sizes and shapes. Data
distribution and desired spatial resolution are used to determine cell
size (number) prior to the inversion.

Although these traditional methods have been very successfully
applied for a long time, several issues remain unsatisfying. One
of these issues is that the assessment of the quality of the solu-
tion and of the uncertainties of the models is not trivial and of-
ten only qualitatively feasible through the use of synthetic recov-
ery tests, bootstrapping tests, evaluation of the resolution matrix,
etc. Some inversion codes provide formal standard errors, how-
ever, they are often unintuitively small in poorly resolved model
regions (see e.g. Evans & Achauer 1993; Evans et al. 1994). Fur-
thermore, the distribution of data is typically not ideal, that is,
traveltime data are spatially irregularly distributed, resulting in spa-
tially varying resolution. In order to account partially for this issue,
models with irregular meshes have been used (Bijwaard et al. 1998;
Thurber & Eberhart-Phillips 1999; Sambridge & Rawlinson 2005).
Attempts have been made to adjust the spatial density of the inver-
sion mesh by the data itself (ray path sampling) during the inversion
(Sambridge & Faletic 2003; Nolet & Montelli 2005), thus cop-
ing locally with varying resolution issues. Anyhow, probably the
most severe problem is that the conventional inversion techniques
search for a local minimum in the vicinity of a starting model and
provide (only) a single ‘final’ model, that is, exploring the poten-
tial model space is—related to the inversion methods traditionally
used—rather limited.

In addition to the issues with model parametrization (regular
grids, fixed dimensions and grid spacings, etc.), the level of data fit,
the level of smoothing and/or damping required to regularize the
inverse problem, and other inversion-related parameters have some-
how to be determined prior to the inversion. A different, sometimes
arbitrary or subjective, choice of these parameters can have a sig-
nificant impact on the final inversion result.

To overcome some of the disadvantages of the traditional meth-
ods presented above, the use of Monte Carlo (MC) searches has
been proposed. Instead of applying an inversion method like DLSQ
inversion, the model space (the velocity or slowness distribution in
the subsurface) is randomly tested and well-fitting models are iden-
tified. The main advantages of MC methods are that they provide a
suite of well-fitting models as well as estimates of the uncertainties
of the obtained models. However, while a variety of MC algorithms
(in particular genetic algorithms and simulated annealing) have
been successfully applied to different geophysical problems [for
example to waveform fitting; see Mosegaard & Sambridge (2002),
Sambridge & Mosegaard (2002), and references therein], only a few
attempts have been made to apply them to tomographic problems—
particularly to surface-based refraction geometries (Pullammanap-
pallil & Louie 1994; Weber 2000; Debski 2010, 2013; Bottero et al.
2016). This seems to be mainly due to the typically large number
of model parameters, the large number of models necessary to be
tested, and the usually ‘expensive’ traveltime calculation.

An entirely new approach to inversion problems is based on
an MC-like investigation (Metropolis et al. 1953) of the model
space using Markov chains within a Bayesian sampling frame-
work (Shapiro & Ritzwoller 2002; Bodin & Sambridge 2009; Bodin
et al. 2012a,b; Shen et al. 2013). Instead of using a fixed number of
cells for the inversion, the dimension of the problem (number N of
cells) is treated as an unknown and determined exclusively by the
data themselves. The transdimensional or reversible jump Markov
chain method (Green 1995; Sambridge et al. 2006) allows for tran-
sitions between models of different dimensions, thus adjusting the
model dimension automatically to the data themselves (Bodin &
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Figure 1. Sketch showing different tomographic scenarios depending on
distribution of sources and receivers, colour coded according to ray density
(a proxy to potential tomographic spatial resolution). Top: ‘Scenario A’
is representative of tomographic geometries with ‘good’ distribution of
receivers and/or sources yielding even ray coverage with many crossing rays
and—in turn—resulting in a compact region of good resolution (white). The
transition region (light red) at the border to the unresolved region (red) is
rather small. This scenario is typically found in studies of ambient noise
derived group velocities of Rayleigh waves, medical computer tomographic
scenarios (MRT) and—roughly—also in cross-hole seismic tomography.
Bottom: ‘Scenario B’ depicts the ray distribution of a typical refraction style
data set with sources and receivers situated along a line at the surface. This
geometry is characterized by a rather small well-resolved region directly
below the surface (white) and a wide gradual transition (light red) toward
the unresolved deeper regions (red). Note many subparallel ray paths and
only a few crossing rays in the deeper parts captured only by the far-offset
recordings. Note that the ray paths for individual models investigated along
the Markov chain, while still fitting the data very well, will significantly
differ from the distribution shown here.

Sambridge 2009). For this inversion technique, the ‘final’ inversion
result (reference solution) is derived by a superposition (averaging)
of a large number of well-fitting models.

A natural extension of this approach treats the omnipresent data
error (sometimes difficult to be quantified) as an extra, unknown
variable, and consequently inverts for this parameter (Bodin et al.
2012a). For these so-called Hierarchical Bayes methods (Bodin
et al. 2012a), the level of data noise (data uncertainty, i.e. typical
traveltime data errors and forward modeling errors) directly affects
the level of complexity (model dimension), that is, the inversion
‘tries’ to decompose the data into a part needed to explain the
model and a residual one (actual noise or data uncertainty).

The transdimensional hierarchical tomography using Markov
chain MC methods (McMC) has been successfully applied to
2-D traveltime tomographic data sets situated in the horizontal
plane, see Fig. 1, as for example ambient noise derived group ve-
locity analysis of Rayleigh waves (see e.g. Bodin & Sambridge
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Figure 2. Reduced traveltime picks (black dots) for the real data set of Ryberg et al. (2015) for all 14 shots (red stars). All traveltime picks (1014) represent
P-wave first arrivals (refracted phases).

2009; Bodin et al. 2012b), to derive pseudo-3-D models (see e.g.
Young et al. 2013a,b) or applied to true 3-D problems (see e.g.
Hawkins & Sambridge 2015; Burdick & Lekić 2017). In the fol-
lowing, we name this type of experiment geometry ‘Scenario A’
(see also Fig. 1, top). Agostinetti et al. (2015) applied it to a lo-
cal earthquake tomography problem. In this paper, we apply and
extend the McMC inversion technique to 2-D controlled source,
refraction style (wide-angle) seismic traveltime data to derive the
2-D velocity distribution in the subsurface (along vertically oriented
cross-sections). 2-D refraction style data sets consist of traveltimes
of first arrivals recorded from several shots along a line of seismic
receivers (typically a larger number). All sources and receivers are
located at the Earth’s surface and are distributed along a line. The
first arrivals are associated to refracted or diving phases resembling
arcuate rays whose course and depth penetration is critically con-
trolled by the 2-D velocity distribution, primarily by the prevailing
vertical velocity gradient. Fig. 1 (bottom) shows the general setup
of this specific experiment geometry, in the following named ‘Sce-
nario B’. This tomographic problem is especially ill-posed, given
the unfavourable distribution of sources and receivers. Typically,
only the very shallow region below the sources and receivers is
well constrained by data (traveltimes), while in the deeper part of
the model ‘crossing’ rays are more or less absent, thus significantly
reducing the resolution power at depth. In ‘Scenario A’ experiment
geometries, the model space is roughly split into regions with rays
passing through and regions with no ray coverage (not constrained
by any data), and transitional regions in-between are rather small.
In ‘Scenario B’ experiment geometries (refraction style data), most
of the inversion space is of intermediate character, with varying,
but generally smaller numbers of rays passing through (see Fig. 1,
bottom).

2 E X P E R I M E N TA L S E T U P A N D F I E L D
DATA S E T

In this paper, we present an inversion method and its application
to a typical, real refraction data set along from an onshore seis-
mic refraction experiment at the eastern prolongation of the Walvis

Ridge into Africa. This seismic experiment, which was carried out
in 2010/2011 and aimed to study the continental break-up and cre-
ation of the South Atlantic ocean, consisted of a 320 km long, coast-
parallel refraction profile in Northern Namibia. For the experiment
shots from 14 boreholes were used as seismic sources. The explo-
sions were recorded along the profile with 100 autonomous seismic
data loggers recording at 100 sps (samples per second) using short-
period (4.5 Hz eigenfrequency), vertical component geophones (see
Ryberg et al. 2015 for details). Fig. 2 shows the traveltime picks of
the refracted P phases used in this study.

3 M O D E L PA R A M E T R I Z AT I O N

The 2-D models are described by a set of unstructured points pi = (xi,
zi, vi) with 0 < i < N, located in the x–z plane (N is number of model
nodes; x is horizontal coordinate; z is depth and v is seismic velocity
or slowness). For the interpolation between these model points (i.e.
to generate a fine grid/mesh to calculate traveltimes), we follow and
evaluate two approaches, one based on Voronoi cells (with constant
velocities within the cell), and one based on a triangulated mesh
(with constant gradients within the cells).

In the Voronoi case, the velocity (or slowness) value at each x,z-
point of the regular grid v(x, z) is set to the value of the nearest
point p of the irregular model (see Fig. 3, left). The generation of
the Voronoi-based velocity grid is quite simple (e.g. no interpola-
tion, no special treatment of the model edges) and fast algorithms
exist to convert Voronoi meshes to regular grids (Sambridge &
Gudmundsson 1998).

The generation of the velocity grid based on a triangulated mesh
requires the triangulation of the irregular model pi and the inter-
polation within the triangles. We use the triangle code (Shewchuk,
1996, 2002) which provides the Delaunay triangulation of a given
set of points pi. In order to yield a full coverage of the area of in-
terest and to achieve a concave hull, we added four artificial points
at the corners of the regular model (velocity values set to the value
of the nearest point p) before the triangulation. For the generation
of the regular grid v(x, z), we first have to know in which triangle
a particular gridpoint is located, and then to interpolate within this
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Figure 3. Examples for a Voronoi tesselation model (with constant slowness cells; left) and triangulated mesh (with interpolation within triangles; right) for
the same set of model points (black circles). Note the absence of sharp slowness contrasts in the triangulated mesh model.

triangle. The efficient search of the encircling triangle is performed
by the walking triangle or trifind algorithm (Lawson 1977; Lee &
Schachter 1980; Sambridge et al. 1995) without the need to check
all triangles. The interpolation within a particular triangle is done by
barycentric interpolation well known from computer graphics (e.g.
Möbius 1827). Fig. 3 (right) shows the velocity distribution based
on the triangulation. Using these two methods (either Voronoi-cell-
based or triangulation-based) fine and regular 2-D-grids/meshes are
efficiently generated from the unstructured point models pi.

4 F O RWA R D P RO B L E M

The resulting regular grid (either based on Voronoi constant slow-
ness cells or on triangulated mesh and interpolation, see above)
is then used in a finite-difference (FD) eikonal solver (Podvin &
Lecomte 1991) to calculate the first arrival traveltimes for all source
and receiver pairs. This traveltime estimation using an eikonal solver
is very efficient and no ray tracing is needed. Since traveltimes are
calculated on a regular grid, bilinear interpolation between the encir-
cling gridpoints is used to calculate the arrival times at the specific
receiver positions. Eventually, the root-mean-square (rms) value
of the differences between the measured and calculated traveltime
values of a particular model is estimated.

For our applications to synthetic and real data, we used a grid
spacing (in x- and z-directions) of 1 km, resulting in FD grids of
320 × 80 in size. We extensively tested the potential influence of
the forward grid size by using sparser and finer grids. We found
no significant differences between the derived reference models for
forward grid sizes of 0.25, 0.5, 1.0, 2.0 and 4 km other than those in-
troduced by the per se randomness of the MC technique. Even when
using a sparse 4 km forward grid, were we would expect forward
traveltime errors caused by the sparse model parametrization when
using the eikonal solver, a reference model which did not differ
from those with finer forward grids could be inverted for. To avoid
propagation (and eventually inversion) of waves above the Earth’s
surface, we replaced the gridded model above the surface by low
velocities (Vair) before calculating traveltimes.

5 H I E R A RC H I C A L B AY E S I A N
A P P ROA C H

We mainly follow the hierarchical transdimensional Bayes algo-
rithm proposed by Bodin et al. (2012a,b) by studying multiple, non-
interacting Markov chains. We start the Markov chains by choosing
a randomly initialized model, then iteratively proceeding with the
evolution algorithm. Every step of the Markov chain involves the
following steps: we propose a new model based on the current
model by (1) changing (with a probability of 1/5) the slowness of a
randomly picked cell, or (2) changing the position (move) of a cell,

(3) changing the noise parameter, or (4) adding a new cell (birth) or
(5) deleting a randomly chosen cell (death). The choice of the new
values for the first three steps is based on the values for the current
model (position, slowness, or data noise) which are changed accord-
ingly to a Gaussian probability distribution centred at the current
value. The Gaussian probability distributions are characterized by
appropriate standard deviations sx and sz, ss and sn for horizontal
and vertical moves, cell slowness and data noise, respectively. We
did not allow cells to move outside the model boundaries and re-
stricted the slowness values to be within smin and smax. Note that
these values should be chosen carefully, so that the posterior dis-
tribution will not be truncated by these limits. We assume minimal
prior knowledge and a ‘nearly’ uninformative prior by choosing a
uniform prior distribution with relatively wide bounds (i.e. Bodin
et al. 2012b; Shen et al. 2013; Young et al. 2013a,b; Pachai et al.
2014). More details regarding the implementation of the Markov
chains can be found in Bodin et al. (2012a).

Traveltimes are estimated for a newly proposed model (see above,
Sections 3 and 4), then the misfit is used to determine the likelihood
of the new model. According to the acceptance criterion of Bodin &
Sambridge (2009) or Moosegard & Tarantola (1995), the new model
is randomly accepted or rejected. To improve the acceptance rate
and model space sampling we used the delayed rejection technique
(DR; Tierney & Mira 1999; Mira 2001). The proposed new model
(or retained current one in the case of rejection) then acts as a
starting model for the next iteration. By reiterating this step, we
produce a chain of models (Markov chain). The first part of this
chain (burn-in phase) is discarded until stationarity of random model
space sampling is achieved. After this period, the chain of models
is asymptotically distributed according to the posterior distribution,
thus realizing a Metropolis sampling algorithm (Gallagher et al.
2009).

6 R E F E R E N C E S O LU T I O N A N D E R RO R
M A P

As the result of the Markov chain calculation, a large number of
models fitting the data set well are generated. Each such individ-
ual model is usually coarse and looks very ‘ungeological’—general
examples of these models are for example presented in Fig. 3.
Fig. 4 shows the distribution of posterior values for the slowness,
the number of cells and the inverted data noise of the well-fitting
models (in the post burn-in phase).These models can be converted
into a regular grid with a grid-specific spacing (see Section 3).
From these gridded models, statistical properties like the average,
standard deviation, median, etc., can be constructed locally at ev-
ery model position (following Bodin & Sambridge 2009; Bodin et
al. 2012a; Young et al. 2013a,b; Burdick & Lekić 2017; Galetti
et al. 2017). Typically, the average model is treated as the reference
solution and the standard deviation is interpreted as a measure of
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Figure 4. Posterior distribution of slowness values (bottom) at every cell node for the entire model, number of cells (middle) and inverted noise (top) for 1000
Markov chains after the burn-in phase. Note the wide distribution of slowness values, actually a composite of slowness values for regions of highly varying ray
coverage. The traveltime data set is compatible with models described by 70 cells on average, while containing ∼0.03 s of traveltime noise.

the model error (uncertainty and resolution). In the following, we
refer to this averaged model as the ‘reference model’. We averaged
the models in slowness space and later converted them to velocities.

For ‘Scenario A’ tomographic experiments, the conventional av-
eraging procedure (using all models after the burn-in phase) gen-
erally works well. In model regions with good ray coverage [and
thus in spatial regions having an influence on the traveltimes under
consideration (data set)], a reference model and its error map can
be recovered. In model regions without ray coverage (i.e. in spatial
regions not having an influence on the traveltimes), the recovered
model and error map are the mean and the standard deviation of
the prior, respectively.1 In the case of Voronoi cell parametriza-
tion, the mean is (smax − smin)/2 and the standard deviation is (smax

− smin)/
√

12 . For ‘Scenario A’ type experimental geometries, the
model space is typically split into a part with ray coverage (con-
strained by data) and a part without ray coverage (not constrained
by data at all).

For ‘Scenario B’ tomographic experiments, most of the rays are
diving (refracted or turning) rays, and a simple averaging of the
Markov chain models will not be suitable to derive a reference solu-

1
Here and in the following, we resort to rays for clarity, however, please note
that we are not calculating rays in our inversion scheme.

tion. The lower corners of the model are obviously not constrained
by any data (no ray coverage), and thus the reference model is a
simple function of smin and smax. In the regions close to the receivers
and sources, the reference model is well constrained by data, similar
to ‘Scenario A’ type experiments. The dominating space in between
has a transitional character ranging from areas of good to very poor
ray coverage with a rather complex distribution. In this transitional
region, the averaged model is more or less biased by the prior distri-
bution. The complexity of the slowness distribution at every spatial
model point is mainly caused by the fact that a large number of
good-fitting models with a corresponding small misfit have equiva-
lent ray paths which do not cover the deeper part of the model at all.
Thus, any slowness value from the prior distribution in the deeper
part of the model will produce a model with a small data misfit,
leading finally to a complex, non-Gaussian posterior distribution
which consists of a blend of the prior distribution and a contribution
constrained by the data. The reason for this behaviour is mainly
related to the strong non-linearity of refraction seismic inversion
problems: especially in the deeper part of the model characterized
by a—on average—poor ray coverage the depth penetration of rays
for an individual model strongly and non-linearly depends on the
specific velocity model itself. Slight slowness changes (introduced
by the model exploration along a Markov chain) can have a large
effect on the actual, model-specific depth penetration of rays. As
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Figure 5. Posterior distribution of recovered slowness values (from ∼100 000 models for the same traveltime data set) at different model locations for Voronoi
mesh (left) and triangulation based models (right). The top, middle and bottom rows represent model regions with very good, poor and very low/no ray
coverage, respectively. Note the different abscissa scales. The slowness distribution is shown as histogram plots (grey and light blue). Black lines show the
prior distribution (equally distributed for Voronoi mesh models, complex for triangulated ones). The black stars and bars represent the plain averages (and their
standard deviations). Blue stars and bars show the averages (and standard deviations) of the slowness values ‘exceeding’ the prior distribution (light blue part
of the histogram). Note that the two lower panels are located in a region which is typically assumed to be unresolved (no ray coverage in the reference model).

a consequence, regions with, on average, poor ray coverage will
sometimes not be illuminated by rays, and thus a posterior slowness
distribution is recovered which is identical to the prior. Sometimes
rays do propagate into this region, thus contributing information to
the posterior distribution which contains a data-driven part. Note,
that after the burn-in phase all of these models have a small data
misfit. As a result, we obtain models with a depth dependent and
complex, i.e. not necessarily Gaussian, slowness distribution. In
general, we see a tendency from a nearly Gaussian posterior slow-
ness distribution in regions well covered by rays (shallow parts of
the model), through complex distributions in poorly covered regions
(intermediate depth) to simple, and identical to the prior distribu-
tions in regions not covered by rays (deepest regions of the model),
see Fig. 5. These non-Gaussian posterior slowness distributions (bi-
modal, multimodal, or more complex), for which the derivation of
the reference models by simple averaging fails, have been observed
in regions of poor ray coverage by Burdick & Lekić (2017). Espe-
cially the potential bias by the prior distribution when extracting
the reference solution makes the choice of a suitable prior impor-
tant, since we do not want to have the final model dominated by
the prior information (Bodin et al. 2012b). Therefore, we assume a
‘nearly’ uninformative prior by choosing a uniform prior distribu-
tion with relatively wide bounds, which includes slownesses values
(velocities) not observed in real rocks.

To be able to extract the ‘data-driven’ part of the posterior dis-
tribution, we suggest to replace the simple averaging procedure by
a procedure which analyses the posterior (at every gridded model
location). In regions poorly covered by rays, the slowness distribu-
tion will be biased by the prior distribution in a way that conven-

tional averaging to derive a reference solution will not work. As we
mentioned, the posterior at any given model point, consisting of n
slowness values, can be assumed to be a mixture of the prior and
a data constrained part. By analysing only those data points, which
‘exceed’ (light blue part of the posterior distribution in Fig. 5), the
theoretical expectation for a prior (black line in Fig. 5), we will
be able to recover a modified reference model which is, to a high
degree, only constrained by data, even in regions of poor ray cov-
erage. For instance, in the case of Voronoi cell parametrization, we
determine the average and calculate the standard deviation at every
model point only from those slowness values which exceed the ex-
pectation for the corresponding prior, i.e. equal distribution between
smin and smax. For the case of the triangulate model parametrization,
an equal prior distribution of slowness at the model points pi does
not result in an equal prior distribution at arbitrary model gridpoints
due to the interpolation involved. Therefore, we calculated the prior
distribution at model gridpoints numerically by generating and grid-
ding a large number of models with random nodes pi (position and
slowness), since no obvious analytical solution for calculating the
prior distribution exists. Therefore, we approximated the prior dis-
tribution of the regridded slowness by a polynomial of degree 8
for further reference. We tested different polynomial degrees and
found degree 8 to be sufficiently accurate to approximate the prior
distribution. The averaging procedure of the ‘residual’ models fi-
nally results in an average model (reference solution) and its (lo-
cally varying) standard deviation, with the latter one assumed to
be an approximation to the model error or resolution (Bodin &
Sambridge 2009). Fig. 5 shows the posterior distribution of
slowness values for ∼100 000 good-fitting models at three locations
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Figure 6. Left: comparison of conventional averaging (top) and modified averaging (bottom) for the entire model after slowness to velocity conversion. Note
that the conventional averaging is strongly biased in regions of poor to no ray coverage. Right: comparison of standard deviation (error map) scaled with respect
to the theoretically expected values derived by the conventional (top) and the modified averaging procedure (bottom).

in the model for good, poor and very low ray coverage. Note that the
posterior slowness distribution at a given model location may con-
tain values which are beyond the limits of the corresponding wave
propagation velocities of real rocks. These models with ‘unrealis-
tic’ rock velocities still have reasonably small traveltime misfits and
contribute to the derivation of a reference (average) model and the
error map. Fig. 6 compares the reference solutions and error maps
using the conventional and modified averaging techniques, show-
ing that the suggested procedure improves the reference solution
significantly.

7 S TA RT I N G A M A R KOV C H A I N

When using the McMC method to explore the model space, one still
needs a model to start with. Ideally the choice of this starting model
should not have any influence on the model space exploration and—
in turn—the results. We investigated different starting models, that
is, models with only one cell with a velocity (slowness) matching
the average slowness of the data, single cell models with a random
slowness, models with huge numbers of cells (up to 1000) of fixed or
random slowness, large or small data errors (including completely
unrealistic values) etc. In all cases, the evolution of the Markov
chain quickly converged to models whose dimension, slownesses
and data errors match the data very well. Of course, when start-
ing with completely random models (dimension and slowness), the
burn-in phase was extended, compared to more ‘realistic’ starting
models.

We also tested the influence of the choices for the hard bound-
aries for slowness and data uncertainty (noise), limiting the search
space for those values. Significantly changing those values did not
have any influence on the reference solution, as long as the values
stay sufficiently away from values for good-fitting models (see Sec-
tion 5). We investigated the influence of the standard deviations (i.e.
average length of proposed step for noise, spatial moves and value
changes), and, again, found no influence. Of course, the acceptance
rate decreased if quite unrealistic values were chosen.

Since no influence of the starting model as well as of the slow-
ness and noise boundaries on the final reference solution could be

observed, we used a 150-cell, constant slowness model for all fur-
ther inversions, the standard deviation for cell moves was 10 km
horizontally (sx) and 5 km vertically (sz). The standard deviation for
slowness ss was 0.01 s km−1, the noise deviation sn was set to 0.01 s.
We tested different sx , sz, ss and sn values, in- or decreased by 50 per
cent and found no significant difference for the derived reference
models. Since we assumed a ‘nearly’ uninformative prior we chose
a uniform prior distribution with the relatively wide bounds for smin

and smax between 0.035 and 0.5 s km−1, thus being far beyond val-
ues for rocks in the study area. Again, we tested smin and smax values
increased or decreased by 50 per cent and found no significant dif-
ference for the derived reference models, and thus no dependence
on smin and smax.

8 C O N V E RG E N C E A S S E S S M E N T

Fig. 7 shows the evolution of the data misfit and dimensionality
(number of cells) for 1000 Markov chains for the inversion applied
to the real traveltime data set (Fig. 2). The starting model consisted
of 150 randomly distributed, constant slowness cells. The average
slowness of the entire traveltime data set was used as the starting
slowness. Only every 200th model of every individual Markov chain
is displayed. While the early models still have a high rms misfit
and high dimensionality, both values quickly decrease during the
evolution of the Markov chains. After 200 000 steps, we assumed
that the burn-in phase (red and blue in Fig. 7) was completed,
resulting in low rms misfits and a stationary dimensionality (number
of cells). Tests with a longer burn-in phase did not change the
reference model significantly, and thus stationarity of the Markov
chains was achieved. For a small number of the Markov chains, the
rms misfit stays at higher levels, typically associated with models
of low complexity (dimension) (Fig. 7, lower panel). Instead of
manually excluding those models from deriving a reference model,
we limited the averaging to the 90 per cent best-fitting, post burn-in
models (red in Fig. 7). It is interesting to note that these 90 per
cent best-fitting models are characterized by a somewhat higher
dimensionality (proxy for the model complexity).
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Figure 7. Convergence of 1000 Markov chains. Shown is the distribution of the data misfit (bottom) and model dimension (number of cells, top) during
the evolution along the chains. Black dots stand for pre-burn-in models. Blue and red points show model values after the burn-in phase, with red points
representing the 90 per cent best-fitting models. Relative histogram plots of the distribution of data misfit and model dimension are added at the right-hand
side. The best-fitting models are typically characterized by higher model dimensionality. The forward problem (traveltime calculations) was solved for more
than 3.5 × 108 models. Note the log scale for the iteration number and data misfit.

Conventionally, the McMC inversion is applied to multiple
Markov chains (for instance Bodin et al. 2012a), thus accelerating
the computation by taking advantage of parallel computing hard-
ware environments. We observed that analysing the post burn-in
models of an individual Markov chain, although producing a large
number of good-fitting models, only led to a somewhat locally lim-
ited search of the model space. The reference solution of a single
Markov chain shows that the model space was not sufficiently ex-
plored. For our data example (Fig. 2), we found that the analysis
of 100–1000 Markov chains was sufficient for exhaustive model
space exploration. Thus, it is not only computationally convenient
to explore the model space by multiple Markov chains at the same
time, but it seems to be important for sufficiently good model space

exploration. We found that for our data example at least 100 Markov
chains should be explored to achieve a stable reference solution.

Our approach of calculating new traveltimes for the entire data
set after a model update along a Markov chain is computationally
expensive. Given the performance of the eikonal solver we used, in
combination with available computer resources, data sets of a typical
refraction seismic experiment can be inverted without requiring
excessive hardware resources. With a typical runtime of ∼0.04 s on
a present day CPU for a complete evaluation of an individual model
(regular grid generation, traveltime and misfit calculations), the
overall runtime for 1000 Markov chains with 300 000 models each
stays below 4000 CPU hours. Since the problem can be perfectly
parallelized on a computer cluster, a complete inversion run for
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Figure 8. Comparison of McMC inversion results (bottom) with conventional inversion (middle; after Ryberg et al. 2015). The top panel shows the distribution
of the standard deviation (error map) for the McMC method. As expected, regions of low errors are confined to the topmost part (<20 km depth) of the model.
The lower crust and upper mantle is only poorly resolved. Grey areas indicate regions of no ray coverage (middle panel) or standard deviations which exceed a
given threshold (50 per cent of the theoretical expectation, see Fig. 6 top right) similar to Galetti et al. (2017).

a typical refraction seismic data set can be done within several
hours.

9 V O RO N O I V E R S U S T R I A N G U L AT E
M O D E L PA R A M E T R I Z AT I O N

Ideally the model parametrization should not have an impact on the
reference solution. We observed that the traveltime misfit of the av-
eraged models (reference solution) differs depending on what type
of model parametrization was used. When visually inspected, the
averaged models for both parametrizations look similar. The mis-
fit of the reference solution when using triangulated models (and
barycentric interpolation within the triangles) compared to typical
individual post burn-in models was only slightly higher (45 ver-
sus typically 35 ms for individual models). When using constant
slowness Voronoi cells for model parametrization, we observed
a significantly higher misfit for the reference solution (>50 ms).
We think that this is caused by the way, we calculate the forward
problem. Voronoi-based models have per definition sharp slowness
contrasts across individual Voronoi cells. Since the forward solver
calculates first arrivals only, a significant number of predicted trav-
eltimes correspond to head waves (interface waves). The calculation
of the reference solution involves an averaging procedure, that is,
the occurrence of sharp contrasts, which potentially produce head
waves, is strongly decreased. The smoother reference solution is less

prone to generate head waves, thus explaining the occurrence of an
elevated misfit when compared to individual models (which incor-
porate potential head waves). For refraction style data set inversion,
we would therefore give preference to a model parametrization by
triangulation and interpolation within the triangles.

1 0 R E S U LT S O F R E A L - DATA A NA LY S I S
A N D R E C OV E RY T E S T

Fig. 8 shows the reference model and its error map derived by
the McMC method, both eventually converted to seismic veloc-
ity, compared to the model derived by conventional tomography
(Ryberg et al. 2015). Generally, both models show a good agree-
ment. Especially, the shallower parts (<10 km depth) show a re-
markable coincidence. The mid-crustal low-velocity anomalies dif-
fer somewhat: this is probably caused by too small damping of
the regularized inversion model. The high-velocity, lower crustal
anomaly (a region of potentially poor resolution) is imaged with sim-
ilar shape and magnitude. A major advantage of the McMC method
is that it provides information on the uncertainties of the recovered
model. In the very shallow part of the model, down to a few km
depth, the velocity uncertainty is around 0.1 km s−1, increasing to
0.2 km s−1 down at 20 km depth. The deeper regions have signifi-
cant larger velocity uncertainties (>0.5 km s−1), because they are
only poorly constrained by data.
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Figure 9. Results of model recovery test. Synthetic traveltimes were calculated for the model (bottom), time jitter (noise) added and inverted (middle). The
differences between the input and inverted model (top) are generally below 2 per cent.

Comparing the inversion results for a traveltime data set by the
two different methods, although resulting in quite similar models,
is limited since we do not know the true crustal model. To test the
ability of the McMC method to recover true models, we performed
a synthetic test. We generated synthetic traveltimes for the same
shot and receiver geometry as in the real experiment. We modeled
traveltimes for 14 shots recorded at 100 receiver locations. The num-
ber of traveltime picks was identical to the real data set of Ryberg
et al. (2015). The synthetic model consisted of a smoothed, 1-D
version of the final model (Ryberg et al. 2015) to ensure similar
depth penetration (ray coverage). This model was overlaid by upper
crustal high- and low-velocity anomalies and a high-velocity lower
crustal body. We added random time jitter (30 ms) to the synthetic
data set to simulate the noise determined from the real data travel-
time picks. We then performed an McMC inversion and obtained
an inversion result (Fig. 9) which is very similar compared to the
input model. In most parts of the inverted model, including regions
of very poor ray coverage, the difference between both models stays
below 2 per cent. The typical number of cells for the synthetic data
set (∼70, see Fig. 4) is of the same order as for the real data set, and
thus both models have a comparable complexity.

1 1 C O N C LU S I O N S

Increasing computer power makes massive exploration of the model
space in tomographic imaging possible. We applied the McMC tech-
nique to invert traveltime refraction data sets. Instead of a single

final model, we thoroughly exploited the model space and derived
a large number of representative models which all fit the observed
data set very well. In addition, we inverted for the model dimen-
sion (number and position of cells in the mesh) and for the data
noise, driven by data only. By modifying the averaging procedure,
we obtained a stable and reliable estimate for the reference model
and its standard deviation (uncertainty and error map) even in re-
gions of reduced resolution. We employed an FD eikonal solver
for fast forward (traveltime) calculation and model evaluation. For
refraction style data, triangulation (of the irregular point models)
and barycentric interpolation within the triangles proved to be a
good approach for model parametrization needed to estimate the
traveltimes. We would give preference to the model description
(parametrization) by triangles instead of constant velocity Voronoi
cells, since the triangulated models are more suitable to describe
realistic earth models and have much smaller velocity jumps, which
might cause traveltime errors when using the eikonal solver. The
forward problem (traveltime calculation) is completely performed
for each individual model during the search—this seems to be par-
ticularly important in refraction type scenarios (Scenario ‘B’) in
which even subtle velocity variations (of the predominantly vertical
gradients) can result in very different ray paths, particularly very
different depth penetration. Given the nature of the McMC tech-
nique, no starting model, pre-set parametrization values, damping
or smoothing parameters were needed. The result of the presented
inversion technique was compared to conventional inversion and
successfully tested with a synthetic data set, thus indicating a sim-
ilar performance compared to conventional tomographic methods.
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However, the main advantage of the McMC approach is that it frees
one from the choice of sometimes subjective and/or arbitrary param-
eters used in conventional inversion techniques (inversion grid size,
damping, smoothing, pre-set data noise, starting model, etc.), while
providing important additional model constraints (error maps) and
information on data noise. It would be straightforward to extend
the algorithm to the 3-D case, apply it to local earthquake data or
cross-hole tomographic scenarios, invert for other hyperparameters
(i.e. forward grid size) or include other data sets (i.e. S-wave travel-
times, traveltimes of reflected phases, etc.) for joint inversions. The
method can easily be adapted to different scales and performs well
with multiscale problems.
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