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Abstract A geological transect across the suture separating northwestern South America from the
Panama Arc helps document the provenance and thermal history of both crustal domains and the suture
zone. During middle Miocene, strata were being accumulated over the suture zone between the Panama Arc
and the continental margin. Integrated provenance analyses of those middle Miocene strata show the
presence of mixed sources that includes material derived from the two major crustal domains: the old
northwestern South American orogens and the younger Panama Arc. Coeval moderately rapid exhumation
of Upper Cretaceous to Paleogene sediments forming the reference continental margin is suggested from
our inverse thermal modeling. Strata within the suture zone are intruded by ~12 Ma magmatic arc-related
plutons, marking the transition from a collisional orogen to a subduction-related one. Renewed late Miocene
to Pliocene acceleration of the exhumation rates is the consequence of a second tectonic pulse, which is
likely to be triggered by the onset of a flat-slab subduction of the Nazca plate underneath the northernmost
Andes of Colombia, suggesting that late Miocene to Pliocene orogeny in the Northern Andes is controlled by
at least two different tectonic mechanisms.

1. Introduction

The timing and mechanisms involved in the northern Andean orogeny may be the result of the super
imposition of global plate kinematic reconfigurations, such as the westward drift of the entire South
American plate (Coney & Evenchick, 2003; Russo & Silver, 1996), different subduction regimes associated with
the Farallon and Nazca plates, with interspersed collision and translation of oceanic terranes (Gansser, 1973;
Ramos, 1999; Spikings & Simpson, 2014). Within this complex geodynamic setting, most authors consider the
collision of the Panama Arc as a the major Neogene event in the history of the margin (Amaya et al., 2017;
Bermúdez et al., 2015; Farris et al., 2011; Kroonenberg et al., 1990; Montes et al., 2015). Such studies, however,
document the stratigraphic and/or thermochronological record of Andean growth, away from the trench and
suture zones, without discriminating whether they are subduction or collisional-related episodes.

The impact of the juxtaposition between the Panama Arc and northwestern South America on the global
oceanographic and biogeographic modern configurations has been widely recognized (Bartoli et al., 2005;
Burton et al., 1997; Iturralde-Vinent & MacPhee, 1999). Despite its importance, intense controversy still
exists about the timing and nature of the geological processes involved. Ages as far apart as ~40 Ma and
~3 Ma have been proposed for both the early interaction and the ultimate establishment of a land
connection (Bacon et al., 2015; Coates et al., 2004; Duque-Caro, 1990a; Montes et al., 2015; O’Dea et al.,
2016; Pindell & Kennan, 2009). In this contribution, we integrate field observations, sedimentary provenance,
U-Pb zircon geochronology, detrital apatite fission tracks, and inverse thermal modeling of multiple thermo-
chronometers along one transect in the northwestern flank of the Western Cordillera of Colombia. It is along
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this transect where the suture zone between the allochthonous Panama Arc and the South American conti-
nental margin is exposed. Our goal is to characterize the Panama and South American blocks by means of
their provenance, as well as document exhumation rates and changes in the detrital record of the adjacent
sedimentary basins, which are probably the consequence of the collision of these tectonic blocks and the
subsequent establishment of subduction regime. The new results presented here support a middle
Miocene or older collision, through a complex switch from collisional to subduction-dominated regimes.

2. Geological Framework

Since Eocene times the northwestern corner of South America has experiencedmajor plate tectonic readjust-
ments, including changes in plate convergence obliquity (Pardo-Casas & Molnar, 1987; Somoza & Ghidella,
2012), breaking up of the Farallon oceanic plate and formation of the Nazca and Cocos plates (Lonsdale,
2005), the collision of the Panama Arc (Duque-Caro, 1990a; Montes et al., 2015), and the onset of a flat-slab
subduction regime in northern Colombia (Chiarabba et al., 2015; Ramos & Folguera, 2009; Syracuse et al.,
2016; Wagner et al., 2017). Such major changes in the geodynamic configuration are recorded in the filling
and exhumation history of the Upper Cretaceous-Pliocene sedimentary basins exposed along the northwes-
tern flank of theWestern Cordillera of Colombia, the Atrato Basin, and the Chucunaque-Tuira Basin in Panama
(Coates et al., 2004; Duque-Caro, 1990a, 1990b) (Figure 1). The inboard stratigraphic and magmatic record of
the northern Andes of Colombia has been also interpreted as the imprint of these major tectonic events
(Mora et al., 2013; Parra et al., 2010; Wagner et al., 2017).

The northern segment of the Western Cordillera of Colombia is constituted by different oceanic terranes,
which are tectonically juxtaposed to the continental margin as a consequence of the interaction between
the Caribbean and South American plate since Late Cretaceous times (Toussaint & Restrepo, 1994; Vallejo
et al., 2006; Villagómez & Spikings, 2013). The most landward and easternmost domain, located between
the Uramita Fault Zone (UFZ) and the Romeral Fault System (RFS) (Figure 1), is characterized by a basaltic
basement with a plateau-like geochemical signature built between 100 Ma and 88 Ma (Kerr et al., 1997,
Sinton et al., 1998; Villagómez et al., 2011), on which an island arc was constructed between ~90 Ma and
~80 Ma over the leading edge of the allochthonous Caribbean Plate (Hincapié-Gómez et al., 2017;
Villagómez et al., 2011; Zapata et al., 2017). This oceanic plateau-arc system, which has been interpreted as
a segment of the Caribbean Large Igneous Province (CLIP) accreted during the Late Cretaceous-Paleocene
(Burke, 1988; Kerr et al., 1996; Sinton et al., 1998; Weber et al., 2015), is sutured to the continental margin
along the RFS (Figure 1) and is overlain by Upper Cretaceous-Paleogene hemipelagic and terrigenous sedi-
ments (Bourgois et al., 1982; Moreno-Sánchez & Pardo-Trujillo, 2003; Pardo-Trujillo et al., 2002).

West of the UFZ, the Panama Arc comprises an Upper Cretaceous-Miocene intraoceanic arc that was also built
over an 89–85 Ma oceanic plateau at the trailing edge of the Caribbean plate (Bourgois et al., 1982; Buchs
et al., 2010; Wegner et al., 2011). This volcanic basement is overlain by Eocene-Pliocene volcano-clastic
sequences, which make up the filling of the Atrato and Chucunaque-Tuira basins (Buchs et al., 2011;
Coates et al., 2004; Duque-Caro, 1990a, 1990b; Haffer, 1967), and may contain the tectono-stratigraphic
record of the pre- and postcollisional history. The Uramita Fault Zone (UFZ) (Figure 1) represents the suture
between the Panama Arc and the CLIP and is associated with the occurrence of highly deformed zones up to
40 km wide (e.g., Istmina Deformed Belt, IDB) (Duque-Caro, 1990a). A compilation of earthquakes between
1981 and 2016 (Figure 1b) shows a concentration of events within the Uramita fault. Nineteen out of the
26 compiled earthquakes with available focal mechanisms are within 30 km from the main trace of
Uramita Fault, and they indicate a transpressional regime with stresses oriented in a NNW-SSE direction;
one of the nodal planes in every earthquake has an approximate S-N strike, roughly coinciding with the strike
of the Uramita Fault, and suggests that this suture zone has been reactivated.

In the northern segment of the UFZ, a series of local basins with a middle Miocene to Pliocene marine to ter-
restrial sediment infill overly the suture zone. These basins likely contain the erosional and exhumation record
of both the Panama Arc and the South American continental paleomargin during and after their collision.

2.1. Local Geology of the Transect

The transect is located on the western flank of the Western Cordillera of Colombia, approximately 180 km
northwest of the city of Medellin (Figure 1). We selected this area as it crosses the suture zone between
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Figure 1. Regional tectonic and geological map modified from Gómez, Nivia, et al. (2015) showing the main morphotectonic and lithological domains of the
Colombian Andes. (a) Present tectonic configuration; plate velocities are taken from Taboada et al. (2000). (b) Compilation and analysis of seismicity and focal
mechanisms in the area of the Uramita Fault Zone (white rectangle in the main figure). A total of 26 mechanisms were compiled, of which 19 are within 30 km from
the main trace of the Uramita Fault (black beach balls). The red alignment represents the main fault trace. Earthquakes with no available focal mechanism but
with magnitude greater than 4 are shown as red dots. The focal mechanisms are consistent with NNW-SSE compression. Data were taken from the global CMT
catalog (Dziewonski et al., 1981; Ekström et al., 2012), Cortés and Angelier (2005), and the catalog of the National Seismic Network of Colombia. See text for other
references used. The red rectangle illustrated the location of the studied transect shown in Figure 2. Abbreviations: AB: Atrato Basin; CC: Central Cordillera; CAR:
Carnegie Ridge; CR: Cocos Ridge; ChB: Chucunaque-Tuira Basin; RFS: Romeral Fault System; EC: Eastern Cordillera; IDB: Istmina Deformed Belt; UFZ: Uramita Fault
Zone; WC: Western Cordillera.
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the Panama Arc and the South American margin. The Cenozoic continental margin is defined by the basaltic
basement of the CLIP, locally known as the San Jose de Urama Diabase (Rodríguez & Arango, 2013), which
also includes a 100.9 ± 0.9 Ma tonalitic intrusion known as the Buriticá Tonalite (Weber et al., 2015). The
CLIP is overlain by intensely deformed turbiditic and hemipelagic sediments of Late Cretaceous-Paleogene
age (Bourgois et al., 1982; Pardo-Trujillo et al., 2002), which are included within the Penderisco Formation
(Álvarez, 1971) (Figure 2). The Panama Arc is represented by a volcanic basement with Ar/Ar and K/Ar ages
between ~70 Ma and ~50 Ma (Bourgois et al., 1982; Buchely et al., 2009; Kerr et al., 1997) that includes por-
phyritic andesites and pillow lavas grouped within the Santa Cecilia-La Equis Complex (González, 2001)
(Figure 2). The volcanic rocks are intruded by Eocene intermediate batholiths (e.g., Mandé and Acandí) with
U-Pb zircon ages between ~60 Ma and ~40 Ma (Leal-Mejía, 2011; Montes et al., 2015). At its northern seg-
ment, the Santa Cecilia-La Equis Complex is overlain by a poorly known, highly deformed, volcano-
sedimentary sequence included within the Eocene-Oligocene Cruces Formation (Rodríguez et al., 2013)
(Figure 2). Finally, the UFZ is covered by middle to upper Miocene hemipelagic rocks and an upper
Miocene-Pliocene fluvial conglomeratic sequence, which are locally known as the Beibaviejo and
Guineales formations (Rodríguez et al., 2013) (Figure 2). Both the hemipelagic and the fluvial sediments are
tilted and show mostly brittle deformational features as well as shear zones. In this work we follow the

Figure 2. Local geological map of the study area after Rodríguez et al. (2013) showing the main lithological units and the
location of samples use for geochronological and thermochronological analyses. (b) Location of the sample collected from
the Buriticá Tonalite ~15 km farther east from the main transect shown in the map.
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stratigraphic framework of Rodríguez et al. (2013), where the Beibaviejo Fm. is correlated with the middle
level of the Beibaviejo-Amparradorcito Sediments of Mejía and Salázar (1989), for which the fossil content
suggests an Oligocene-middle Miocene accumulation age. A maximum accumulation age of 9 Ma has been
suggested for the Guineales Fm. based on a detrital zircon U-Pb geochronological analysis (Rodríguez et al.,
2016). Farther to the west, strata of the Atrato Basin overlying the volcanic basement of the Panama Arc con-
sist of Oligocene to early Pliocene shallowing upward sequences that pass from deep to shallow marine and
transitional conditions and which have been attributed to the occurrence of tectonic disturbances during the
Neogene (Duque-Caro, 1990b). In particular, the Sierra Fm., for which a middle-late Miocene accumulation
age has been determined based on the large occurrence of benthic and planktic foraminifera such as speci-
mens of Uvigerina, Valvulineria, and Bulimina (i.e., Bulimina uvigerinaformis; Duque-Caro, 1990b), is interpreted
as the record of a major shallowing episode that also coincides with a stratigraphic unconformity with pri-
mary tectonic implications (Duque-Caro, 1990a, 1990b; Haffer, 1967). Equivalent strata of the Atrato Basin
in Panama are preserved in the Chucunaque-Tuira Basin (Coates et al., 2004). Our sampling and field observa-
tions include the Cenozoic continental paleomargin and its basement, the allochthonous Panama Arc, and
the Miocene-Pliocene sediments that are patchy covering the UFZ. Additionally, we conducted a regional
sampling of the middle-upper Miocene hemipelagic sediments from the Sierra Fm., exposed toward the cen-
ter and western border of the Atrato Basin (Figure 1).

3. Sampling Strategy and Methods

We described the main lithological and structural features of the rock units cropping out along the SE-NW
oriented 40 km long transect, in ~100 field stations. Despite the limited exposures and intense weathering,
we collected fresh samples from the Buriticá Tonalite and sandstone samples from the Penderisco, Cruces,
Beibaviejo, and Guineales formations. For selected samples, we conducted petrographic, heavy mineral, geo-
chronological, and thermochronological analyses. Our inverse thermal modeling includes apatite fission
tracks and apatite and zircon U-Th/He thermochronology. We also conducted an additional sampling cam-
paign for detrital U-Pb zircon geochronology and apatite-fission track analyses on three specific sites located
farther south, where sedimentary units cover the allochthonous Panama arc (Sierra Fm.) (Figure 1). In addi-
tion, we collected a sediment sample for detrital AFT analysis from the Sucio River, which drains the western
flank of the Western Cordillera and flows almost parallel to our transect (Figure 2), in order to reconstruct the
modern catchment configuration and its recent integrated exhumation patterns. The analyzed sample infor-
mation can be found in Table S1 in the supporting information, and the description of the methods
employed is also provided in Texts S1 to S3 in the supporting information.

4. Results

Since our contribution is based on a multitechnique approach, we present the results of each analytical
method followed by a brief interpretation with preliminary conclusions, which are then integrated into the
overall discussion.

4.1. Lithological Features and Sedimentary Provenance
4.1.1. Field and Petrographic Observations
Three distinct lithological associations, limited by N-S oriented fault zones, were identified in our transect
(Figure 2). First, the eastern Upper Cretaceous-Paleogene Penderisco Fm. (representing the South
American continental margin) is unconformably overlying the CLIP basement that includes the ~100 Ma
Buriticá Tonalite (Weber et al., 2015). We also sampled this tonalite as a reference for an eastern continental
segment out of the suture zone. The Penderisco Formation is characterized by the occurrence of interlayered
arkoses, litharenites, and siliceous mudstones with thin plane-parallel lamination and cross-bedding struc-
tures, which seemingly varies laterally from terrigenous to hemipelagic sequences to the west, represented
by interlayered chert and fossiliferous biomicrites. Both, the hemipelagic and terrigenous sediments are
strongly deformed by outcrop-scale folding. To the west, the UFZ constitutes the limit of an ~10 km wide
high deformation zone where basaltic pillow-lavas and chert blocks are embedded within a fine-grained
sheared matrix. The basaltic rocks show porphyritic and seriate textures with clinopyroxene and plagioclase
phenocrysts in an altered matrix, similar to those rocks included within the San J. de Urama Diabase
(Rodríguez & Arango, 2013).
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Second, the central domain contains middle Miocene limestones and feldspathic litharenites and
upper Miocene-Pliocene fluvial conglomerates and litharenites from the Beibaviejo and Guineales
formations, respectively. Although rocks from the Beibaviejo Fm. have limited exposures within the study
area, it was possible to recognize levels of massive lithic arkoses, feldspathic litharenites, and dark
limestones intruded by a fine-grained plutonic rock of gabbroic composition. A suite of reddish volcanic
rocks with seriate and vesicular textures defined by plagioclase and minor clinopyroxene phenocrysts
in an altered hypocrystalline matrix also crop out within this central domain. Together with the
intrusives, these volcanic rocks have been associated to El Botón Basalts, which are characterized by a
shoshonitic geochemical signature and K/Ar and Ar/Ar ages between 12 Ma and 9 Ma (Zapata &
Rodríguez, 2011). The upper Miocene-Pliocene Guineales Fm. is defined by a thick conglomeratic
sequence with subordinate interlayered fine to coarse-grained litharenites, with carbonized stems and
leaf prints. Bed tilting and the presence of meter-scale shear zones are common deformational features
of both the Beibaviejo and Guineales formations, as well as of the volcano-plutonic rocks of the El
Botón Basalts.

Finally, the western domain comprises a volcano-sedimentary association (Cruces Fm.) that includes tuffs,
agglomerates, volcanic sandstones, siliceous mudstones, and limestones and which unconformably overlies
a basaltic to andesitic basement. The latter includes massive and porphyritic basalts-andesites with
clinopyroxene and plagioclase phenocrysts within a reddish altered matrix and minor pillow lavas defined
as the Santa Cecilia-La Equis Complex. As with the eastern domain, these sequences also exhibit ductile
deformation features as outcrop-scale folding and mélange structures, which were mostly recognized
toward its eastern limit.

Field photographs of the lithological domains described above are presented in Figure S1 in the
supporting information.
4.1.2. Sandstone Petrography and Heavy Minerals
We present in chronological order the results of sandstone petrography and heavy mineral analyses.
Sandstone petrography and heavy mineral data are given in Tables S2 and S3, respectively.

The eight samples from the Upper Cretaceous-Paleogene Penderisco Fm. are fine to coarse-grained textu-
rally immature lithic arkoses, feldspathic litharenites, litharenites, and sublitharenites (Figure 3a). Particles
are subangular with low sphericity, composed of undulatory quartz, euhedral plagioclase, and lithic frag-
ments. Rock fragments are dominantly volcanic and sedimentary with micaceous schists in minor propor-
tion (Figure 3b). Epidote, biotite, muscovite, and pyroxene are present as accessory phases. In the tectonic
discrimination diagrams most of the samples plot within the recycled orogen and continental block pro-
venance fields, whereas in the Qp-Lv-Ls diagram, they plot close to the subduction complex and collision
orogen sources (Figure 3c). Heavy minerals of the Upper Cretaceous-Paleogene Penderisco Fm. consist of a
mixed suite of ultrastable (zircon, tourmaline, and rutile) and unstable and stable minerals (clinopyroxene,
garnet, biotite, zoisite, apatite, muscovite, and clinozoisite) (Figure 3d).

The seven samples from the volcano-clastic Eocene-Oligocene Cruces Fm. are texturally immature fine- to
coarse-grained arkoses (Figure 3a), with subangular and low-sphericity fragments, composed of euhedral
plagioclase and volcanic lithic fragments. Pyroxene, amphibole, epidote, quartz, and plutonic lithics are
also present in minor proportion (Figure 3b). In the tectonic discrimination diagrams the samples plot
within the continental block provenance fields, whereas in the Qp-Lv-Ls discrimination diagram, they plot
within and close to the arc orogen sources (Figure 3c). Sample DMT-020 from the Eocene-Oligocene
Cruces Fm. is composed of stable (epidote and zoisite) and unstable minerals (clinopyroxene and ortho-
pyroxene), with clinopyroxene as the dominant component (Figure 3d).

Two samples from the middle Miocene Beibaviejo Fm. are texturally immature, fine- to coarse-grained
lithic arkoses and feldspathic litharenites (Figure 3a) with subangular and low-sphericity fragments, mostly
composed of undulatory quartz and particles of sedimentary, volcanic, and metamorphic rocks (Figure 3b).
In the tectonic discrimination diagrams, samples plot within the magmatic arc and recycled orogen
provenance fields, whereas in the Qp-Lv-Ls diagram, samples plot within the arc orogen sources and close
to the subduction complex sources, which means predominantly upper crustal sources (Figure 3c).
Samples from this unit are characterized by a high content of ultrastable and stable minerals, such as
zircon, rutile, tourmaline, kyanite, garnet, muscovite, and epidote-group minerals (Figure 3d).
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Sandstone beds within the Guineales Fm. have been previously described by Rodríguez et al. (2016) as
wackes and litharenites, composed of lithic fragments of chert, andesite and mudstone, quartz and minor
feldspar, pyroxene, hornblende, and biotite. Heavy minerals from sample DMT-010 are represented by
clinopyroxene, with minor hornblende, epidote, and zoisite (Figure 3d).
4.1.3. Detrital and Magmatic Zircon U-Pb Geochronology
The zircon U-Pb geochronological data from all samples analyzed in this work are given in Table S4.
4.1.3.1. Upper Cretaceous-Paleogene Penderisco Fm.
Sample BTU-004 yielded a total of 91 detrital zircon U-Pb ages. Crystals are dominantly prismatic and euhe-
dral with a length:width (L:W) ratio of 3:1, with subrounded grains in minor proportion. Cathodoluminescence
images show oscillatory patterns related to a magmatic character, as well as minor rims surrounding oscilla-
tory zircons that may be related to a metamorphic origin (Vavra et al., 1999). Th/U ratios range from 0.15 to
4.56, suggesting the dominance of magmatic zircons (Rubatto, 2002). Major age peaks are of Paleocene-
Eocene (61–55 Ma), Late Cretaceous (92–80 Ma), Permo-Triassic (270–227 Ma), and minor Paleozoic to

Figure 3. (a) Textural maturity assessment after Zimmermann and Hall (2016) and Q-F-L classification diagram after Folk (1980). (b) Photomicrographs of samples
from the Late Cretaceous-Paleogene Penderisco Fm., Eocene-Oligocene Cruces Fm., and the middle Miocene Beibaviejo Fm. Abbreviations: Lch: Chert lithic
fragment; Lmm: Micaceous metamorphic lithic fragment; Lsm: mudstone lithic fragment; Lss: sandstone lithic fragment; Lv: volcanic lithic fragment; Pg: plagioclase;
Px: pyroxene; Qz: quartz. (c) Sandstone tectonic discrimination diagrams Qm-F-Lt diagram after Dickinson (1985), Q-F-L diagram after Garzanti (2016), and
Qp-Lv-Ls diagram after Dickinson et al. (1983). (d) Results of the heavy-mineral analysis. Abbreviations: Ap: apatite, Bt: biotite, Cc: calcite, Chl: chlorite, Cpx:
clinopyroxene, Czs: clinozoisite, Ep: epidote, Grt: garnet, Hb: hornblende, Ky: kyanite, Msk: muscovite, Opx: orthopyroxene, Rt: rutile, Sph: sphene, Str: staurolite, Tur:
tourmaline, Zr: zircon, Zs: zoisite.
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Proterozoic (~400–1,000 Ma) ages (Figure 4a). A maximum accumulation age of 55.4 ± 0.8 Ma is defined by
the weighted mean of the three youngest overlapped ages (Dickinson & Gehrels, 2009).

A total of 87 individual zircon U-Pb ages were obtained from the sandstone sample GR-30 from the western
segment of the Penderisco Fm. Most of the crystals are prismatic and euhedral with L:W ratio between 3:1
and 2:1. Cathodoluminescence images show oscillatory patterns characteristic of igneous rocks, with very
bright patterns and resorbed rims that may also be characteristic of metamorphic rocks (Corfu et al., 2003).
Th/U ratios range between 0.11 and 1.68 and indicate that most of the zircons are probably of igneous
character, except by one grain with Th/U = 0.05 that yielded an age of 802.2 ± 28.1 Ma, which might indicate
a metamorphic origin (Harley et al., 2007; Rubatto, 2002). Analyzed zircons yielded major age peaks of
Late Cretaceous (96–80 Ma), Permo-Triassic (220–290 Ma), and less representative early Paleozoic and
Proterozoic (400–1,800 Ma) ages (Figure 4a). A maximum depositional age of 76.3 ± 1.8 Ma was also estab-
lished for this sample from the weighted mean of the three youngest overlapping individual ages.

Figure 4. (a) Probability density plots (PDPs) showing the results of the detrital zircon U-Pb geochronology for samples of the Penderisco, Cruces, Beibaviejo,
Guineales, and Sierra formations. (b) Weighted mean age plot and Tera-Wasserburg concordia diagram for the tuff sample DMT-003 from the Cruces Fm.
Cathodoluminescence images are presented in Figure S2.
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4.1.3.2. Eocene-Oligocene Cruces Fm.
U-Pb zircon geochronology analyses were conducted on a tuff (sample DMT-003) collected from the Cruces
Fm. Zircons are mostly prismatic with L:W ratio between 3:1 and 2:1. The cathodoluminescence images show
well-developed oscillatory overgrowth characteristic of igneous rocks. Some crystals also present magmatic
resorbed patterns typical of pyroclastic volcanic rocks (Corfu et al., 2003). The igneous character of the ana-
lyzed zircons is also demonstrated by the Th/U ratios, which vary between 0.39 and 2.28. A total of 25 out of
28 concordant ages yielded a weighted mean average age of 42.0 ± 0.6 Ma that is interpreted as the crystal-
lization age (Figure 4b). This age is consistent with previously published Ar/Ar data for the so-called Dabeiba
Arc (Kerr et al., 1997). Older ages of 53.4 ± 0.8 Ma, 55.7 ± 1.1 Ma, and 74.6 ± 1.3 Ma are coherent with pre-
viously published U-Pb geochronological data for the volcano-plutonic rocks of the Panama Arc (Buchs
et al., 2010; Montes et al., 2015), as well as with Ar/Ar ages reported for the basalts of the Serranía de
Baudó (Kerr et al., 1997), and are likely to represent inherited zircons. A probability distribution plot is also
presented in Table S4. Although one sandstone sample from the Cruces Fm. (DMT-020) was also selected
for detrital geochronological analysis, no zircons were recovered.
4.1.3.3. Middle Miocene Beibaviejo Fm.
A total of 120 single grain U-Pb ages were obtained from the sandstone sample UDB-022. Zircons can be
divided into two groups according to its morphology. A first group is characterized by prismatic shapes with
L:W ratios around 3:1 and oscillatory patterns in the cathodoluminescence images. A second group is mostly
composed of prismatic and subrounded zircons with stubby and homogeneous overgrowths typical of meta-
morphic rocks (Corfu et al., 2003; Vavra et al., 1999). However, the Th/U ratio values ranging from 0.38 to 5.51
indicate the dominance of zircons derived from igneous sources, except by one grain with Th/U = 0.03 that
yielded an age of 963.0 ± 10.2 Ma, which might indicate a metamorphic origin (Harley et al., 2007; Rubatto,
2002). Analyzed grains yield major age-peaks of Eocene-Oligocene (42–23 Ma) and Late Cretaceous
(91–73 Ma) and minor Paleozoic (~570 Ma) and Proterozoic (1,362–993 Ma) (Figure 4a). The weighted mean
of the three youngest overlapped analyses yielded a maximum accumulation age of 23.4 ± 0.3 Ma. This age
closely overlaps with a previously published Ar/Ar age of 25.6 ± 2.6 Ma obtained from a basaltic unit
that crops out nearby the location of the sample UDB-022 that is included within the so-called Chocó-
Panamá Terrane (Villagómez et al., 2011), which is probably correlated with the here called Panama Arc.
Furthermore, the estimated late Oligocene-early Miocene maximum accumulation age is consistent with
the previously proposed biostratigraphic age for the Beibaviejo Fm. (see discussion in section 2.1).
4.1.4. Upper Miocene-Pliocene Guineales Fm.
Sample DMT-010 from the Guineales Fm. yielded a total of 77 single grain U-Pb ages. As in the sample UDB-
022 from the Beibaviejo Fm., zircons can be separated into two different groups. The cathodoluminescence
images show the presence of prismatic grains with L:W ratio between 3:1 and 2:1 and a characteristic oscil-
latory pattern of igneous rocks. Conversely, another set of zircons shows a subrounded shape with oscillatory
pattern but also homogeneous overgrowths more alike withmetamorphic sources. However, Th/U ratios vary
from 0.19 to 4.54, evidencing the dominance of magmatic zircons (Rubatto, 2002). Analyzed zircons yielded
major age peaks of middle Eocene (46–40 Ma), Late Cretaceous (90–70 Ma), Triassic (~230 Ma), and
Mesoproterozoic (~1,070 Ma) (Figure 4a).
4.1.4.1. Middle Miocene Sandstones From the Atrato Basin
Three additional samples collected from the middle-upper Miocene Sierra Fm. of the Atrato Basin (sedimen-
tary cover of the Panama Arc) were selected for zircon U-Pb detrital analyses. From sample A1 a total of 51
single grain U-Pb ages were obtained. Th/U ratios span between 0.1 and 3.8, suggesting the dominance of
zircons of magmatic nature (Rubatto, 2002). Analyzed zircons have major peaks of Late Cretaceous
(91–81 Ma) and Permian (278 Ma) ages, with minor Paleozoic and Proterozoic individual ages (Figure 4a).
Sample S1 yielded a total of 42 single grain U-Pb ages. As in sample A1, Th/U ratios range from 0.2 to 3.7, indi-
cating the presence of zircons dominantly magmatic in origin. Major peaks of Late Cretaceous (91–77 Ma),
Permo-Triassic (253–229 Ma), and Neoproterozoic (688 Ma) ages were identified. Minor Mesoproterozoic
and Paleoproterozoic individual ages are present as well (Figure 4a). Finally, sample T1 yielded a total of
215 single grain U-Pb ages. Cathodoluminescence images show that most of the crystals are prismatic and
euhedral with L:W ratio of 3:1. Otherwise, analyzed zircons show two different internal patterns on the cath-
odoluminescence images, with the first group having an oscillatory and sector zoning patterns, characteristic
of igneous rocks (Corfu et al., 2003); the second group is characterized by overgrowth rims over oscillatory
patterns with several crystals showing a homogeneous fading texture; these patterns may be characteristic
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of metamorphic origin zircons (Corfu et al., 2003; Vavra et al., 1999). Th/U ratios ranges between 0.1 and 7.1
indicate that zircons are dominantly of igneous origin. Individual grains have major peaks of Oligocene-
Miocene (30–23 Ma), middle Eocene (41 Ma), Late Cretaceous (92–67 Ma), Triassic (232 Ma),
Neoproterozoic (1,000–570 Ma), and Paleoproterozoic-Mesoproterozoic (2,000–1,200 Ma) ages (Figure 4a).

4.1.4.2. Provenance Interpretation
The Penderisco Fm. rests nonconformably over the oceanic terranes forming the CLIP. This unit includes
sandstone with unstable framework material, such as plagioclase, epidote, biotite, clinopyroxene, and volca-
nic lithic fragments, which indicate that these sediments were rapidly accumulated in the proximity to the
source terranes. The coexistence of siliciclastic rocks with chert and fossiliferous limestones suggests accumu-
lation in a transitional to marine environment. The quartz-rich composition and the presence of micaceous
metamorphic lithic fragments, together with a mixed suite of heavy minerals such as clinopyroxene, epidote,
clinozoisite, kyanite, rutile, garnet, and tourmaline, suggest that medium to high-grade metamorphic and
intermediate-acid plutonic rocks, as well as basic volcanic units, were the main sources for these sediments.
The U-Pb detrital signature of sandstones from this unit (samples GR-30 and BTU-004) is characterized by
Cretaceous and Permo-Triassic populations, which resemble the crystallization ages from (1) either inter-
mediate, acid plutonic rocks exposed along the axis of the Central Cordillera (e.g., Antioqueño Batholith
and Quebradagrande Complex) (J. S. Jaramillo et al., 2017; Leal-Mejía, 2011; Villagómez et al., 2011) or basic,
intermediate intrusives rocks from the Western Cordillera (e.g., Buriticá Tonalite, Buga Batholith, Altamira
Gabbro, Santa Fe, and Sabanalarga Batholiths) (Villagómez et al., 2011; Weber et al., 2015; Zapata et al.,
2017) and (2) the pre-Cretaceous metamorphic and igneous basement units of the Central Cordillera
(Martens et al., 2014; Restrepo et al., 2011; Vinasco et al., 2006). Minor Paleozoic and older ages are likely to
be the result of recycled material from the meta-sedimentary units that crop out along the Central Cordillera
(e.g., Cajamarca Complex) (Cochrane et al., 2014; Martens et al., 2012). Late Cretaceous-early Paleocene accu-
mulation ages have been suggested for the Penderisco Fm. (Bourgois et al., 1982; González, 2001; Pardo-
Trujillo et al., 2002) based on its fossiliferous content. We interpret the Penderisco Fm. as a syn to postcolli-
sional sequence of a Late Cretaceous-Paleocene tectonic event related to the accretion of the leading edge
of the CLIP, recording the late stages of the construction of the Cenozoic continental margin of northwestern
South America. Coeval widespread tectonic instability has been documented in the northern Colombian
Andes, as suggested by (1) moderately rapid exhumation of the Central Cordillera between 70 and 75 Ma
(Villagómez & Spikings, 2013), (2) changes on the geochemical signature from tholeiitic to high-K calc-alkaline
of Cretaceous magmatic rocks exposed on the western flank of the Central Cordillera at ca. 70 Ma (J. S.
Jaramillo et al., 2017), and (3) shallowing of sedimentary facies and deformation in the Colombian foreland
basins (Bayona et al., 2013; Cooper et al., 1995; Gómez et al., 2003; Mora et al., 2013).

The Cruces Formation, in the Panama Arc domain, contains sandstones with a high content of euhedral pla-
gioclase, clinopyroxene, and volcanic lithic fragments, as well as heavy minerals characteristic of basic to
intermediate igneous sources, and compositional characteristics similar to those resulting from the erosional
trends of magmatic arcs. All these elements and the U/Pb zircon age of 42.0 ± 0.6 Ma in a tuff suggest that this
unit is part of the Eocene-Oligocene subaerial volcanism and continuous denudation of the Panama Arc.
Subduction initiation and thus the magmatic activity related to the construction of the Panama Arc occurred
ca. 70 Ma on the trailing edge of the CLIP. This has been interpreted as a direct consequence of the tectonic
plate readjustments that followed the collision of the leading edge of the CLIP with northwestern South
America (Buchs et al., 2010; Wegner et al., 2011). By middle Eocene times, this island arc was being
constructed at a well-established subduction zone in which pyroclastic activity and subaerial exposure have
been already documented in the Panama area (Montes, Cardona, et al., 2012; Ramírez et al., 2016).

The Oligocene-middle Miocene Beibaviejo Fm. seems to overlie the Panama Arc and the South American
margin and therefore provides a minimum date for the approach and juxtaposition of both domains. It
consists of hemipelagic texturally immature sediments with a mixed compositional character, including
both unstable and ultrastable framework materials, such as epidote, clinopyroxene, volcanic lithics, zircon,
tourmaline, rutile, and quartz. The sedimentary recycling is also evidenced by the presence of sandstone
and mudstone fragments. The above suggests that the source for this unit consisted of a mixture of volca-
nic and uplifted sedimentary terrains in proximal shallow marine environments. Results from the U-Pb det-
rital geochronology of the sample UDB-022 suggest the dominance of Oligocene to middle Eocene, Late
Cretaceous, and Proterozoic sources. As suggested by the petrographic and heavy mineral analyses
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indicating high content of ultrastable material and sedimentary lithics, the Penderisco Fm. must have
contributed detritus to this middle Miocene unit, and thus, the Cretaceous and older U-Pb detrital
ages probably represent a recycling signal of the lithological domains mentioned above. The most out-
standing aspect is the appearance of middle Eocene to Oligocene detrital U-Pb ages (41–30 Ma), which
are arguably derived from the Panama Arc (Montes et al., 2015), since no similar ages have been reported
so far for crystalline massifs included within other lithological domains or terrains in the Colombian Andes
(Gómez, Montes, et al., 2015; C. Jaramillo et al., 2017). As mentioned in section 4.1.3.3, the presence of an
age population around 23 Ma in the sample UDB-022 from the Beibaviejo Fm., which closely overlaps with
the previously published Ar/Ar age of ca. 25 Ma for the Dabeiba Fm. included within the Chocó-Panamá
Terrane (Villagómez et al., 2011), also supports our interpretation that the Panama Arc sourced this
sedimentary unit.

Heavy minerals of the upper Miocene-Pliocene Guineales Fm. are dominantly represented by clinopyrox-
ene, suggesting the dominance of basic-intermediate igneous sources. Previous geochemical and geo-
chronological data (Rodríguez et al., 2016) indicate a rather mixed provenance including massive
volcanic and porphyritic sources, as well as reworked sedimentary units. Their geochemical data show
the presence of volcanic clasts with a shoshonitic signature similar to that described for rocks from the
El Botón Basalts and related middle Miocene intrusives (Rodríguez & Zapata, 2012; Zapata & Rodríguez,
2011). This was used to propose a maximum accumulation age of 9 Ma for the Guineales Fm. The detrital
U-Pb signature of the sample DMT-010 from the Guineales Fm. resembles that of the Penderisco Fm., with
major peaks in Late Cretaceous, Permo-Triassic, and Mesoproterozoic ages, indicating a recycled U-Pb
signal. However, the presence of an age population of middle Eocene (46–40 Ma), as in the Beibaviejo
Fm., suggests that the Panama Arc could also provide detritus for this upper Miocene-Pliocene
conglomeratic sequence.

4.2. Low-Temperature Thermochronology (ZHe, AFT, and AHe) and Inverse Thermal Modeling

In this section, we present the results of our multitermochronometer analysis and the inverse thermal mod-
eling. Exhumation rates are estimated by using a geothermal gradient between 20°C/km and 15°C/km, which
have been suggested as average values for subduction-related settings (Dumitru, 1991; Henry & Pollack,
1988). Since all samples selected for thermochronological analyses were collected far from younger intrusive
units, we interpret that cooling signals are related to erosional exhumation rather than thermal relaxation
after local igneous activity. The thermochronological data from all samples analyzed here (including AFT,
AHe, and ZHe) are given in Tables S5 to S7.
4.2.1. Buriticá Tonalite
We selected sample BTU-015, recovered from the Buriticá Tonalite (U-Pb zircon age of 100.9 ± 0.9 Ma, Weber
et al., 2015), for ZHe and AHe analyses. Three zircons yielded reproducible individual ZHe ages with a
weighted mean of 52.7 ± 1.1 Ma. Four analyzed apatites yielded reproducible AHe ages with a weighted
mean of 6.7 ± 0.6 Ma. An individual AHe age of 3.9 ± 8.4 Ma was discarded because of its high analytical error
(over 100%).
4.2.1.1. Thermal History: Exhumation of the CLIP Basement
It seems likely that the Buriticá Tonalite was a possible source for the detritus of the Penderisco Formation
(see above the results of the detrital zircon U-Pb analysis of samples GR-30 and BTU-004), given the presence
of several individual ages around 100 Ma (Figure 4a). It is therefore likely that this tonalitic body (sample
BTU-015) was near the surface at the time of accumulation of the Penderisco Fm. Under this assumption,
good models show that the onset of cooling is not well constrained by the data; however, the thermal model
that best fits the ZHe and AHe ages obtained from the Buriticá Tonalite shows that the onset of
cooling/exhumation probably occurred around 50 Ma at slow rates around 0.2 km/Myr, which slightly
decreased to 0.15 km/myat ca. 33 Ma and remained constant until ~4 Ma. Thereafter, a pulse of rapid exhu-
mation with rates up to 0.6 km/Myr is registered from the early Pliocene to present (Figure 5).
4.2.2. Upper Cretaceous–Paleogene Penderisco Fm.
Five zircon grains from sandstone sample UDB-032 yielded individual ZHe ages ranging from 114 Ma to
29 Ma. This sample also yielded an AFT age of 13.1 ± 1.6 Ma, P(χ2) = 39.3%. Only one apatite grain was suc-
cessfully dated for AHe and yielded an age of 3.3 ± 0.5 Ma, with other three measured aliquots being nona-
patites with no helium present. Similarly, five analyzed grains from the sample UDB-063 yielded individual
ZHe ages that vary between 123 Ma and 30 Ma. For this sample, an AFT age of 14.2 ± 2.2 Ma,
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Figure 5. Inverse thermal models of the Buriticá Tonalite and the Penderisco and Cruces Fms. The boxes show the mea-
sured and modeled age for each thermochronometer obtained from the HeFTy software.
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P(χ2) = 81.2%, was obtained. Additionally, five individual reproducible AHe ages yielded a weighted mean
age of 8.9 ± 0.3 Ma.
4.2.2.1. Thermal History of the Penderisco Fm.
The youngest ZHe individual ages of 29.0 ± 0.6 Ma and 49.2 ± 1.1 Ma, obtained from the sample UDB-032
from the Penderisco Fm., exhibit the highest values of effective uranium (e[U]: 870.6 ppm and 640.2 ppm,
respectively) showing a negative e[U] versus age correlation pointing for a potential radiation damage effect
(see Figure S3). Older ZHe ages (>66.8 Ma) show similar e[U] values (~330 ppm) and are here interpreted as
detrital nonreset ages, since the lower e[U] and thus the absence of radiation damage prevented the He to be
easily diffused from the zircon grains (Guenthner et al., 2013; Johnson et al., 2017). After modeling with all
individual ages younger than the maximum depositional age (~55 Ma), which could represent partially or
totally reset cooling ages, no goodmodels (GOF> 0.5; Ketcham, 2005) were obtained. Therefore, we use only
the youngest ZHe age of 29.0 ± 0.6 Ma, since its highest e[U] concentration suggests that this grain potentially
suffered enough radiation damage to facilitate the He diffusion reducing its closure temperature and conse-
quently yielded a reset age (Guenthner et al., 2013). Under this assumption, this ZHe age represents an
approximate age for the onset of cooling. Conversely, younger ZHe ages of 35.7 ± 0.5 Ma and
30.1 ± 1.0 Ma from sample UDB-063 show the lowest values of e[U] (318.1 ppm and 67.1 ppm, respectively;
see supporting Figure S3). Older ZHe ages have higher e[U] values with a slightly defined negative correlation
with age, suggesting an incipient progressive radiation damage effect (progressive decrease in the closure
temperature), more evidenced in the 50 Ma age that is likely to be a partially reset detrital signal. After mod-
eling with all individual ages younger than the maximum accumulation age (~55 Ma), which could represent
partially or totally reset cooling ages, no good models were obtained. Therefore, we interpret that the young-
est age of 30.1 ± 1.0 Ma (with the lowest value of e[U] = 67.1 ppm) did not experience enough radiation
damage to trap He atoms and is more likely to represent a reset age since the temperature required to diffuse
He from this crystal was probably lower than that needed in the other four aliquots (Guenthner et al., 2013;
Johnson et al., 2017).

The thermal modeling paths that best reproduce the input data for sample UDB-032 suggest that the onset of
cooling/exhumation occurred between ~50 Ma and 35 Ma when the sample began to exhume at rates of
approximately 0.2–0.1 km/Myr (Figure 5). The maximum temperature reached by this sample is seemingly
imposed by the constraint box. However, we suggest that sample UBD-032 did not exceed ~250°C based
on the textural and microtextural observations and because of the presence of nonreset individual ZHe ages
older than the maximum accumulation age. Most of the good paths show a slight increase of the exhumation
rates at ca. 23 Ma to ~0.3 km/Myr, which remained constant until between ~3 Ma and 1 Ma, when rates shar-
ply increased to 1.0–0.7 km/Myr (Figure 5). Sample UDB-063 was continuously buried until anytime between
~50 and 20 Ma when it started exhuming at moderately rapid rates of ~0.4 km/Myr (Figure 5). At ca. 15 Ma a
pulse of moderately rapid exhumation is registered with slightly increased rates between 0.5 km/Myr and
0.4 km/Myr, which remained until present (Figure 5).
4.2.3. Eocene–Oligocene Cruces Fm.
Sample DMT-003, with a zircon U-Pb crystallization age of 42.0 ± 0.6 Ma, yielded three reproducible individual
ZHe ages with a weightedmean of 44.7 ± 0.4 Ma. Apatite fission track analysis yielded an age of 40.2 ± 4.6 Ma,
P(χ2) = 100%, and a mean track length of 15.0 ± 0.9 μm, despite the limited amount of horizontal confined
tracks found (up to 10). AHe analyses conducted on this sample yielded individual ages spanning from
38 Ma to 13 Ma.
4.2.3.1. Thermal History of the Cruces Formation
Conflicting U-Pb and ZHe ages in sample DMT-003 from the tuff sample of the Cruces Fm. may be the con-
sequence either of an overcorrection of the ZHe age by the geometric factor (Farley et al., 1996) or the pre-
sence of microinclusions that tend to produce an excess of U and yield older ages (Fitzgerald, 2006). ZHe ages
obtained for this sample are therefore not considered for thermal modeling. On the other hand, AFT and AHe
analyses conducted in this sample show that younger AHe ages of 13.1 ± 0.7 Ma and 14.2 ± 0.5 Ma are
partially reset ages, since the presence of long fission tracks (~15 μm) (Figure 5) suggests that this sample
did not achieve temperatures above the apatite partial annealing zone (~60–120°C, Reiners & Brandon, 2006).

The robust models obtained from the inverse thermal modeling of sample DMT-003 from the Cruces Fm. sug-
gest that after its formation, the sample was buried until ca. 14 Ma, reaching maximum temperatures within
the apatite-helium partial retention zone (Figure 5). At this moment, it started to be exhumed at rates
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between 0.8 km/Myr and 1.0 km/Myr. Following the period of rapid exhumation, rates started to progres-
sively decrease until present.
4.2.4. Upper Miocene-Pliocene Guineales Fm. and Modern Sediments From the Sucio River
Apatite fission track analyses were conducted in two samples from the Guineales Fm. Due to a moderate apa-
tite yield, only a total of 41 grains were analyzed from the sample DMT-010. With a P(χ2) = 0%, individual ages
are mostly grouped around ~12–24 Ma, ~40 Ma, and ~70 Ma, with less representative older ages (>100 Ma)
(Figure 6). A maximum accumulation age of 5.5 ± 2.6 Ma was estimated from the detrital AFT ages and is
defined by the weighted mean age of the three youngest overlapped individual grains. Apatite (U-Th/He)
analyses were also conducted on four aliquots from this sample. Individual ages of 4.9 ± 0.6 Ma,
5.2 ± 1.7 Ma, 6.5 ± 1.0 Ma, and 13.9 ± 1.0 Ma were obtained.

Sample DMT-008 from the Guineales Fm. was also selected for AFT analyses. A total of 44 grains yielded an
age distribution that closely resembles that obtained for sample DMT-010, with most of the ages clustered
at ~12–22 Ma, ~40 Ma, and ~68 Ma (Figure 6). Although this sample passed the chi-square test
(P(χ2) = 57.9%), we interpret these ages as a detrital, nonreset cooling ages given its lithological similarities
and proximity with the sample DMT-010 (~3 km, Figure 2). A maximum accumulation age of 10.6 ± 5.5 Ma
was estimated from the detrital AFT ages and is defined by the weighted mean age of the three youngest
overlapped individual grains.

Additionally, AFT analyses were conducted on a sample collected from the active sediments in the Sucio
River. This sample serves to outline the modern cooling rates of units exposed nearby. The distribution of
the individual ages resembles those observed for samples DMT-010 and DMT-008 from the Guineales Fm,
with most of the individual ages grouped at ~10–15 Ma, ~40 Ma, and ~60 Ma (Figure 6). However, the pro-
portion of ages clustered at ~40 Ma became more representative. The weighted mean of the three youngest
overlapped individual grains yielded a maximum accumulation age of 4.5 ± 0.9 Ma.
4.2.4.1. Significance of the Detrital AFT and AHe Ages of the Guineales Fm. and Modern Sediments
The detrital nonreset character of the obtained AFT ages the Guineales Fm. is supported by as follows: (1)
individual ages are mostly older than the maximum depositional age of 9 Ma previously suggested
(Rodríguez et al., 2016) and (2) because individual ages closely resemble the AFT ages yielded by the
Penderisco and Cruces Fm., which are potential sources for this sedimentary unit as discussed above in the
sedimentary provenance section. Although this reasoning is more complicated when exploring the signifi-
cance of the AHe individual due to the limited amount of analyzed grains, we interpret that this unit shows
nonreset detrital AHe ages from the nearby sources because (1) the AHe dispersion observed in sample DMT-
010 cannot be explained by e[U] and grain size and (2) like the AFT analysis, individual AHe ages resemble
those cooling ages obtained for samples UDB-063 from the Penderisco Fm (~5–9 Ma) and DMT-003 from
the Cruces Fm. (~14 Ma). In this scenario, the youngest AHe age of 4.9 ± 0.6 Ma, which closely overlaps with
the youngest AFT age population of 5.5 ± 2.6 Ma, is likely to represent themaximum accumulation age for the
Guineales Fm., which is coherent with the previously suggested age < 9 Ma (Rodríguez et al., 2016).
Nevertheless, further biostratigrpahic analysis and/or a larger amount of thermochronological ages will surely
constrain more precisely the depositional age for the Guineales Fm.

On the other hand, the youngest AFT age population obtained in the modern sediments of the Sucio River
(sample DMT-012) yielded a peak of 4.7 ± 1.0 Ma, which is equivalent to the lag time (Ruiz et al., 2004), since
the depositional age for this sample is 0 Ma. Therefore, by assuming an average closure temperature of 110°C
for the AFT system (Reiners & Brandon, 2006), a constant geothermal gradient between 20°C and 15°C, a
surface temperature of ~20°C, and a steady state cooling (Brewer et al., 2003; Garver et al., 1999), we can esti-
mate integrated exhumation rates between 0.8 km/Myr and 1.6 km/Myr since the late Miocene-early Pliocene
in the catchment area.

4.2.5. Middle Miocene Sediments From the Atrato Basin
Sample T1 from the Sierra Fm. was also analyzed by AFT. Due to the limited apatite yield, only a total of 28
individual ages were obtained, which mainly cluster at ~13 Ma and ~32–40 Ma, with minor peaks between
~60–80 Ma and 100 Ma and older (Figure 6). A maximum accumulation age of 13.0 ± 6.0 Ma was estimated
from the weighted mean age of the three youngest overlapped individual grains.

Although this sample passed the chi-square test (P(χ2) = 24%), we interpret these ages as a detrital cooling
signal, since no field evidence indicating that this unit reached temperatures above ~70°C were observed
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Figure 6. Radial and kernel density estimator (KDE) plots (Vermeesch, 2009, 2012) showing the results of the detrital AFT analysis of samples from the Guineales and
Sierra Fms., as well as the modern sediments from the Sucio River. YAP: Youngest age population.
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and because similar AFT cooling ages have been reported for the potential source domains suggested from
the sedimentary provenance analysis, as the Penderisco Fm. (AFT ages around 13–14 Ma), the Panama Arc
(AFT ages around 40 Ma) (Montes, Cardona, et al., 2012; Ramírez et al., 2016). The above corroborates that
the middle to late Miocene sediments of the Atrato Basin, which overly the Panama Arc, were sourced by
both the South American-related and the allochthonous Panamanian terranes.

5. Discussion

The new results, together with previously published geochronological and stratigraphic data, allow us to
corroborate that docking of the Panama Arc predate ~12 Ma, and to better discriminate periods of increased
tectonic activity during the Neogene.

The Penderisco Fm. was initially accumulated in proximal marine and transitional environments over the
leading edge of the CLIP after its accretion to the northwestern corner of South America during Late
Cretaceous times (~75–65 Ma) (Vallejo et al., 2006; Villagómez & Spikings, 2013). Our new geochronological
data also suggest that the Penderisco Fm. records a long sedimentation history since the Late Cretaceous at
least until early Eocene times, as suggested by the ca. 55 Ma detrital zircon population. Plate tectonic reorga-
nization around the time of accumulation of the Penderisco Formation includes the subduction initiation at
the trailing edge of the CLIP, the formation of the intraoceanic Panama Arc (Buchs et al., 2010), and the switch
from a N to ENE displacement of the Farallon Plate between ~50Ma and ~30Ma (Pardo-Casas &Molnar, 1987;
Somoza & Ghidella, 2012). These events, together with the fragmentation of the Farallon Plate at ca. 23 Ma
(Lonsdale, 2005), may be recorded in the thermal history of this unit, with an onset of cooling/exhumation
between ~50 Ma and 20 Ma. Contemporary exhumation and orogenic propagation inboard the continent
have also been recorded in the Colombian and Ecuadorian Andes (Caballero et al., 2013; Parra, Mora,
Jaramillo, et al., 2009; Parra, Mora, Sobel, et al., 2009; Parra et al., 2012; Saylor et al., 2012; Spikings et al.,
2010; Villagómez & Spikings, 2013).

The provenance analysis of the Oligocene-middle Miocene Beibaviejo Fm. shows a mixed composition that
includes detritus derived from the South American continental terranes and the Panama Arc. Strata of the
Oligocene-middle Miocene Beibaviejo Fm. are patchy overlying the suture zone and intruded by 9–12 Ma
mafic and intermediate plutonic rocks from El Botón basalt unit (Zapata & Rodríguez, 2011). These cross-
cutting relationships, along with the mixed provenance (both Panama Arc and South American sources),
constrain the docking of the Panama Arc to be pre-12 Ma (Figure 7). As previously suggested in Montes et al.
(2015), our geochronological and thermochronological data confirm the presence of Panama-related sources
in immature strata of middle Miocene age or younger, along the suture zone (Beibaviejo Fm.). The middle-
upper Miocene Sierra Fm also shows a mixed provenance. This unit, however, unambiguously rests on
Panama Arc basement (in the Atrato Basin), providing strong evidence that by middle Miocene times, the
South American margin was providing detrital material to the Panama Arc. At that time, between 20 and
10 Ma, the Penderisco Fm. was being moderate to rapidly exhumed (~0.4 km/Myr) as a consequence of
the tectonic instability triggered by the collisional episode.

Increased tectonic instability during middle Miocene times has been also documented throughout the north-
western Andes and southern Central America from the analysis of the magmatic and deformational record of
the region and has been attributed to the collision of the Panama Arc with northwestern South America
(Farris et al., 2017, 2011; Montes, Bayona, et al., 2012; Ramírez et al., 2016; Villagómez & Spikings, 2013)
(Farris et al., 2017, 2011; Montes, Bayona, et al., 2012; Ramírez et al., 2016; Spikings et al., 2010; Villagómez
& Spikings, 2013). Exhumation, increased accumulation rates, and switch frommudstone facies to fluvial con-
glomeratic facies also document increased instability inboard the continent, in the inter-Andean Magdalena
Valley and Eastern Cordillera (Reyes-Harker et al., 2015, and references therein). Such framework is consistent
with the timing of exhumation and provenance patterns documented here for the Miocene sediments in the
suture zone and the Atrato Basin. Coeval environmental changes are also registered in the stratigraphic
record of both the Atrato and Chucunaque-Tuira basins, where a substantial shallowing episode marked
the transition from lower to upper bathyal depths during the accumulation of the Sierra Fm. that followed
a major regional unconformity around 12 Ma (Coates et al., 2004; Duque-Caro, 1990b).

Recently, Wagner et al. (2017) used the spatiotemporal distribution of magmatic rocks to test models of
the establishment of a shallow slab geometry in the Colombian Andes, particularly the formation of a
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postcollisional, late Miocene flat-slab subduction of the Nazca plate underneath South America. They docu-
ment the construction of a magmatic arc between 14 and 9 Ma on the Western Cordillera, which narrowly
postdates and seals the accretion of the Panama Arc. We presented independent evidence that is consistent
with the source to sink analysis discussed by Montes et al. (2015) in which a middle Miocene age for the arc-
continent collision is proposed. Therefore, the transition from a collisional to a subduction-dominated geody-
namic setting took place at ca. 14–12 Ma as suggested by the initiation of continental-arc magmatism.

The results of our inverse thermal modeling show an ongoing pulse of rapid exhumation for the Penderisco
Fm during the Pliocene at rates up to 1.0 km/Myr. Furthermore, the integrated exhumation rates of 0.8 to
1.6 km/Myr for the late Miocene-early Pliocene, estimated from the lag-time analysis of the detrital AFT ages
of the Sucio River sediments, also suggest that the western flank of the Western Cordillera was being
exhumed by that time and the accumulation of the thick conglomeratic sequence of the Guineales Fm. is
likely to be the consequence of this period of increased tectonic activity. Geophysical and magmatic con-
straints suggest the establishment of a late Miocene flat slab that is still active at present north of 5°N
(Chiarabba et al., 2015; Syracuse et al., 2016; Wagner et al., 2017). We interpret that deformation and exhuma-
tion of the pre-Miocene rocks of the Western Cordillera, as well as the switching from marine-transitional
(Beibaviejo Fm.) to high energy terrestrial sedimentary environments during the late Miocene (Guineales
Fm.), to represent the upper-plate deformational record of the slab flattening, in which plate coupling may
have increased (Finzel et al., 2011; Rosenbaum & Mo, 2011).

6. Conclusions

The Upper Cretaceous-Paleogene Penderisco Fm. nonconformably overlies CLIP fragments accreted to the
South American margin and contains the record of such collisional episode.

The Panama Arc in western Colombia includes a Lutetian (~42 Ma) volcano-clastic sequence (Cruces Fm.)
composed by interlayered tuffaceous and siliciclastic rocks that contain material derived from basic-
intermediate igneous sources with a Panamanian affinity. Continental basement-related related sources
are absent.

Figure 7. Paleogeographic reconstructions showing possible configurations that would explain the mixed geochronologi-
cal composition of sediment in the Beibaviejo, Sierra, and Guineales formations. Paleogeographic configuration modified
from Montes et al. (2015) and facies distributions from Collins et al. (1996), Coates et al. (2004), Echeverri et al. (2015), and
Montes et al. (2010). The blue arrows show suggested sediment paths. The red dots show the proposed active volcanic
centers, which are likely to be represented during the 10–0 Ma interval by the El Botón basalt unit (Zapata & Rodríguez,
2011). The shaded colors indicate the different terranes mentioned in the discussion; yellowish brown: Panama Arc, green:
CLIP terrain, purple: South American-related continental domain.
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The provenance of the middle-upper Miocene Sierra Fm. from the Atrato Basin deposited over the Panama
Arc basement is characterized by Permo-Triassic and older detrital zircon U-Pb ages. This indicates that dock-
ing of the Panama Arc to northwestern South America was complete prior or during the accumulation of this
unit. Similarly, the provenance of the middle Miocene Beibaviejo Fm., and the late Miocene-Pliocene
Guineales Fm., within the suture zone shows mixed sources from rocks forming both the continental margin
and the allochthonous Panama Arc. These detrital signatures further constrain that docking of the Panama
Arc to the northwestern corner of South America took place before 12 Ma, as suggested by the intrusive
cross-cutting relationship with the El Botón Basalts unit.

Results from the inverse thermal modeling of multiple thermochronometers allow us to identify periods of
moderate to rapid exhumation in rocks from the Late Cretaceous to Paleogene Penderisco Fm., as well
as for the Buriticá Tonalite. After the onset of cooling/exhumation between the middle Eocene and
Oligocene, these units were being moderately rapid exhumed during the middle Miocene, which closely
overlaps with the suggested timing for the collision of the Panama Arc and the accumulation of the sedi-
ments with mixed provenance from the Atrato Basin and the Western Cordillera. A renewed phase of exhu-
mation is also recorded in upper Miocene-Pliocene strata, which is likely to have been triggered by the flat
subduction of the oceanic Nazca plate underneath South America. The Miocene-Pliocene tectonic activity
responsible for the late exhumation pulse is also corroborated by the accumulation of the thick conglomera-
tic sequence of the Guineales Fm., as well as by the integrated exhumation rates obtained from the estimated
lag time of the Sucio River sediments (up to 1.6 km/Myr). The above suggests that the orogenic record in wes-
tern Colombia during the Mio-Pliocene is related to two different tectonic mechanisms: the collision between
Panama and South America and the subsequent flat-slab subduction of the Nazca plate.
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