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Abstract For at least 120 Myr, the Kerguelen plume has distributed enormous amounts of magmatic
rocks over various igneous provinces between India, Australia, and Antarctica. Previous attempts to
reconstruct the complex history of this plume have revealed several characteristics that are inconsistent
with properties typically associated with plumes. To explore the geodynamic behavior of the Kerguelen
hotspot, and in particular address these inconsistencies, we set up a regional viscous flow model with the
mantle convection code ASPECT. Our model features complex time-dependent boundary conditions in
order to explicitly simulate the surrounding conditions of the Kerguelen plume. We show that a constant
plume influx can result in a variable magma production rate if the plume interacts with nearby spreading
ridges and that a dismembered plume, multiple plumes, or solitary waves in the plume conduit are not
required to explain the fluctuating magma output and other unusual characteristics attributed to the
Kerguelen hotspot.

1. Introduction

The basaltic rocks produced by the Kerguelen mantle plume record at least 120 Ma of persistent volcanic
activities and yield altogether an estimated volume of approximately 2.5× 107 km3 (Coffin et al., 2002). These
tremendous amounts include the Kerguelen Plateau in the southern Indian Ocean, which is the second largest
oceanic plateau worldwide (Coffin & Eldholm, 1994) and the Ninetyeast Ridge, extended almost parallel to
the 90th meridian east over a length of more than 5,000 km and thus the longest linear tectonic feature on
Earth (Duncan & Richards, 1991; Mahoney et al., 1983) (Figure 1). Reconstructing the long-term geodynamic
history of the Kerguelen hotspot is, however, not as straightforward as assigning the Kerguelen Plateau to the
classically expected giant eruptions of an impacting plume head and the Ninetyeast Ridge to the continuous
surface expression of a stable plume tail (Richards et al., 1989).

Instead, the plume started to affect the surface of the Earth rather unconventionally with a number of small-
volume magmatic provinces that were placed on the contiguous continental crust of eastern Gondwana.
The earliest magmatism that recent studies have associated with the Kerguelen plume began during the
Early Cretaceous in the Comei area, presently located in southeastern Tibet (145–130 Ma; Liu et al., 2015; Zhu
et al., 2008, 2009), followed by several distinct eruption phases of the Bunbury Basalts in southwest Australia
(between 137 and 123 Ma; Coffin et al., 2002; Frey et al., 1996; Olierook et al., 2016).

After the continental breakup of India and Antarctica around 132–130 Ma (Gaina et al., 2007; Müller et al.,
2016; Powell et al., 1988), the Indian Ocean started to open and dispersed continental material, in particu-
lar several microcontinents, throughout the growing ocean basin. Evidence for continental material has been
found at the Naturaliste Plateau, the Wallaby Plateau, the Zenith Plateau, the Batavia Knoll and the Gulden
Draak Knoll (all of which are submarine plateaus currently positioned off the west coast of Australia) (Direen
et al., 2017; Gardner et al., 2015; Whittaker et al., 2016), at several parts of the Southern Kerguelen Plateau
(Coffin et al., 2002) and at Elan Bank (located northwest of the Southern Kerguelen Plateau) (Borissova et al.,
2003; Frey et al., 2000; Gaina et al., 2003; Ingle et al., 2002; Nicolaysen et al., 2001; Weis et al., 2001). Subse-
quently, large parts of these continental fragments were overlain by plume material. Age determinations of
recovered igneous rocks revealed ∼130–125 Ma at the Naturaliste Plateau (Direen et al., 2017; Olierook et al.,
2017),∼124 Ma at the Wallaby Plateau (Olierook et al., 2015), and 117 Ma at the Gulden Draak Knoll (Whittaker
et al., 2016). Further evidence of plume activities at ≤126 Ma are provided by the Seaward Dipping Reflectors
abutting the Southern Kerguelen Plateau (Stagg et al., 2006).
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Figure 1. Topographic map of the Indian Ocean and the surrounding continents showing an overview of the igneous
provinces, which are mostly attributed to the Kerguelen plume. Age estimates are labeled in orange (see text for
references). The red line shows the predicted hotspot track, distributed over several plates and with plume positions
(in Ma); plate boundaries are shown as yellow lines. NKP, CKP, SKP = Northern, Central, and Southern Kerguelen Plateau,
respectively; NP, WP, ZP = Naturaliste, Wallaby, and Zenith Plateau, respectively; B = Batavia Knoll; GD = Gulden Draak
Knoll; SEIR, SWIR, CIR = Southeast, Southwest, and Central Indian Ridge, respectively; CDP = Chain of the Dead Poets;
SDRs = Seaward Dipping Reflectors.
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The first larger volumes of volcanic material, considered as the actual Large Igneous Province (LIP) of the
Kerguelen Plume, shaped the Southern Kerguelen Plateau in the growing basin of the Indian Ocean between
120 and 110 Ma (Coffin et al., 2002; Duncan, 2002). Thus, the LIP postdated the continental breakup by
approximately 10 Ma, although older igneous rocks might be concealed at greater depths than penetrated
by previous drilling campaigns. Parallel to the development of the Southern Kerguelen Plateau, further
small-scale volcanism created the Rajmahal Traps (118–115 Ma; Baksi, 1995; Coffin et al., 2002; Kent et al.,
2002) and Sylhet Traps (118–116 Ma; Ghatak & Basu, 2011; Ray et al., 2005) on the Indian continental margin
and lamprophyre dikes on the conjugate Antarctic margin (114 Ma Coffin et al., 2002), whereas the Elan Bank
microcontinent was capped by plume material between 110 and 105 Ma (Coffin et al., 2002; Duncan, 2002).

In contrast to the classically predicted short pulse of vigorous magmatic activity lasting only a few million years
(e.g., Bryan & Ernst, 2008; Coffin & Eldholm, 1994), the large-volume magma production of the Kerguelen
plume continued for a much longer period and resulted in the formation of the Central Kerguelen Plateau
between 105 and 100 Ma (Coffin et al., 2002; Duncan, 2002) and the (at that time) contiguous Broken Ridge
between 100 and 95 Ma (Coffin et al., 2002; Duncan, 2002), both of which are generally also considered as part
of the Kerguelen LIP.

Afterward, the plume productivity decreased (Coffin et al., 2002) and created the Ninetyeast Ridge, probably
starting around 95 Ma, although the northernmost part is currently covered by the thick sediment load of the
Bengal Fan (Coffin et al., 2002). The observable part of the Ninetyeast Ridge is explicitly age-progressive and
ranges in age approximately from 82 to 37 Ma (Coffin et al., 2002; Duncan, 1991). Its clear, linear structure has
been attributed to the rapid northward motion of the Indian Plate over the Kerguelen plume by many previous
studies (e.g., Duncan & Richards, 1991; Mahoney et al., 1983). Evidence for small-scale plume activity on the
Antarctic plate in this period was found at Skiff Bank (69–68 Ma; Coffin et al., 2002; Duncan, 2002).

The separation of the Kerguelen Plateau and the Broken Ridge was initiated by the onset of seafloor spread-
ing at the Southeast Indian Ridge around 40 Ma (Müller et al., 2016; Mutter & Cande, 1983). Simultaneously,
long-term volcanism at the nearby Northern Kerguelen Plateau started (Coffin et al., 2002; Doucet et al., 2002;
Duncan, 2002; Nicolaysen et al., 2000; Weis & Frey, 2002) and has continued until the present day, as evidenced
by active fumaroles at the Kerguelen Archipelago (Patrick & Smellie, 2013). The current hotspot location is,
however, debatable, since the neighboring Central Kerguelen Plateau has also been volcanically active over
the past 22 Ma (Weis et al., 2002; Duncan et al., 2016) and eruptions have recently been monitored at Heard
and McDonald Island (Patrick & Smellie, 2013).

Regarding the plume history, it should be noted that the Kerguelen Plateau has been generated in three
clearly distinct periods of plume activity, even though its structure appears to be continuous on topographic
maps. Also, split in three distinct parts is the Kerguelen hotspot track reconstructed in the Doubrovine et al.
(2012) mantle reference frame (see Figure 1). It demonstrates that the Kerguelen plume has successively
affected the Indian, Australian, and Antarctic Plates and even simultaneously at times when the plume was
close enough to interact with a spreading ridge. The long-term proximity and interaction of the Kerguelen
plume and the plate boundaries in the Indian Ocean has been validated by the plate tectonic models of
Whittaker et al. (2013, 2015).

Another region relevant to the Kerguelen plume history is the volcanically active Amsterdam-Saint Paul
Plateau (Johnson et al., 2000), which is located ∼1,400 km northeast of the Kerguelen Archipelago and sit-
uated directly on the axis of the Southeast Indian Ridge. This plateau has been created during the past
10 Myr, and the Chain of the Dead Poets is regarded as its corresponding hotspot track that was formed
over the past 20 Myr and trends age-progressively from the southern end of the Ninetyeast Ridge toward the
Amsterdam-Saint Paul Plateau (Janin et al., 2011; Maia et al., 2011). Already, Morgan (1978) suggested that this
region might be fed by the Kerguelen plume through an asthenospheric flow channel, a hypothesis that was
supported by the flow models of Yale and Morgan (1998). Geochemical studies have, however, shown that
the isotopic compositions from Amsterdam and Saint Paul Island, nearby ridge segments, and an active sub-
marine volcano are (apart from being clearly distinct from each other) incompatible with the characteristics
of Kerguelen plume material and therefore regard the Amsterdam-Saint Paul plume as a second, indepen-
dent plume with indications of a deep source (Doucet et al., 2004; Graham et al., 1999; Johnson et al., 2000;
Nicolaysen et al., 2007).
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Altogether, it can be summarized that the geodynamic history of the Kerguelen plume and its magmatic out-
put is very complex and challenges the classical plume model (e.g., Courtillot et al., 2003) as well as other
characteristics potentially linked to plumes (e.g., Coffin & Eldholm, 1992; Courtillot et al., 1999) in different
ways: the first eruptions produced only small volumes of basalt; the LIP was created long after the continen-
tal breakup; when the large-volume output finally started, it continued for an unusually long period; many
different distinct provinces were affected by the plume, and currently, a second deeply rooted plume might
be situated not too far away. Despite the remote location of most parts of this area, it was the destination of
various ocean drilling expeditions and most of the abundant published studies focussed on gaining further
insights for the reconstruction of the origin and evolution of the Kerguelen plume history. Our study, however,
provides the first geodynamic model of the Kerguelen plume that explicitly considers its local surroundings
and a realistic plate tectonic geometry over time. The results can therefore be compared to the existing age
dates, the structures of the igneous provinces, and estimates of the crustal thickness and the melt produc-
tion rate. Most importantly, the dynamic behavior of the model reveals new perspectives on the apparent
inconsistencies with the plume characteristics listed above.

2. Model Setup

Following the methods described in detail in Gassmöller et al. (2016) and Bredow et al. (2017), we set up a
regional viscous flow model with the mantle convection code ASPECT (Bangerth et al., 2017; Heister et al.,
2017) in order to explore the geodynamic history of the Kerguelen hotspot.

The model domain is a 3,300 km long, 3,300 km wide, and 660 km high Cartesian box that specifically simu-
lates the surrounding conditions of the Kerguelen plume by combining various initial and time-dependent
boundary conditions.

Reconstructed plate boundaries (interpolations of Torsvik et al., 2010) and plate velocities are prescribed on
top of the box and the uppermost 200 km of the side boundaries (based on the reference frame of Doubrovine
et al., 2012).

Large-scale global mantle flow velocities are prescribed at depths greater than 200 km at the side bound-
aries and the bottom of the box. They are derived from a lower resolved global convection model (an update
of Doubrovine et al., 2012), which is based on a superposition of plate-driven flow and density-driven flow.
Density anomalies for the second component are computed by backward advecting present-day density het-
erogeneities from the SMEAN tomography model of Becker and Boschi (2002) but only back to 68 Ma, because
the neglect of diffusion makes the backward advection procedure increasingly inappropriate further back in
time. The plate-driven flow component is, however, fully time dependent, and therefore so are the global flow
boundary conditions. For the model dynamics, a constant density-driven flow component corresponds to the
assumption that the large-scale mantle structure—with upwellings above the two large low-shear velocity
provinces and downwellings in regions where subduction has occurred—remained similar through the past
120 Myr.

Furthermore, an inhomogeneous lithosphere thickness pattern simulates the distribution of continental and
oceanic lithosphere, implemented as temperature boundary conditions (backward rotations of the global
lithosphere thickness model of (Steinberger, 2016), for continental areas; backward rotated ocean floor age
of (Müller et al., 2008), converted to half-space cooling temperatures for oceanic areas and considering that
the lithosphere cools and thickens with age).

Note that apart from the initial state of the model, all these conditions are only prescribed at the boundaries of
the box, while the model development inside the box is completely dynamic. Thus, the model is able to show
how the plume may have responded over time to nearby moving mid-ocean ridges and a variable lithosphere
thickness pattern moving across the plume.

The viscosity in the model (equivalent to Bredow et al., 2017) is temperature dependent and depth dependent
after Steinberger and Calderwood (2006) but also takes into account a dehydration rheology to consider the
sudden viscosity increase due to the extraction of water from olivine during melting. Additionally, a depletion
buoyancy induces a density decrease when melt is extracted.

Melting in the model depends on temperature and pressure, following the parametrization of Katz et al. (2003)
for batch melting of anhydrous peridotite. In each time step, the generated melt is instantly extracted verti-
cally upward to the surface and, in a postprocessing procedure, moved to the present-day location with the
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according plate motions. The generated melt in its entirety finally shows the Kerguelen hotspot track as pre-
dicted by the model, that is, at which areas the plume may have produced a certain thickness of crust. To
investigate the crustal thickness contribution of the plume alone, we have to correct for the melt generated
along the spreading ridges from passively upwelling material, without any plume influence. Therefore, our
results show the difference between the model with the plume as described in this section and another model
with exactly the same setup but without a plume.

As shown in Bredow et al. (2017), our model setup is not designed to handle melting in continental environ-
ments with high lithosphere thickness values (such as eastern Gondwana before ∼132 Ma). It also remains
somewhat enigmatic as to what prevented the Kerguelen plume, if it already ponded underneath eastern
Gondwana and produced the small-volume igneous provinces described above, from vigorous volcanic activ-
ities as soon as the Indian Ocean basin started to open and placed thin oceanic lithosphere above the plume. In
this case, the Southern Kerguelen Plateau would have been created contiguously with the Antarctic continen-
tal margin, as already noted by Müller et al. (1993). Therefore, our model does not start until 120 Ma, and the
plume head enters the model at that time with an excess temperature ΔThead = 300 K, radius Rhead = 250 km,
and a vertical inflow velocity vhead =20 cm/yr, corresponding to Bredow et al. (2017), such that the spatial extent
of the melting region agrees approximately with the surface area of the Southern and Central Kerguelen
Plateau. Thus, first plume-derived melts are generated at 118.75 Ma, in agreement with the onset of melting at
the Southern Kerguelen Plateau (circa 120–110 Ma; Coffin et al., 2002; Duncan, 2002) and the Rajmahal Traps
(118–115 Ma; Baksi, 1995; Coffin et al., 2002; Kent et al., 2002) and Sylhet Traps (118–116 Ma; Ghatak & Basu,
2011; Ray et al., 2005).

For the plume tail, excess temperature estimates range between 209 and 232 K (Putirka, 2008; Schilling, 1991)
and buoyancy flux estimates range between 200 and 2,070 kg/s (Davies, 1988; Schilling, 1991; Sleep, 1990;
Turcotte & Schubert, 2002). In our model, ΔTtail = 250 K, Rtail = 140 km, and vtail = 6 cm/yr. The prescribed
excess temperature is higher than the published values, because it decreases during its ascent from the bot-
tom of the box to the melting area, where it arrives with an excess temperature within the estimated range.
The buoyancy flux of the plume at the bottom of the box yields approximately 1,150 kg/s, in the midst of
the range of published estimates. We use a plume inflow position that is fixed in the global moving hotspot
reference frame of Doubrovine et al. (2012) underneath the present location of the Kerguelen Archipelago,
because Steinberger (2000) reported the best fit for a fixed plume. Note that since Kerguelen was not one of
the plumes used to devise the Doubrovine et al. (2012) frame, assuming a fixed plume is not self-contradictory.
To prevent any net mass influx or outflux of the model domain and especially balance the plume inflow, each
model runs a second time with velocity boundary conditions that are corrected with the net mass flux derived
from the first model run (see Gassmöller et al., 2016, for details).

3. Results

The model results are visualized in Figure 2: the large map on the right shows the entire crustal thickness pat-
tern produced by the modeled plume to be compared to the topographic structures. To identify when each
part of the hotspot track was created, the total result has been split into partial results for 10 Myr intervals,
plotted on the smaller topographic maps. The evolution of the plume and its interaction with nearby spread-
ing ridges can be followed along the interval maps and the inset figures, showing top views of the model at
the respective times. For a description of tested parameter variations and how they affect the model results,
see supporting information Text S1.

At 115 Ma, the plume head has reached the surface underneath the nascent Indian Ocean between India and
Antarctica. The thin oceanic lithosphere and the dimension of the plume head enable extensive melting on
both the Antarctic and the Indian Plates, and this results in the formation of the Southern Kerguelen Plateau,
although shifted to the east in comparison to the present-day topography, and the Rajmahal and Sylhet Traps,
shifted to the southeast (see black arrows). Some melt is also generated close to the Naturaliste, Wallaby,
and Zenith Plateaus but not on the Gulden Draak Knoll (117 Ma) and there is no melt at all close to the lam-
prophyres at Antarctica (114 Ma). The timing for the origin of the Rajmahal Traps (118–115 Ma) and Sylhet
Traps (118–116 Ma) and the Southern Kerguelen Plateau (120–110 Ma), however, is exactly reproduced in the
model, due to the chosen initiation time of the modeled plume (see section 1 for age references).

Between 110 and 100 Ma, most of the crust is produced at the fast-moving Antarctic plate, creating the
Central Kerguelen Plateau in agreement with age dates (105–100 Ma), whereas only little crust is produced
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Figure 2. Large map: crustal thickness pattern predicted by the modeled plume over the past 120 Ma, where color-coded circles correspond to literature
estimates. Smaller maps: predicted crustal thickness pattern divided into 10 Myr intervals, plotted with present-day plate boundaries and red labels indicating
approximately the areas in which igneous material was created during this interval (for abbreviations, see Figure 1). Insets show top views of the model in the
middle of each respective time interval, where plate boundaries (in red) correspond to the respective time. The plume is visualized by the 100 K excess
temperature isocontour and colored according to the melt fraction. Isocontours show total melt fractions above 5% in the entire model domain. Green arrows
depict the plate velocities, and the pink circles indicate the position of the plume stem at the bottom of the model box (apparent shift due to 3-D view from
vertically above the center of the model, not vertically above the plume).

at Elan Bank (110–105 Ma). Around 105 Ma, the plume interacts with the triple junction between the Indian,
Australian, and Antarctic plates, thus generating crust at three different plates at the same time.

At 95 Ma, the plume is mostly situated underneath the Australian plate and creates the Broken Ridge
(95–94 Ma), matching age dates very well. Subsequently, the Indian Plate accelerates to its record velocities
before the collision with the Eurasian plate, and plume material gets captured by the ridge between India
and Australia. This marks the onset of long-term decompression melting along the ridge that generates the
Ninetyeast Ridge (82–37 Ma), including the part presumably covered underneath the Bengal Fan (95–85 Ma).
This is a surprising and novel result, because many previous studies (e.g., Duncan, 1991; Duncan & Richards,
1991) agreed that the Ninetyeast Ridge results from the Indian Plate moving above the Kerguelen plume—yet
in our model, the plume is located underneath the Australian plate between 95 and 45 Ma and the Ninetyeast
Ridge is clearly produced on the ridge axis and not directly above the plume.

The opening of the Southeast Indian Ridge at 40 Ma results in a period of intensive on-ridge volcanism that
starts to form the Northern Kerguelen Plateau at the Antarctic plate around 40 Ma, matching age dates excel-
lently. The large-scale structure on the conjugate Australian plate resembles the Broken Ridge very well, but
it is much younger than indicated by oceanic drilling (95–94 Ma).

Approaching the present-day model state, there is no crust generated at the Central Kerguelen Plateau, but
on the Northern Kerguelen Plateau melting occurs close to the Kerguelen Archipelago. Another interesting
result concerns the Amsterdam-Saint Paul Plateau: in agreement with age dates, crust is generated close to
the Chain of the Dead Poets over the past 20 Ma, and currently, the model predicts crustal material also close
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to the ridge, in the vicinity of the Amsterdam-Saint Paul Plateau. The inset map reveals that the plume has
a circular shape at 5 Ma, which means that it is no longer captured by the ridge, and intraplate volcanism
creates the melt at the Kerguelen Plateau. However, there is still a flow connection which transports plume
material toward the ridge (in agreement with Morgan, 1978; Yale & Morgan, 1998) and the crust close to the
Amsterdam-Saint Paul Plateau is the product of on-ridge volcanism. Even though geochemical studies con-
clude differently, our model provides a simple yet elegant explanation for the observed volcanic structures
without the need for a second plume.

All in all, the crustal thickness pattern predicted by the model over the past 120 Ma (large map on the right)
resembles the topographic structures associated with Kerguelen plume activities remarkably well. The Nine-
tyeast Ridge, although shifted to the west and not entirely continuous (due to the decreasing amount of
spreading segments at the Indian-Australian plate boundary, where most melt is generated), is clearly rec-
ognizable, as well as the Broken Ridge. The Kerguelen Plateau is predicted to result explicitly from three
distinct periods of volcanism, although shifted to the east in the model relative to its true location. Apart
from several small-scale areas, where the model reaches maximum crustal thickness values of about 45 km,
the model result approximately fits the range of literature values from seismic refraction and reflection stud-
ies, wide-angle seismic data, gravity, bathymetry, and isostasy analyses (marked by color-coded filled circles
on the map): 21–25 km at the Southern Kerguelen Plateau (Operto & Charvis, 1995, 1996), 19–21 km at the
Central Kerguelen Plateau (Charvis et al., 1995), at least 16 km at Elan Bank (Borissova et al., 2003), circa
22–24 km at the Ninetyeast Ridge (Grevemeyer et al., 2001; Krishna et al., 2001), 18–22 km at the Broken Ridge
(Francis & Raitt, 1967), 15–21 km at the Northern Kerguelen Plateau and Archipelago (Charvis et al., 1995;
Recq et al., 1990), and 10 km on average at the Amsterdam-Saint Paul Plateau (Scheirer et al., 2000). It must,
however, be considered that a direct comparison is not entirely accurate, since the modeled crustal thickness
is only accumulated by plume activities, whereas the contribution of melting along the spreading ridges is
removed from the model result.

Based on radiometric age determinations and crustal structure volume estimates, Coffin et al. (2002) calcu-
lated the magmatic output rate of the Kerguelen plume over time and concluded that the melt production
rate has been substantially variable (see Figure 3a), with a discontinuous 25 Myr peak magma output. To
account for these results, Coffin et al. (2002) suggested the involvement of multiple plumes or one plume split
into several diapirs by vigorous mantle shear flow. Based on numerical models of thermal plumes, Lin and
van Keken (2005) demonstrated that the entrainment of dense material in the lowermost mantle can lead
to multiple pulses of plume material and thus be another explanation for several volcanic episodes gener-
ating flood basalts. Sreejith and Krishna (2015) reported a rapidly varying magma production rate along the
Ninetyeast Ridge (see Figure 3a) and attributed the long-term variations to the frequent ridge jumps and
major velocity changes of the Indian Plate, whereas short-term variations were explained by solitary waves in
the plume tail. Referring to these results, Figure 3b shows the magma production rate in the model, derived
both for the 10 Ma intervals as shown in Figure 2 and also for 1 Ma intervals in order to visualize the short-term
variations. Note that due to an applied smoothing algorithm, the 1 Ma intervals underestimate the magma
flux by ∼8%. The peak produced by the impact of the plume head reaches 0.9 km3∕yr, matching the rate esti-
mated by Coffin et al. (2002), but it lasts only for a few million years in agreement with the classical plume
model. Subsequently, the magma flux fluctuates significantly and reaches a second peak after the onset of
spreading at the South East Indian Ridge at 40 Ma. Our model does not reach the values of Sreejith and Krishna
(2015) during the creation of the Ninetyeast Ridge, but the total magma production of our model yields a
volume of 1.98×107 km3, comparable to the 2.5×107 km3 given by Coffin et al. (2002). The reason for the fluc-
tuations can best be seen by comparing the colors of the plume in the insets in Figure 2, which correspond to
the degree of melting in the model. Even though the plume tail influx at the bottom of the model is constant,
the melt production rate changes significantly over time, mainly influenced by the distance to mid-ocean
ridges (which determines the thickness of the lithosphere the plume material impinges on), as well as the
directions and velocities of nearby plate motions. Since all these influencing factors, in short, plume-ridge
interaction, change considerably over time, the variable melt production rate is rather the direct consequence
of a very dynamic long-term plume history than an indication of highly complicated plume properties—the
main result of this study.

Returning to the unusual plume characteristics described in section 1, the model can explain neither why
the oldest continental igneous provinces have very small volumes nor why the LIP significantly postdated
the continental breakup. However, we show that the large-volume output does not have to continue for an
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Figure 3. Variations in the melt production rate of the Kerguelen plume as (a) estimated by previous studies and
(b) predicted by the model. All rates refer only to the excess of the normal oceanic crustal production. For abbreviations,
see Figure 1.

uncommonly long period in order to create the observable topography structures. Furthermore, our model
demonstrates that a single, not unusually buoyant or hot plume can cause the variety of widespread basaltic
provinces attributed to Kerguelen plume activities as well as the current eruption sites at the Amsterdam-Saint
Paul Plateau.

4. Conclusions

Our three-dimensional regional convection model of the Kerguelen mantle plume predicts the amount and
distribution of plume-generated crust over the past 120 Ma. We compare the result to present-day topo-
graphic structures to gain insights into the geodynamic processes involved in the history of the plume, which
leads to the following conclusions:

1. A constant plume influx can result in a significantly variable magma production rate due to the interaction
of the plume with nearby mid-ocean ridges and plate motions.

2. The model indicates that the Ninetyeast Ridge was created by volcanism along the ridge axis between the
Indian and Australian Plates, while the Kerguelen plume was located farther away underneath the Aus-
tralian plate. This differs with previous studies that described the Ninetyeast Ridge as the result of the Indian
Plate moving above the plume.

3. In a dynamic sense, the model suggests that the Amsterdam-Saint Paul Plateau is generated by volcanic
material that flows from the plume conduit toward the axis of the Southeast Indian Ridge and leads to
on-ridge eruptions, whereas the volcanic activities at the Kerguelen Plateau can be attributed to intraplate
volcanism, directly above the plume.
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