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Abstract: The most commonly used approach to estimate soil variables from remote-sensing data
entails time-consuming and expensive data collection including chemical and physical laboratory
analysis. Large spectral libraries could be exploited to decrease the effort of soil variable estimation
and obtain more widely applicable models. We investigated the feasibility of a new approach, referred
to as bottom-up, to provide soil organic carbon (SOC) maps of bare cropland fields over a large
area without recourse to chemical analyses, employing both the pan-European topsoil database
from the Land Use/Cover Area frame statistical Survey (LUCAS) and Airborne Prism Experiment
(APEX) hyperspectral airborne data. This approach was tested in two areas having different soil
characteristics: the loam belt in Belgium, and the Gutland–Oesling region in Luxembourg. Partial least
square regression (PLSR) models were used in each study area to estimate SOC content, using both
bottom-up and traditional approaches. The PLSR model’s accuracy was tested on an independent
validation dataset. Both approaches provide SOC maps having a satisfactory level of accuracy
(RMSE = 1.5–4.9 g·kg−1; ratio of performance to deviation (RPD) = 1.4–1.7) and the inter-comparison
did not show differences in terms of RMSE and RPD either in the loam belt or in Luxembourg. Thus,
the bottom-up approach based on APEX data provided high-resolution SOC maps over two large
areas showing the within- and between-field SOC variability.
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1. Introduction

Many soil chemical components (chromophores) interact with the electromagnetic radiation
within the visible-near infrared (VNIR: 400–1300 nm) and short-wave infrared (SWIR: 1300–2500 nm)
spectral regions. Soil spectroscopy exploits the correlation between spectral features and chromophores
in order to estimate soil variables. The strength of this relationship is not the same for all soil
variables, and also the shape of the spectral features can be very different. For example, the metal–OH
bending and O–H stretching related to a clay lattice cause a narrow and shallow absorption feature
at 2207 nm [1,2]. Overtones of the O–H and H–O–H stretch vibrations in the free water produce two
deep absorption features at 1455 nm and 1915 nm, while organic matter has a strong relationship
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with electromagnetic radiation in the visible region, due to a wide spectral feature centred around
664 nm related to the chlorophyll pigment [3,4]. However other narrow peaks have a strong relation
with organic carbon and organic matter in the SWIR, especially between 2100 nm and 2300 nm [5–7].
In order to exploit spectral features, a suitable spectral resolution is necessary, especially for soil
variables affecting spectra in narrow spectral regions (e.g., clay and organic matter). Most of the
chemometric approaches to estimate soil variables use the whole spectrum; for example, the partial
least square regression (PLSR) method exploits both the wavelengths correlated to the target variable
(i.e., absorption features) and other bands indirectly related to the target variable [8]. Thus, in addition
to band width, the spectral range is very important to ensure an accurate soil variable estimation by
chemometric approaches. PLSR allows summarizing of the spectral information and, therefore, in some
cases a very narrow band width is not strictly necessary. Castaldi et al. [9] showed that reducing the
spectral resolution from 1 nm to 40 nm did not cause a significant decrease in the estimation accuracy
for the SOC, clay, sand and silt content. Spectroscopy, applied in the laboratory, allows estimating soil
variables only at the sampling points, while both airborne and satellite data provide quantitative soil
information over large areas. As the band width of the main airborne sensors is smaller than 40 nm,
their spectral range allows for most of the soil chromophores to be exploited. There is an increasing
number of papers concerning the estimation of SOC exploiting airborne hyperspectral data [10–17].

Hyperspectral satellite data could be more attractive than airborne data as satellites, having a
short revisit time, allow for the collection of a number of images during a year for the same area from
the same sensor under same angle of observation. Unlike airborne data, satellite acquisition ensures
a cheap way to obtain spectral data over very large areas. However, the quantitative prediction of
soil properties using the first generation of hyperspectral satellite sensors is hampered by the very
low signal-to-noise ratio (SNR) in the SWIR region for Hyperion imagers on board of the NASA EO-1
platform [9,18,19], or by the restricted spectral range (415–1050 nm) for the Compact High Resolution
Imaging Spectrometer (CHRIS) on the European Space Agency’s PROBA platform [9,20–22]. Because
of the low SNR, Zhang et al. [23] obtained unreliable PLSR predictions for soil moisture and clay
content using Hyperion image reflectance spectra. In order to decrease the SNR of the Hyperion
data, Castaldi et al. [19] used the bands retrieved from the minimum-noise fraction transformation
(MNF) as regressors in the multivariate models for the clay, sand and organic matter estimation; in this
case, the authors managed to improve the estimation accuracy as compared to multispectral data
obtained by the Advance Land Imager (ALI). In the near future, at least five satellites equipped with
hyperspectral imagers are due to be launched: the German Environmental Mapping and Analysis
Program (EnMap) [24], the Italian PRecursore IperSpettrale della Missione Applicativa (PRISMA) [25],
the U.S. NASA Hyperspectral Infrared Imager (HyspIRI) [26], the Japanese Hyperspectral Imager
Suite (HISUI) [27], the Israeli Hyperspectral imager (SHALOM) [28], and the China Commercial
Remote-sensing Satellite System (CCRSS).

Most authors directly calibrate the airborne or satellite spectra on soil samples collected from
the corresponding pixels [16,19,21–23,29]. This involves collection of soil samples within bare fields,
laboratory measurement of the target variable, and calibration of a multivariate model linking the
quantity of the target variable with the spectra extracted from the remote-sensing instrument at the
sampling points. This procedure generally ensures a high estimation accuracy within the investigated
area, but it entails time-consuming and expensive data collection (sampling, chemical or physical
laboratory analysis). The use of other covariates can increase the efficiency of soil-estimation models
provided by sampling that is not intensive (i.e., the collection of a few samples in a large area);
for example, Casa et al. [21] showed the advantage of merging remote sensing and geophysical
data sources using hybrid methods, i.e., statistical techniques combining regression and geostatistical
analysis. However, the calibration of empirical models allows only local efficiency and their application
to different conditions or areas is often difficult or impossible, even for neighboring fields in cropland
as shown by Casa et al. [22] for clay, silt and sand estimation using airborne (MIVIS) and satellite
(CHRIS-PROBA) hyperspectral data and PLSR models. The authors compared two different validation
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strategies: the random selection of the calibration and validation dataset from two neighboring fields,
and the spatially independent validation; i.e., using data from one field for calibration and data from
another field for validation, Casa et al. [22] showed a lower accuracy of the spatially independent
models as compared to the random strategies, confirming the issues about the extrapolation from
empirical models.

In this context, national, continental and global soil spectral libraries could be exploited to
decrease the efforts concerning the soil-variable estimation and obtaining more widely applicable
models. A consistent number of large soil spectral libraries are available at national [30–33] and
continental scale [34,35]. Moreover, a global soil spectral library was created connecting spectral
libraries from all over the world [36]. All these libraries provide, in addition to spectral data, analytical
data on a number of soil variables, allowing the calibration of multivariate models covering larger soil
variability than the models calibrated using local libraries. However, often the large spectral libraries
are built collating local libraries that were collected under differing conditions and using different
protocols and instruments. Thus, a spectral alignment between libraries is necessary. Recently, Castaldi
et al. [37] used the pan-European LUCAS topsoil database to accurately estimate SOC content in two
local spectral libraries. They did not need to apply any spectral alignment, because both LUCAS and
local spectra were scanned with the same model of spectrometer (FOSS NIR Systems Inc., Laurel, MD,
USA), which provided very stable measurements. This approach could allow estimating SOC or other
soil variables in croplands in Europe exploiting the LUCAS database and without chemical laboratory
analyses. The satisfactory exploitation of the LUCAS database on local spectral libraries was made
possible by the high stability of the laboratory spectral measurements. Unfortunately, remote-sensing
data are not stable because of the change of the atmospheric and soil conditions between two different
acquisition times and the uncertainty of the pre-processing procedure (radiometric, atmospheric and
geometric correction). This instability hampers the use of remote-sensing data to build a reliable
spectral library and, consequently, the application of a single calibration model on spectral data
acquired at different times. At the same time, the future availability of hyperspectral satellite data
entails the need for an automated approach that allows estimation of soil variables over large areas,
avoiding the calibration of predicted models using remote-sensing spectra of soil samples collected
at the location of the image pixels. For this purpose, large spectral libraries could be exploited
in synergy with remote-sensing data, but the comparison between remote and laboratory data is
hampered by several factors: the difference in support size, the georeferencing error, the spectral
characteristics, and the atmospheric effects. Although the remote-sensing data are atmospherically
corrected, this correction introduces an uncertainty in the measurements, causing a non-systematic or
random difference between laboratory and remote spectra.

Although a consistent number of spectral-transfer procedures were tested between two datasets
both composed of laboratory spectra [38–43], the transfer between spectra acquired in laboratory
conditions to those acquired by remote sensors is a still rare [44,45]. Moreover, in order to find a
reliable transfer function, it is mandatory to collect and scan soil samples. In fact, a transfer function
can only be obtained by the comparison between spectra acquired using both the master and slave
instrument. The transfer function can be stable in the case of two sensors working in the same
conditions, like two laboratory spectrometers, while for the remote data the change in atmospheric
conditions between two different acquisition times involves different spectral responses at the same
points. This difference entails a new transfer function, but the available bare soil surfaces are not
always the same, thus implying the need for new sampling for each remote acquisition.

Here we aim to test a new approach, named bottom-up, that allows avoidance of the
aforementioned issues related to the spectral transfer between laboratory and remote-sensing data,
while at the same time prepares for an automated approach to estimate soil variables over large areas,
as will be required once the hyperspectral satellites will be launched. This approach started from the
methodology proposed by [37] to predict the SOC values at sampling points based on the LUCAS
spectral library; then these values were linked to the airborne spectra building a PLSR model; and in
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the final step the PLSR model was applied to all bare soil pixels of the airborne image producing SOC
maps with the same spatial resolution as the airborne data. Thus, this approach allows laboratory
analysis of the target variable to be avoided. The new method was compared with the traditional
approach, i.e., the calibration of a multivariate model linking remote spectra and the quantity of the
target variable measured in the laboratory.

2. Study Area

We chose two study areas with a fair amount of cropland having different soil characteristics:
the loam belt in Belgium and the Gutland–Oesling region in Luxembourg.

The northern part of Wallonia is mostly characterized by Quaternary and Tertiary geological
formations. Iin particular, the Belgian loam belt is mainly characterized by niveo-eolian sediments
dominated by cropland with productive silt loam soils and a rolling topography [46]. The Belgian
research area consists of a 7 km-wide and 66 km-long SW–NE strip (NW corner: 50◦46′N, 5◦5′E;
SE corner: 50◦32′N, 4◦41′E) from Gembloux (Walloon region) to Sint Truiden (Flanders region).
The Belgian loam belt has a temperate oceanic climate, the mean annual rainfall is 790 mm, the
lowest monthly mean temperature is in January (2.3 ◦C), and the highest monthly mean in July
(17.8 ◦C). The Luxembourg research area is located in the central and northern part of the Grand
Duchy of Luxembourg within the Gutland and Oesling regions (Figure 1) along a 5 km-wide and
29 km-long North–South strip (NW corner: 49◦57′N, 6◦49′E; SE corner: 49◦42′N, 6◦11′E). The climate
in Luxembourg is temperate oceanic. The mean temperatures ranging from 0.7 ◦C in winter (January)
to 17 ◦C in summer (July) [46]. The mean temperatures in the north of the country (Oesling region) are
slightly lower both in winter and summer. The mean annual rainfall is approximately 800 mm in the
central and southern Luxembourg regions and 1000 mm in the north. The Gutland region is located
in central Luxembourg and, in the southern part of the image area, it consists of secondary marls,
limestone, sandstone and dolomites with a rolling topography. The Gutland region can be divided in
two agro-pedological zones: the Redange–Diekirch area with clay, clay-loam and sandy-loam soils
and the Central area with clay, sandy-loam and sandy soil [14]. The Oesling region is located in the
north of the Grand Duchy of Luxembourg and it is mainly characterized by shallow stony loam soils
derived from Devonian slate, quartzite and sandstone substrates on a sub-horizontal plateau with a
mean altitude of 450 m incised by the main rivers [47].
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3. Materials and Methods

3.1. Lucas Topsoil Database

The topsoil dataset provided by the Land Use/Cover Area frame statistical Survey (LUCAS) is
a pan-European spectral library, composed of 19,967 topsoil samples collected in 2009 throughout
25 countries [35]. The soil samples were air-dried and sieved (2 mm) before the spectral acquisition by
means of an XDS Rapid Content Analyzer (FOSS NIR Systems Inc., Laurel, MD, USA) following
the protocol described by the manufacturer and the Soil Spectroscopy Group [36]. The diffuse
high-resolution reflectance was continuously measured from 400 nm to 1300 nm (VNIR) and from
1300 nm to 2500 nm (SWIR) with a spectral sampling interval of 0.5 nm. In addition to spectral
measurements, the LUCAS dataset includes 12 chemical and physical soil properties. The total carbon
was measured by dry-combustion using a CN analyser (VarioMax, Elementar Gmbh, Hanau, Germany)
and SOC content was obtained subtracting the inorganic carbon by means of measuring the CO2

pressure upon addition of concentrated HCl [48].
A subset of the LUCAS dataset was created selecting only the sample collected in croplands [37].

This subset, named LUCAS_crop, consisted of 12,128 samples, which were split into seven classes
according to a cluster analysis using the k-means algorithm and the Euclidean distance as a metric [49].
The LUCAS clusters were obtained exploiting 12 soil variables: clay, sand, silt, and coarse fragments
content, SOC, carbonate content (CaCO3), pH (in H2O and CaCl2), cation-exchange capacity (CEC),
total nitrogen (N), soluble phosphorus (P), and potassium (K). Some of the LUCAS soil variables were
correlated among each other, thus a principal component analysis (PCA) was carried out after the
standardization of the variables, obtaining uncorrelated principal components (for more details about
the cluster analysis on LUCAS_crop data, see [37]).

The LUCAS_crop classes differ in pH, soil texture, SOC and macroelements: the soils of class
A are loamy and rich in N, P, K and SOC (29.7 g·kg−1); class B is characterized by acid soils having
a sandy loam texture and an average SOC value of 21.5 g·kg−1; class C includes slightly acid soils
having a silt loam texture, the mean SOC value is 25.7 g·kg−1; the soils of class D are organic, with a
very high SOC content; the soil of class E are basic with a clay loam texture and are rich in CaCO3;
class F consists in slightly basic soils with a sandy loam texture and poor in nutrients; the soils of
class F are silty clay loam with high K content (326.4 mg·kg−1). The average values of the main soil
variables of the seven LUCAS_crop classes are shown in Table 1.

Table 1. Textural class and average values of the main soil variables for the seven classes of the
LUCAS_crop dataset.

LUCAS_Crop Class Textural Class pH SOC
g·kg−1

N
g·kg−1

P
mg·kg−1

K
g·kg−1

CaCO3
g·kg−1

A Loam 7.2 29.7 2.8 106.5 764.2 54.5
B Sandy loam 5.6 21.5 1.8 43.8 111.9 0.4
C Silt loam 6 25.7 2.3 33 168.1 1.2
D Organic soil 6 318.6 18 34.4 193.5 11.3
E Clay loam 8 16.9 1.5 21.5 283.4 391.8
F Sandy loam 7.4 15.8 1.5 27.9 165.8 30.9
G Silty clay loam 7.5 25.1 2.4 25.8 326.4 60.8

3.2. Airborne Images

Airborne imagery was acquired with the Airborne Prism Experiment (APEX) sensor mounted on a
non-pressurized Dornier 228 aircraft of the German Aerospace Center (DLR). The APEX is an airborne
(dispersive push broom) imaging spectrometer recording hyperspectral data in 313 bands (in binned
mode) in the wavelength range 400–2500 nm [50]. APEX spectrometer is developed by a Swiss–Belgian
consortium on behalf of the European Space Agency. Since 2010 several flight campaigns have been
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completed across Europe, covering about 160 areas. The large amount of these airborne data have
allowed addressing a wide range of research topics related to remote sensing in land and water [50].
The APEX data were recorded on 1 July 2015 in Belgium (flying height 3900 m) and on 20 March
2015 in Luxembourg (flying height 4700 m). The location of the two study areas is shown in Figure 1.
The APEX data were pre-processed at the VITO Remote Sensing Department, using the Central
Data Processing Center (CDPC) for airborne Earth observation data [51]. The APEX radiometric and
spectral calibration is performed by means of calibration cubes generated from data measured and
collected on the APEX Calibration Home Base (CHB) hosted at DLR Oberpfaffenhofen, Germany [52].
The geometric correction of the APEX data is based on direct georeferencing [53]. GPS/IMU data
registered during the flight were post processed with Applanix POSPac MMS software, thereby using
GPS base stations data. The post-processed position and orientation data, together with boresight
correction data, the detailed sensor model and the SRTM DEM were used in the ortho-rectification
process. Finally, the images were spatially resampled to an output resolution of 2.5 m and projected to
the geographic coordinate system (WGS84). The atmospheric correction of the APEX data is performed
using the MODTRAN4 radiative transfer code and reflectance retrieval algorithms given in [54,55].
As a result, the pre-processed image data were provided as geo-referenced at surface reflectance.

3.3. Soil Organic Carbon (SOC) Estimation

SOC estimation using the traditional approach entails merging a soil-variable value obtained by
analytical measurements in the laboratory and the spectrum extracted from the APEX imagery at the
sampling point, where the former is the dependent variable, while the bands of the electromagnetic
spectra are the independent variables [56]. These two types of data are used to build a multivariate
model to estimate soil variables in other bare soil pixels where we do not have information about
the dependent variable (Figure 2). This approach entails the collection of soil samples, laboratory
analysis for each variable, the calibration of a multivariate model using a consistent number of samples,
and finally the validation of the model in some points not included in the calibration dataset. We used
this traditional approach in order to compare it with an alternative approach, the bottom-up, which
we tested, to the best of our knowledge, for the first time.
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The main difference between the traditional and bottom-up approaches is that the latter does not
require analytical laboratory measurements. Instead, different soil variables are estimated exploiting
laboratory spectral data. The bottom-up approach consists of two main steps: (i) the estimation of a
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soil variable at sampling points exploiting the LUCAS spectral library and its ancillary data; and (ii)
the mapping of the soil variables using remote-sensing data (Figure 2).

The first step consists in splitting the LUCAS_crop dataset into classes using a cluster analysis
(see Section 3.1 and [37] for details). Furthermore, some soil samples are collected within the
investigated area. For each sample, the spectrum is acquired using the FOSS spectrometer (calibration
spectral dataset). Later, the LUCAS dataset classified according to the cluster analysis is used to train
an artificial neural network (ANN), which is used to allocate to each sample of the calibration dataset
one of the LUCAS classes (see Table 1). The ANN is a multilayer perceptron feed-forward neural
network; the input layer consists of the LUCAS spectral data, while the output layer contains seven
neurons, one for each of the detected classes. The number of neurons in the only hidden layer were
set observing the cross-validation results of classification of 500 iterations. Then, PLSR models are
calibrated for each LUCAS class and they were used to estimate the soil variable on the soil spectra of
the calibration datasets of the same class.

In the second step of the bottom-up approach, the previously estimated values were used to
calibrate the SOC concentration of the pixels in the APEX imagery corresponding to the sampling
points. Thus, a PLSR model was created for the bare soil fields in each area and was subsequently
applied to create SOC maps.

In order to reduce propagation of the georeferencing error, the spectra were extracted from APEX
images using a bi-linear interpolation algorithm for both the traditional and bottom-up approaches.
This method provides the spectrum of an interpolated pixel, taking into account the weighted
average of the four pixels nearest to the center of the sample area. Moreover, pre-processing of
the spectra consisted of removing the water bands (1349–1446 nm and 1795–1972 nm) and applying
a Savitzky–Golay smoothing filter [57] with a second-order polynomial fit and a window size of
11 data points.

3.4. The Calibration and the Independent Validation Datasets

Two soil spectral datasets were collected for calibration in July 2016, consisting of 84 samples in
Luxembourg and 54 in Belgium (Figure 1). The calibration samples were collected within fields that
were bare during the over flight. We first checked the state of the soil surface during a field survey
one day after the flight campaign. Then we also computed the NDVI on the APEX images in order
to locate the remainder of the bare soil cropland fields. A sampling campaign was carried out in
July 2016 in order to collect at least one sample for each selected field, and the sample location was
randomly chosen in a homogeneous area away from field borders. Each calibration sample consists
of five sub-samples collected from the 0–10 cm layer taken with a gouge auger within an area of 3 m
radius. Soil samples were air dried, gently crushed, and passed through a 2 mm sieve in the laboratory.
Each sample was scanned and SOC values were measured (for the traditional approach only) using the
same instruments (FOSS spectrometer, model XDS rapid content analyzer and Variomax CN analyzer),
and protocols were used to compile the LUCAS dataset (see Section 3.1).

The SOC maps of all bare soils obtained using the bottom-up approach were divided into seven
classes based on the standard deviation of the SOC concentration. Then, we selected some fields both
for the loam belt and Luxembourg areas (Figure 3) showing a good variability in terms of SOC content.
Within these fields, we applied a stratified random strategy to select at least one random point for
each of the seven standard deviation classes. The same within-field sampling procedure used for the
calibration datasets was adopted for the validation points. All samples were air-dried and sieved
(2 mm) and the SOC content was measured by dry-combustion using the same protocol used for the
LUCAS dataset and the calibration datasets (see Section 3.1).

The root mean square error (RMSE; Equation (1)) and the ratio of performance to deviation (RPD;
Equation (2)) were used as measures for the estimation accuracy.
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RMSE =

√
∑n

i=1
(
yo − yp

)2

n
, (1)

RPD =
std

RMSE
, (2)

where yo is the observed and yp is the predicted value, n the number of the samples, and std the
standard deviation.
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4. Results

4.1. Calibration and Validation Datasets

The traditional and bottom-up approaches were tested in two areas having different geological
and pedological characteristics: the loam belt area in Belgium and the Gutland–Oesling region in
Luxembourg. The loam belt is quite homogenous in terms of substrate, soil texture and organic carbon
content. The niveo-eolian loess deposit uniformly covered all the area, resulting in well-drained silt
loam soils [14]. According to the classification of the LUCAS_crop dataset [37], the samples collected
in this area for the calibration dataset belong to class F, which is characterized by a low SOC content
(Table 1). Actually, both the samples of the calibration and validation dataset in Belgium have a SOC
content that ranges between 6.1–15.5 g·kg−1 (Table 2).

The Luxembourg area is less homogenous than the loam belt from a geological and
geomorphological point of view. The SOC values range from 6.6–49.8 g·kg−1 and standard deviation
value is considerably higher than in Belgium (Table 2). The measured SOC values of the validation
datasets ranges between 6.9–36.0 g·kg−1 (Table 2).
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Table 2. Descriptive statistics of the soil organic carbon content in the calibration and validation dataset
of the loam belt and Luxembourg areas.

Dataset N◦ Minimum Maximum Mean Std
/g·kg−1 /g·kg−1 /g·kg−1 /g·kg−1

Calibration
Luxembourg 84 6.6 49.9 23.4 11.1

Loam belt 54 7.1 15.5 10.2 1.7

Validation
Luxembourg 43 6.9 36.0 18.9 8.6

Loam belt 45 6.1 14.7 10.2 2.1

4.2. SOC Estimation

The first step of the bottom-up approach consisted of the SOC estimation at sampling points
exploiting the LUCAS topsoil database. The SOC content at sampling points in Luxembourg was
estimated with a RMSE of 5.4 g·kg−1 and a RPD of 2.1 i.e., the calibration (Table 3). In the second step
of the bottom-up approach, the estimated SOC values were coupled with the corresponding APEX
spectra to calibrate a PLSR model for each flight area. The PLSR models were applied to all bare fields
obtaining SOC maps for each study area (Figure 4). The differences between the two study areas in
terms of range and standard deviation of SOC values (Table 2) result in different RMSE and RPD values
for the independent validation, both for traditional and bottom-up approaches. The independent
validation in Luxembourg provided a RMSE values of 4.9 g·kg−1 and a RPD of 1.7 for both approaches,
while in Belgium, both traditional and bottom-up approach gave a RMSE of 1.5 g·kg−1 and a RPD of
1.4 (Table 3; Figure 5).

Table 3. Estimation accuracy in terms of root mean square error (RMSE) and ratio of the performance to
deviation (RPD) obtained from the validation datasets using the traditional and bottom-up approaches.

Traditional Approach Bottom-Up Approach

Validation Dataset Calibration Dataset Validation Dataset

RMSE g·kg−1 RPD RMSE g·kg−1 RPD RMSE g·kg−1 RPD

Luxembourg 4.9 1.7 5.4 2.1 4.9 1.7
Loam belt 1.5 1.4 1.2 1.4 1.5 1.4

Total 3.6 2.1 4.3 2.5 3.6 2.1

The SOC maps in Luxembourg highlighted a much higher SOC content in the northern area than
in the central and southern areas (Figure 6). The SOC ranges between 19.7–51 g·kg−1 with a mean
value of 31 g·kg−1 in the north (Figure 6a), while the minimum and maximum values in the central
area are, respectively, 2.8 g·kg−1 and 39.3 g·kg−1 and the mean SOC content is 19.4 g·kg−1 (Figure 6b).
This north–south gradient in SOC content is in agreement with the findings in Stevens et al. [14] and it is
probably due to wetter and colder conditions in the northern plateau which allow a general higher SOC
content as compared with the values of the central and southern area. Most of the calibration samples
located in the northern area were classified in group A according to the LUCAS_crop classification;
this class is mainly characterized by quite high SOC content (Table 1). The substrate of the central and
southern area (Gutland region) consists of marls and limestone and most of the calibration samples
of this region were classified as B and F according to the LUCAS_crop dataset. These two types of
soils are poorer than those of class A, their texture is sandy loam with high sand content and low SOC
concentration. The SOC maps obtained by the bottom-up approach in Belgian loam belt confirmed a
greater soil homogeneity of this area as compared to Luxembourg (Figure 4b).
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Figure 6. RGB (red: 661 nm; green: 545 nm; blue: 450 nm) airborne images acquired by APEX sensor
in Luxembourg (left), and some SOC maps obtained by the bottom-up approach in the northern (a),
and central (b), areas.

The digital terrain model (DTM) of Wallonia (1 m of resolution) and that of Luxembourg (5 m of
resolution) allow a better interpretation of the SOC patterns within the fields. In fact, for both study
areas the intra-field variability is mainly due to erosion and sedimentation of topsoil. Higher SOC
content can be detected along the downslope field border in field 1 in Luxembourg (Figures 4a and 7a)
and in most of the fields in the loam belt (Figure 4b). Although the slope is gentle, the higher SOC
values in field 7 are close to the bottom of the field along a strip quite parallel to the contours (Figure 8a);
and also for the field in Figure 8b, the highest SOC values were detected in the southern part of the
field bordering a small river valley. SOC content is higher to the top and bottom of field 4 (Figure 7b).
Field 5 is located in a very flat area and this entails a very low in-field SOC variability; however, there is
a clear-cut area in the north-eastern part of the field showing higher SOC content, and this is probably
because the neighboring woodland extended in the past in the field. Although most of the SOC maps
confirm the relevance of the slope for the within-field variability, some differences, especially between
contiguous fields, are due to historical differences in management or land use, as can be clearly seen
from the rectangular patterns in the fields in the eastern part of Figure 6a.
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5. Discussion

In the first step of the bottom-up approach we obtained the estimation of SOC values at sampling
points with a sufficient level of accuracy (i.e., calibration in Table 3) and without new analytical SOC
measurements. The SOC estimation was gained from calibration models obtained by subsetting the
LUCAS soil database into classes based on 12 soil variables, and the comparison between measured
and estimated SOC values showed an overall RMSE of 4.3 g·kg−1 and a RPD of 2.5 for the calibration
datasets (Table 3). Nocita et al. [58] and Clairotte et al. [59] showed similar results in terms of RPD
subsetting large spectral library by means of a local PLSR models; however, the validation datasets
are not completely independent for both studies, because the samples used for the validation were
selected from the same library as that used for the calibration, i.e., the LUCAS dataset for [58] and the
French national spectral library for [59].

Remote-sensing data (airborne and satellite) are used to obtain quantitative soil variables
estimation for a large area [29,46,56]. For this purpose, most studies report that a calibration dataset is
compiled consisting of measured soil values collected at points corresponding to the remote spectral
data [56]. The calibration dataset is generally used to build a multivariate calibration model to estimate
the soil properties across the remote images (traditional approach). Theoretically, large spectral
libraries, such as the European LUCAS soil database, could be exploited not only to estimate point
data, but also to build estimation models of the soil variables at large scale, thus avoiding the collection
of a calibration dataset. Unfortunately, the existing large spectral libraries provide soil spectra acquired
in laboratory conditions, thus using spectrometers conceived to provide high-resolution spectral
measurements in a controlled environment. Therefore, the main challenge is to find a method to
align laboratory and remote spectral data [45,60]. Many issues need to be addressed for this goal:
first of all, it is necessary to consider the different technical characteristics of the two sensors [40],
in particular the full width at half maximum (FWHM) response at each band, the spectral sampling
interval and the spectral range, which entail a systematic differences between sensors [7,45]. However,
when moving from laboratory to field conditions the radiometric resolution and the SNR hamper the
alignments of dissimilar spectral outputs, and the atmospheric correction introduces non-systematic
or random differences between laboratory and remote spectra. Other important factors concerning the
alignment between laboratory and remote-sensing data are the different spatial resolution, the effect
of the georeferencing accuracy, and the different soil conditions at acquisition time (soil moisture,
roughness) [61]. The uncertainty of the pre-processing procedure, and the changing atmospheric
conditions at each acquisition time [45], do not allow stable spectral data to be obtained at the same
location. In other words, the remote-sensing spectra extracted in the same geographical point but
at different dates will never be identical. In order to verify the uncertainty of the spectral data from
remote sensors and, consequently, their instability, we compared the spectra acquired over a dark
(Figure 9a,b) and bright (Figure 9c,d) reference surface both by Analytical Spectral Devices (ASD) Field
Spec Fr Pro spectroradiometer (ASD Inc., Boulder, CO, USA) (Figure 9a,c) in the field and by the APEX
airborne sensor (Figure 9b,d). The measurements were carried out in 2013 and 2015 in the Belgian
loam belt area, and highlight a consistently greater measurement stability using ASD as compared to
remote acquisition (Figure 9).
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measurements acquired on dark (a,b), and bright (c,d), reference surfaces in the loam belt area in 2013
and 2015.

In light of the results of this comparison, a different approach is necessary to exploit the spectral
libraries over a large area. In this work we proposed the bottom-up approach to bypass all the
issues that hamper the stability of the remote-sensing data and, consequently, the alignment between
laboratory and remote spectra. The main advantage of the bottom-up as compared to the traditional
approach is that the chemical analyses in the calibration dataset are replaced by spectral measurements.
Thus, the traditional approach uses the measured soil variable values, while the bottom-up approach
uses the estimated values obtained by means of the LUCAS library (Figure 2). Another advantage in
connection with the use of the bottom-up approach is that it could estimate different soil variables
with the same spectral data; in fact, the LUCAS dataset includes 12 soil variables, most of them
linked with spectral features in the VNIR region. Thus, the bottom-up approach could be useful
for obtaining maps of different soil variables at regional scale on bare fields without chemical or
physical laboratory measurements and without any spectral transfer between laboratory and remote
spectra. The application of a spectral-transfer function entails the collection of a specific spectral
dataset, where each sample, named standard, is measured both with master and slave instruments.
Although Nouri et al. [45] successfully applied some transfer methods from laboratory to airborne
data to map clay content, their results were dependent on the quantity of the standards, in other words
the best estimation performances were obtained with the maximum number of standards available
(64 samples). Moreover, the collection of new standards is necessary for each remote acquisition
because of the change in atmospheric conditions between two different acquisition times.

The traditional and bottom-up approaches provided very similar estimation accuracy on the
independent validation datasets (Table 3; Figure 5). Both approaches allowed estimating SOC with a
sufficient degree of accuracy (RMSE = 1.5–4.9 g·kg−1; RPD = 1.4–1.7) and using the same number of
samples for the calibration datasets. The optimum number of samples for the bottom-up approach,
or more in general for all remote-sensing applications, depends on the characteristics of the investigated
area and the range of the target variable, but usually the information about the range or the variability
of the target variable are not available in advance, making it difficult to set the optimum number of
samples for the bottom-up approach.
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Many authors report SOC estimation from airborne data, especially exploiting the VNIR–SWIR
region [10–13,16,62,63], but also the long-wave infrared region (LWIR; 8–14 µm) [15]. However,
all of them build a calibration dataset for the airborne spectra on samples analysed in the laboratory
(i.e., the traditional approach). The HyMap hyperspectral sensor (400–2450 nm, with a spectral
resolution of 12–17 nm) has been tested for SOC estimation, with mitigated results: Gomez et al. [12]
gained very poor results in southern France (RPD = 0.99; RMSE = 2.6 g·kg−1) as a result of the very low
SOC concentrations. Hbirkou et al. [13] obtained a RPD of 2.32 and a RMSE of 1.1 g·kg−1 in northern
Germany with higher and more variable SOC concentrations. The aisaDUAL hyperspectral scanner
(367 bands between 400 nm and 2500 nm) provided good cross-validation results in Germany [63];
in this case, the RMSE was 2.7 g·kg−1, but the standard deviation was quite high (8.2 g·kg−1). The full
VNIR–SWIR data (400–2500 nm) from the airborne hyperspectral scanner (AHS) was employed by
Stevens et al. [11] in Belgium, obtaining a RPD of 1.47; while Stevens et al. [46] in Luxembourg
discarded the SWIR region because of the low SNR, thus using only 20 bands from 442 nm and
1019 nm, and they obtained a RPD of 1.9. Most of the aforementioned papers provided cross-validation
statistics [10–12,63], and only Hbirkou et al. [13] and Stevens et al. [46] tested their models on a
validation dataset. In both cases, the entire dataset was split into calibration and validation ensuring
a representative subset of the data both in the calibration and validation datasets. Here, we tested
the PLSR estimation models on a completely independent validation dataset, obtaining an estimation
accuracy similar to those obtained by most of the authors cited above who used the traditional
approach. In particular, the results obtained for the loam belt area (RPD = 1.40) are very similar to
those obtained by Stevens et al. [11] from leave-one-out cross validation in Belgium (RPD = 1.47), while
the results that we gained in Luxembourg (RPD = 1.70) are slightly lower to those obtained by [46] in
the same area (RPD = 1.90).

6. Conclusions

We investigated the feasibility of a new approach, named bottom-up, which allows SOC maps to
be provided over a large area by APEX airborne data without recourse to chemical analyses or any
spectral transfer between laboratory and remote spectra, by exploiting the spectra and ancillary data
of the European LUCAS topsoil database. This approach was tested on fields that were bare during
the over flight in two areas with different soil characteristics i.e., the loam belt in central Belgium and a
north–south flight strip across Luxembourg. The results were compared to those provided by a direct
calibration of the airborne spectra. The comparison between the independent validations of these two
approaches did not show differences in terms of RMSE or RPD. Thus, the new approach tested in
this work (bottom-up) allowed SOC maps to be obtained without chemical laboratory analyses over
two large areas with the same satisfactory level of accuracy (RPD ≥ 1.4) obtainable by a traditional
approach. Moreover, the two steps of the bottom-up approach allowed bypassing for the first time
(to our knowledge) the issues and restrictions related to the spectral transfer between laboratory and
remote-sensing data, in this case between LUCAS spectral data obtained by FOSS spectrometer and
APEX spectra.

The loam belt area, due to its homogenous geological substrate, did not show any SOC gradient
along the flight line (SW–NE). While clear differences between the northern and southern parts of the
flight line exist in Luxembourg, this is due to wetter and colder conditions in the northern plateau,
which allow a generally higher SOC content as compared with the values of the central and southern
area. The within-field variability could be nearly always explained by the geomorphology in these
two areas; in fact, by overlaying SOC maps on a DTM it has was possible to show that the areas along
downslope field borders or in zero-order valleys are characterized by higher SOC content than the top
of the fields, also with gentle slopes, as is the case in the loam belt. We conclude that the bottom-up
approach provided the same SOC estimation accuracy as the traditional approach in the loam belt and
Luxembourg areas, and that it is able to explain the SOC variability both at field and regional scale,
increasing the level of knowledge of SOC availability for agricultural and environmental management.
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In light of these promising results, further research will need to focus on the accuracy level of
the bottom-up approach using simulated or real satellite data achievable from the new generation
of hyperspectral imagers, and also to investigate an algorithm that allows the optimum number of
samples for the calibration dataset to be set. Since the efficiency of the bottom-up approach is strongly
affected by the LUCAS dataset, it will be appropriate to test the method in different soil and climate
regions, covered by the LUCAS dataset, thereby eventually investigating the potential for predicting
other soil variables such as clay content or CEC linked with spectral features in the VNIR region.
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