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SUMMARY

A key concept that is common to many assumptions inherent within seismic hazard assess-
ment is that of tectonic similarity. This recognizes that certain regions of the globe may display
similar geophysical characteristics, such as in the attenuation of seismic waves, the magnitude
scaling properties of seismogenic sources or the seismic coupling of the lithosphere. Previous
attempts at tectonic regionalization, particularly within a seismic hazard assessment context,
have often been based on expert judgements; in most of these cases, the process for delineat-
ing tectonic regions is neither reproducible nor consistent from location to location. In this
work, the regionalization process is implemented in a scheme that is reproducible, compre-
hensible from a geophysical rationale, and revisable when new relevant data are published.
A spatial classification-scheme is developed based on fuzzy logic, enabling the quantification
of concepts that are approximate rather than precise. Using the proposed methodology, we
obtain a transparent and data-driven global tectonic regionalization model for seismic hazard
applications as well as the subjective probabilities (e.g. degree of being active/degree of being

cratonic) that indicate the degree to which a site belongs in a tectonic category.
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1 INTRODUCTION

The assessment of seismic hazard is a fundamental step in the eval-
uation and mitigation of the risk that earthquakes pose to society.
At present, observations of seismicity and its resulting ground mo-
tion at any given site are insufficient to characterize the long-term
recurrence of specified levels of shaking. It is therefore necessary
to aggregate seismological observations over a given spatial or tec-
tonic domain in order to derive models to compute the expected
levels of shaking and their uncertainties, given a set of variables de-
scribing the fundamental characteristics of the earthquake process.
Inherent within this process are several key assumptions indicating
that certain properties of the earthquake process can be regionalized
on the basis of geophysical and/or tectonic similarity. These classi-
fications may apply to the properties of the seismogenic source, the
attenuation of seismic waves within the crust, or to the effects of
surface geology on ground motion.

In seismic hazard assessment, tectonic regionalizations are often
used for the selection of the ground motion model (or models) and
the areas to which they should be applied (Abrahamson & Shedlock
1997; Garcia et al. 2012; Delavaud et al. 2012). In the development
of ground motion prediction equations, regionalization has become
an important topic, as the increasing availability of data has led
ground motion model developers to identify key differences in the

behaviour of models for different regional subsets of ground motion
records, even amongst those records classified as belonging to the
same tectonic regime.

A legacy of geographical and tectonic regionalizations for the
purpose of earthquake classification extends back in the scientific
literature for over half a century, when the establishment of the
Worldwide Standard Seismograph Network brought with it large
volumes of seismological and geological data for routine process-
ing and assessment. In response, Flinn & Engdahl (1965) proposed,
and later revised (Flinn et al. 1974; Young et al. 1996), a division of
the Earth into 51 zones based on both seismotectonic and geograph-
ical considerations. The Flinn—Engdahl regionalization remains in
widespread use as many organizations, including the International
Seismological Centre (ISC) and United States Geological Survey
(USGS), continue to use it to associate seismological data to given
regions of the Earth. It also forms the basis upon which the USGS
Shakemap system selects appropriate ground motion models for
their real-time estimates of ground shaking, the tectonic classifi-
cation of which is seen in Fig. 1. Other regionalization schemes
have focussed specifically on the seismic wave properties in order
to understand the large-scale tectonic variation in tectonic mate-
rial (Toks6z & Anderson 1966; Kanamori 1970; Dziewonski 1971;
Jacob 1972; Jordan 1981; Okal 1977; Mitchell 1995; Mitchell et al.
1997; Gudmundsson & Sambridge 1998; Mitchell et al. 2008;
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Figure 2. Stable continental regions (in red) defined in Johnston ez al. (1994).

Khan et al. 2011; Lekic & Romanowicz 2011; Heeszel et al. 2013).
Generally, these models partition the Earth’s surface into several
major divisions according to the material properties (e.g. geologi-
cal era, attenuation, and seismic velocity); hence their utility in a
seismic hazard assessment context is less clear.

A different regionalization model proposed by Kagan et al. (2010)
was used to classify earthquakes according to tectonic regime such
for similar purposes of analysing the statistical properties of recur-
rence within each. The Kagan et al. (2010) approach is particularly
pertinent for this work as it describes an algorithmic process for clas-
sification in which expert judgement is minimized, and is applicable
on a global scale. It is illustrative of an approach that can be repro-
ducible in areas of generally high seismicity. It found application
in global earthquake forecasting where regionally derived param-
eters of the earthquake recurrence models are applied to predict
the spatial variation in the rates of events above a given magnitude
(Kagan & Jackson 2012; Bird et al. 2015), and would therefore
be illustrative of how an automated regionalization process can be
informative in seismogenic source modelling.

Other regionalizations have been defined for a broader range of
objectives. The aforementioned stable continental regions model
of Johnston et al. (1994, see Fig. 2) is designed for the purpose
of describing earthquake recurrence properties in regions of low

seismicity by considering data from all tectonically analogous
regions. The exploration of variability in geophysical properties
within the stable continental domain, with a particular focus on
eastern North America, has also been revisited from a seismo-
genic source modelling perspective within the Central & Eastern
US Seismic Source Characterization (CEUS-SSC) for Nuclear Fa-
cilities Project (Coppersmith et al. 2012), and subsequently from
a ground motion attenuation perspective in the Next Generation
Attenuation (NGA) East Project (Dreiling ez al. 2014). The CEUS-
SSC project revisited the separation of extended and non-extended
crust proposed by Johnston ez al. (1994) as distinct regimes in terms
of recurrence and maximum magnitude. The new proposed clas-
sification separates between those regions belonging to extended
Mesezoic and younger domains and those belonging to older ex-
tended and non-extended domains, the former of these believed to
be capable of producing slightly larger earthquakes than the latter. In
contrast, the regionalization study conducted within the NGA East
Project focuses specifically on regional differences in attenuation
in the Eastern US, identifying a significant difference in attenua-
tion characteristics in the Gulf Coast and Mississippi Embayment
compared to other regions of eastern North America.

Although it is evident that tectonic regionalization does play a
role in many areas of seismic hazard analysis, and that attempts at
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global regionalization have already been made, few regionalizations
have been designed specifically in this context that can be applied
on a global scale. Recent national and regional scale probabilistic
seismic hazard models have critical regionalizations built within.
For example, it has been long established that a national boundary
between ‘active’ and ‘stable’ regions in the United States National
Seismic Hazard model (Petersen ef al. 2015) is approximately de-
lineated by the eastern limit of the Rocky Mountains. In Europe
and the Middle East, the tectonic picture is highly complex, with
regions of subduction, continental convergence, extensional basins
and transcurrent plate boundaries all situated in this compact area.
Even the stable areas of northern Europe display characteristics
that make it somewhat distinct from similar stable regions in North
America and other parts of the world (Delavaud et al. 2012). Tec-
tonic regionalizations built within recent hazard models, such as the
2013 European Seismic Hazard Model (Woessner ef al. 2015) and
2014 Earthquake Model of the Middle East (Danciu et al. 2016),
have relied on expert judgement regarding both the types of zones
and their spatial extent.

The precedents for tectonic regionalization in hazard, whilst serv-
ing their purpose, suffer from several major limitations that make
comparison between models difficult. The first limitation is the lack
of reproducibility and clarity regarding the definition of the zone
itself. In the ground motion modelling domain regionalization is
based around a set of non-specific criteria that does not specify any
clear spatial extent but only acts to classify subsets of strong mo-
tion records within a database. Subregionalization within a tectonic
regime in varying the ground motion model coefficients is often
according to political boundaries (e.g. Boore et al. 2014; Kotha
et al. 2016) rather than geophysical. Little explicit consideration
is given to the geophysical properties of the regions that account
for the regional differences. The second limitation in the current
approaches is that classifications are ‘hard’, in the sense that a lo-
cation (be it source or site) is unambiguously placed into a single
category. Given the inherent lack of precision in the classification
of the tectonic regimes, it is counter-intuitive that the boundaries
between tectonic regimes are generally treated as discrete condi-
tions. In reality, the boundary between ‘active’ and ‘stable’ crustal
regions, for the purposes of seismic hazard assessment, represents
a continuum that transitions gradually over a distance.

To address the limitations described, this work presents a method-
ology for application to the problem of tectonic regionalization
specifically for a seismic hazard analysis context. The methodology
adopts a fuzzy inference process with criteria (here considered as
‘rules’) that are based on the interpretation from global geophysical
data sets whose properties are related to the description of the earth-
quake source and path effects that seismic hazard analysis attempts
to capture. It will be illustrated how this principally data-driven
approach can still be combined with expert judgement albeit in a
manner that is both quantifiable and replicable. Being predicated on
a fuzzy system the main outputs of this process are geographical dis-
tributions of ‘memberships’, that is, quantified measures indicating
the degree to which a site belongs to a tectonic category. These can
be used to subsequently categorize a site to a regime according to a
user-decision of an acceptable level or membership, or alternatively
they could inform the assignment of weights within an analysis of
epistemic uncertainty.

In order to test the methodology proposed, we classify sources
and site locations found in the existing strong motion databases
whose tectonic region type is assumed a priori, such as the NGA
West 2 (Ancheta ef al. 2014) and NGA East (Goulet et al. 2014) and
we discuss the consistency of between the predicted regionalization
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memberships and those already in use for probabilistic seismic
hazard assessment (PSHA).

2 MAJOR TECTONIC CLASSES
CONSIDERED IN THIS STUDY

The major tectonic regions used in the vast majority of hazard stud-
ies are Active Shallow Region, Subduction, and Stable Continental
Region (Abrahamson & Shedlock 1997). For each of these three
tectonic regions, a further subclassification has been suggested in
some cases, for example, Akkar et al. (2012), Delavaud et al. (2012)
and Stewart et al. (2013).

Within Stable Continental Region, it is recommended to consider
separate ground-motion prediction equations (GMPEs) for cratonic
regions (characterized by low deformation with slow attenuation),
and non-cratonic regions (low deformation but faster attenuation;
Somerville et al. 2009; Akkar et al. 2012) because of the significant
difference in crust material properties. Inside subduction zones, it
is considered important to differentiate between earthquakes gen-
erated along the interface and within the slab due to sensibly dif-
ferent propagation paths. Additionally, the earthquakes with mainly
oceanic travel paths exhibit different behaviours from continental
regions (Somerville et al. 2009; Akkar et al. 2012; Delavaud et al.
2012).

Taking into consideration the major differences mentioned above,
the first step is to classify the active region from stable region, since
the major tectonic regimes mentioned above can be broadly sep-
arated into active and stable categories. This binary classification,
whilst often recognized in many applications as a practical division,
is not representative of the physics of the lithosphere in which the
deformation occurs across a continuum. We therefore consider the
concepts of ‘active’ and ‘stable’ within a subjective probabilistic
description (degree of being active), with the physical definition
of activity or stability indicative of higher or lower long-term seis-
micity and strain, noting that a ‘stable’ region does not imply the
absence of either.

The relevant global seismicity data and geophysics data sets have
been appraised for integration into a data-driven fuzzy classifica-
tion scheme. Instead of assigning a region as being active region
(True) or not (False), in this study, the degree of membership to an
active region is provided for each target site on the globe. Adopt-
ing a similar strategy, using relevant crustal property data sets, the
degree of membership to a cratonic region for each target site is pro-
vided in the study. It should be emphasized at this point that although
oceanic regions are given some consideration here, a regionalization
for the purposes of seismic hazard assessment is primarily focused
on continental regions. Further categorizations can be made us-
ing this result together with additional digital relevant data sources
such as the Slab 1.0 model for subduction classification. In our
study, seven target tectonic regimes are defined: (1) Active Shal-
low Region (2) Active Oceanic Region (3) Subduction-Interface
(4) Subduction-Intraplate (5) Stable Continental Region-Craton (6)
Stable Continental Region-Non Craton (7) Stable Oceanic Region.

3 DESCRIPTION OF THE DATA SET
USED FOR TECTONIC
REGIONALIZATION

Input to a probabilistic seismic hazard analysis consists of both
seismic source characterization and the ground motion characteri-
zation, so various global seismotectonic and geophysical data sets
are appraised not only for homogeneity, quality or spatial coverage,
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Seismic Moment Rate Density(Nm /km?) [log scale]

Figure 3. A global map of the smoothed seismic moment rate density (Nm km~2) derived from the Weatherill ef al. (2016) earthquake catalogue using the
smoothing methodology proposed by Kagan & Jackson (1994) with a smoothing kernel width of 100 km. The stable continental region polygons (in blue)

defined by EPRI (Johnston et al. 1994) are superposed on the map.

but also their relevance to the prediction of earthquake recurrence
and/or ground motion attenuation. Amongst these criteria there can
remain a degree of subjective judgement, albeit the justifications for
selection of the most relevant data sets are provided in the follow-
ing. An additional criterion is the avoidance of data sets in which
prior assumptions about regionalization have been made in the con-
struction. This, for example, excludes the Global Strain Rate Model
(Kreemer et al. 2014), an important and relevant data set for seismic
recurrence modelling, but one in which prior assumptions regarding
the location of deforming and non-deforming regions are made in
the construction. From this initial appraisal eight global digital data
sets are identified, each rendered on to a regular grid with a spacing
of 0.5°.

3.1 Earthquake catalogues

Earthquake catalogues contain key information for the definition
of active regions (Johnston et al. 1994; Bird et al. 2002; Schulte
& Mooney 2005; Kagan et al. 2010; Mooney et al. 2012). Thus,
studying the corresponding pattern of earthquake distributions and
the seismic energy release patterns is a primary goal of this study.
For this purpose, we make use of the earthquake catalogue devel-
oped by Weatherill ef al. (2016) which contains 562,840 events with
homogenized moment magnitudes in the interval 2.0 < My < 9.6
from 1900 to 2014. The catalogue was compiled from various global
databases of earthquakes including the ISC Reviewed Bulletin (In-
ternational Seismological Centre 2011), ISC-GEM (Storchak et al.
2013) catalogues and Global Centroid Moment Tensor database
(Ekstrom et al. 2012). We applied to this catalogue the smooth-
ing methodology proposed by Kagan & Jackson (1994), using a
smoothing kernel width of 100 km to account for the epicentre un-
certainty. Fig. 3 shows the result of the smoothing procedure in
terms of scalar seismic moment per unit of area and time.

3.2 Continent-wide map of 1 Hz Lg coda Q(Qy)

QO is a critical property describing the anelastic attenuation of
ground motion and has been observed to vary significantly in differ-
ent tectonic environments. The cause of these variations is posited
to be the variation in the density of fluid-filled cracks in the crust
(Mitchell et al. 1997). Mitchell ef al. (2008) mapped the Q(Qo)
for 1 Hz Lg coda waves across Eurasia, and similar results for
Africa, Australia, North America and South America have been
made available to us by Mitchell (personal communication 2012).
The composite map of 1 Hz Lg coda Q for the five major continents
is shown in Fig. 4. It has also been suggested that Q, is directly
proportional to upper mantle shear wave velocity variations and
exhibits low values in crustal regions where seismicity, as well as
crustal strain, are high (Mitchell er al. 2008). As a result, the Oy
data set has the potential to provide a good constraint on tectonic
regime classification.

3.3 The geological map of the world

The global geological map has been released in 2011 from the Com-
mission for the Geological Map of the World (https://ccgm.org/en/,
last accessed 2018 February 9). It represents the distribution of the
main lithostratigraphic units and the main geological structural fea-
tures on the Earth surface including the chronostratigraphic units
defined for the onshore areas. This geological map classifies the
age of the unit according to that of the outcropping rock, which for
the current purposes we assume to be an appropriate proxy for the
relative age of the lithostratigraphic unit. From this data the Palaeo-
proterozoic to Archean units are extracted and used as classifier to
identify cratonic regions, which are shown in Fig. 5.

The use of geological data in a quantitative framework such as
that adopted in due course presents many problems, particularly
when seeking global data sets of information. Amongst these are
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Figure 4. A global data set of 1 Hz Lg coda O(Qp) (Mitchell, personal communication 2012). The stable continental region polygons (in blue) defined by

EPRI (Johnston ef al. 1994) are superposed on the map.
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Figure 5. Location of oceanic crust and its corresponding age, according to Miiller ez al. (2008), and the location of Palacoproterozoic to Archean stratigraphic
units (onshore red polygons) identified by the Commission for the Geological Map of the World (https://ccgm.org/en/)

varying definitions of the geological age of the units and the means
by which these are measured, as well as the spatial resolution of the
data itself. A trade-off exists between the use of a global data set
such as this, in which spatial coverage is achieved at the expense of
both the range and accuracy of the reported geological attributes,
and a mosaic of local geological data sets, in which further detail
may be found but heterogeneity is present in both the definitions
and measurement techniques. For the current purpose categorical
estimates of age rather than precise quantitative measures are suf-
ficient as a broad classifier of older or younger environments. It is
not immediately evident that further refinements of the estimates
of geological age provide significant value in predicting regional
variation of properties of the continental crust that influence the

characterization of the seismogenic source or ground motion atten-
uation.

3.4 Shear wave velocity variations at 175 km depth

Mooney et al. (2012), using a joint analysis of global seismicity
and seismic tomography, find that the seismic potential of conti-
nental intraplate regions is correlated to the seismic properties of
the lithosphere. They use the map of shear-wave velocity varia-
tions (§Vs) from the global shear wave model S40RTS (Ritsema
et al. 2011) and demonstrate that Archean and Early Proterozoic
cratonic lithosphere with higher than average shear-wave velocity
variations (§Vs) at a depth of 175 km have fewer crustal earthquakes
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Figure 6. A global map of S-wave velocity variations at a depth of 175 km developed by Ritsema ez al. (2011). The stable continental region polygons (in blue)

defined by EPRI (Johnston et al. 1994) are superposed on the map.

and a lower value of the maximum moment magnitude. Because of
the thicker and cooler lithospheric roots beneath the cratons, shear
wave velocity variations at 175 km (Fig. 6) exhibits a good corre-
lation with previously assigned stable continental craton regions,
which provide a key in mapping the stable continental region in our
classification scheme.

3.5 Slab 1.0: a 3-D model of global subduction zone
geometries

The Slab 1.0 model (Hayes et al. 2012) is a collection of geome-
tries defining the subduction interfaces of the twelve most active
subduction slabs covering approximately 85 per cent of the active
subductions on the globe. We use this subduction interface geom-
etry model into our tectonic regionalization scheme to separate
subduction regions from active shallow regions.

3.6 Digital model of plate boundaries

A global set of present-day plate boundaries on the Earth are pre-
sented in digital form by Bird (2003). From this data set, we extract
the subduction related plate boundaries to construct the subduction
interfaces for those plate boundaries classified by Bird (2003) as
subduction but are absent from Slab 1.0.

3.7 Global subduction parameters

In order to define the slab geometry parameters (slab dip-
ping angle, slab azimuth, and the horizontal distance of seis-
mogenic area on slab), we use the online subduction database
(http://submap.gm.univmontp?2.fr, last accessed 2018 February 9)
developed by Heuret & Lallemand (2005) to model the other
15 per cent subduction zones which are absent from Slab 1.0 (Hayes
etal. 2012).

We use the Slab 1.0 model as the major global subduction model
since the Slab 1.0 model has been considered as a more updated
model and it includes some additional data such as bathymetry,

trench sediment thicknesses and the interpretations of shallow slab
interfaces from active source seismic data respect to the Heuret &
Lallemand (2005) subduction model.

Therefore, with the information of trench coordinates from Bird
(2003), and the slab geometry parameters by Heuret & Lallemand
(2005), we are able to construct approximate planar 3-D subduction
slabs and distinguish the subduction zone from the active shallow
region in our tectonic regionalization model.

3.8 Oceanic crustal age measurement

For identifying those areas of the Earth surface that are oceanic crust
the oceanic crustal age model of Miiller et al. (2008) is adopted. As
discussed subsequently, for application to the assessment of seismic
hazard onshore the primary purpose of this classification is to sim-
ply distinguish oceanic crust from any other type of environment.
As such, this data set is a binary classifier, with a given location
being considered oceanic crust if any age estimate is present. For
other applications the specific age of oceanic crust in each location
may be of interest and further refinements could be considered in
order to distinguish, for example, convergent boundaries subducting
younger or older crust.

4 THE FUZZY LOGIC FRAMEWORK IN
TECTONIC REGIONALISATION

Hard or Crisp classifications, that is, classifications without overlap
or ambiguity, have often been widely adopted in tectonic regional-
ization, such as that underlying the Global ShakeMap Atlas (Allen
et al. 2008; Garcia et al. 2012). However, considering the com-
plexity, uncertainty and vagueness in tectonic regionalization, the
imposed constraint may be insufficient to correctly classify the large
variety of tectonic regimes worldwide. The use of this classification
can lead to abrupt changes in tectonic regime over short distances
owing to small perturbations of the data samples that lie near a
boundary. Furthermore, defining the threshold value of a given
quantity as the primary criterion for an assignment to a particular
class can be difficult to control and arbitrary. As an alternative, un-
certainties, and vagueness can be dealt with a fuzzy classification
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to be more flexible and tolerant of imprecise data. Through a fuzzy
inference system, crisp quantities are instead translated into human
linguistic framework, through which an aggregation of individu-
ally imprecise decisions can yield a quantitative, reproducible and
meaningful output for decision making. The final result is deter-
mined via fuzzy logic based deducing mechanism, which is com-
prised by IF-THEN rules, membership functions and fuzzy logical
operations. In short, this process can simulate, in quantitative terms,
aset of informed yet imprecise judgements and decisions that would
be typical of an ‘expert judgement’ classification. Applications of
fuzzy methods in the geoscience field have been proposed in the
past decades (e.g. Nordlund 1996; Nikravesh & Aminzadeh 2001;
Champati ray et al. 2007; Grandjean et al. 2007; Ansari et al. 2015)
due to its power on data fusion and as an efficient tool to manipulate
the uncertainty related to the interpretations.

In this study, the Mamdani type fuzzy inference process
(Mamdani 1974) is applied. It consists of six steps. An example
of ‘The activeness of the region’ is introduced to illustrate the steps
of fuzzy inference process (Fig. 7).

4.1 Stepl: determine a set of fuzzy rules

The fuzzy rules are a collection of linguistic statements that describe
how the fuzzy inference system should make a decision regarding
classifying an input or controlling an output. Following the fuzzy
logic principle and the human thinking process, we define two fol-
lowing fuzzy rules:

(i) IF seismic moment rate density is ‘High’, THEN the region
is ‘Active’.

(i) IF seismic moment rate density is ‘Low’, THEN the region
is ‘Stable’.
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The input variable can be multiple instead of single in the fuzzy
rules and be considered simultaneously by connecting with logical
operations (e.g. AND/OR). For example, in this problem, instead
of considering only the earthquake source, we would like to add
information on the crustal wave propagation by adding the quality
factor (Qy) as another input variable. Then the fuzzy rules can be
set up as:

(1) IF seismic moment rate density is ‘High’, AND quality factor
is ‘Low’, THEN the region is ‘Active’.

(i) IF seismic moment rate density is ‘Low’, AND quality factor
is ‘High’, THEN the region is ‘Stable’.

4.2 Step 2: fuzzify the input variables via membership
functions

It is necessary to construct membership functions that define what
we mean by, for example, high seismic moment rate density and
low seismic moment rate density. In fuzzy logic, the truth of any
statement becomes a matter of degree. We calculate for the input
variables, here the seismic moment rate density and the quality
factor, the degree of being ‘Low’, and being ‘High’ via membership
functions (a process called fuzzification). To design the membership
functions of ‘High’ / ‘Low’ seismic moment rate density or ‘High’
/ ‘Low’ quality factor, we follow a data-driven approach.

The general approach adopted here uses the histogram plots of
the global data sets, and fits them with a continuous distribution.
Initially we take the logarithm of seismic moment rate density and
generate the histogram plot to observe the global data pattern. In
this instance we fit the histogram with a normal distribution (Fig. 8,
top left), and take the cumulative distribution function (CDF) of
the fitted normal distribution as a membership function of seismic
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Figure 8. Each panel in the left column shows the histogram of a parameter utilized in this study. The black line also shows the analytical distribution used to
describe each empirical distribution. In the right column, we show the corresponding plot in terms of cumulative distributions. Top row: the data of the global
seismic moment rate density (Nm km~2). The fitted distribution model chosen here is normal distribution with mean (x) = 10.19, and standard deviation (o)
= 1.56. Middle row: shear wave velocity variation at 175 km data fitted with normal distribution (u = 1.26, and o = 1.63). Bottom row: global O, data fitting
with Gamma distribution (¢ = 8.79, and b = 59.71).
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Figure 9. The empirical cumulative curves (dashed lines) and the corre-
sponding membership functions (solid lines) for each linguistic statement
of being high (the curves in red) / being low (the curves in blue) for seismic
moment rate density, Lg coda O(Qy), and shear wave velocity variation at
175 km.

moment rate density being ‘High’ (Fig. 8, top left). We then take
its complementary function as membership function for defining
the extent to which the seismic moment rate density is ‘Low’. The
best fitting normal distribution in this example, has a mean value
of 10.19, and standard deviation as 1.56. We repeat the process in
a similar manner for the quality factor (Qy). The result obtained is
shown in Fig. 9.

From these results we obtain a set of data-driven membership
functions for the input variables. For example, if the annual seismic

Data-driven tectonic regionalisation 1271

moment rate density at the target site is 10° Nm km™2, by using
the membership function defined above, the degree of being high
seismic moment rate density is 19 per cent, and the degree of being
low Qy is 7 per cent. (as shown in Fig. 7, top row).

4.3 Step 3: combine the fuzzified input variables

In this example, the antecedent of each rule consists of two fuzzy
linguistic sets, for example, ‘seismic moment rate density is high’
and ‘quality factor is low’. Here the fuzzy operator is required
to combine the two membership values to obtain one numerical
value that represents the result of the antecedent for the rule. Fuzzy
combinations, ‘AND’, ‘OR’ and sometimes ‘NOT’, can be used.
There are many definitions of these fuzzy combinations, but here
we introduce only the ones applied in the study. The fuzzy rule, ‘IF
seismic moment rate density (A) is ‘High’, AND quality factor (B)
is ‘Low’, is written as:

UANB) = T(ualx), up(x)), (1)

where w4 is the membership of A, and ug the membership of B. T
is the result of antecedent for this rule.

There are many ways to compute the fuzzy ‘AND’ combination.
Here we apply the technique taking only the product of the two
membership values, so in this case, both the membership values are
taken into consideration during the process as illustrated in eq. (2):

WA NB) = T(ua(x), pp(x)) = pwalx) - upx). 2

Therefore, when seismic moment rate density is 10° (Nm km~2),
and the Q, is 800, the degree of high seismic moment rate den-
sity and the degree of low Qy is 19 per cent and 7 per cent respec-
tively. Using eq. (2), the result of the antecedent for this rule is
1.33 per cent. Likewise, for the second fuzzy rule: IF seismic mo-
ment rate density is ‘Low’, AND the quality factor is ‘High’, the
degree of low seismic moment rate density and the degree of high O,
are 81 per cent and 93 per cent respectively. The result of antecedent
for this rule is 75.33 per cent.

4.4 Step 4: Obtain the consequence of the rule

To map the result of fuzzy rules into output linguistic terms (region
is ‘Active’/ region is ‘Stable’), output membership functions are
required. Here, we simply use a linear function (eq. 3) and its
complement function (eq. 4) as membership functions for its region
being ‘Active’ and ‘Stable’, respectively, (Fig. 10):

fx)=x (3)

f)y=1-x. (4)

The output variable, degree of being ‘Active’ or of being ‘Stable’,
is in the parameter space between 0 and 1. With the membership
function of the output variable, we are able to translate the fuzzy
result into a single scalar quantity (called defuzzification) indicating
the membership for activeness of the region (degree of ‘Active’ or
‘Stable’). For example, from step 3 the results of antecedent for rule
1 and rule 2 are 1.33 percent and 75.33 per cent respectively. The
output membership functions as the result of consequence for each
rule are illustrated in Fig. 7.
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Figure 10. The membership functions for the output linguistic terms. The
red curve is the membership function of being in an active region (named
‘Activeness Index’ as well in the study), instead, the blue curve is for being
in a stable region.

4.5 Step 5: apply an aggregation method to combine the
fuzzy outputs

The final decisions are based on all the rules in a fuzzy inference
system, thus the rules must be combined into a single fuzzy set.
This process is called aggregation, by which the fuzzy sets that
represent the outputs of each rule are combined into an output
fuzzy distribution.

The concept of ‘MAXIMUM’, ‘SUM’, and ‘OR’ could each be
applicable for the aggregation operation. In this work, the function
‘algebraic sum’ is applied. The aggregation function of ‘algebraic
sum’ works as union of the outputs of all the fuzzy rules (Fig. 7,
last column). The result of aggregation (fuzzy output distribution)
is shown in the bottom right part of Fig. 7.

4.6 Step 6: apply defuzzification from the output
distribution

The last step of the fuzzy inference process is defiizzification, which
provides a single scalar quantity for a potential further classification.
As the name implies, defuzzification is the opposite operation of
fuzzification, where one extracts a precise quantity out of the range
of the fuzzy set to the output variable. The defuzzification method
we apply is called Mean Maximum (Sugeno 1985) as described
in eq. 5). It takes the output distribution and finds its average of
maximum (from the plateau) values along the x axis. zx is the
average of maximum level along the x axis, a and b is the minimum
and the maximum values of the plateau level along the x axis.
a+b

Z% = 7 %)

Viathe Mean Maximum method, in the example of ‘the activeness
of the region’, given seismic moment rate density released is 10°
(Nm km~2), and Qy is 800, the fuzzy inference system rates the
value of activeness of the region is 0.13. From the same fuzzy
inference system, when the seismic moment rate density released is
10" (Nm km~2), and Q, is 500, the activeness of the region is 0.68,
which is evidently more active than the first case.

The core idea of a soft classification is to replace the two binary
logical statements, True and False, by a continuous range between
0 and 1, with all values between representing a transition, which
can be modelled quantitatively using functional forms inferred by
judgement and/or by data. Where desired, a delineation can be made
by using the defuzzification result as the reference input variable for

the classification. According to the application, a user may select
the threshold value which fits their own goal for the delineation.
Where the fuzzy approach adds significant value in the classification
process is the fact that even when a binary classification is a desired
output the existence of the memberships provides more information
from which the decisions can be understood and, where necessary,
challenged. As indicated in Section 1, a binary distinction between
‘active’” and ‘stable’ is not consistent with the physical properties
of the Earth and there exists a continuum within these definitions.
This continuum is now quantified within the degrees of membership,
opening the possibility to both refine the classification to identify
intermediate positions and locate those regions on the Earth.

5 FUZZY CLASSIFICATION FOR
ACTIVENESS OF REGION

The overarching goal of this process is to determine the active-
ness of a target site in a manner that is appropriate to the con-
text of seismic hazard assessment. This is undertaken using a
fuzzy classification scheme. We incorporate data such as smoothed
seismic moment rate density, Q,, global composite (?)(B.J. Mitchell,
personal communication, 2012), and shear wave velocity variation
(Mooney et al. 2012). In Figs 3, 4 and 6, we show as a matter of
reference for each data set the Stable Continent Region polygons
delineated by Johnston et al. (1994). From the observations shown
and the data properties described in Section 3, the chosen data sets
correspond well to the tectonic properties implied by these inde-
pendently derived polygons (here ‘Active’ and ‘Stable’). Where we
expect the region to be more active in general, the seismic activity is
higher and quality factor Q, lower, and with lower S-wave velocity
variation observed in the region. Similarly, in the regions we expect
to be more stable, the seismic activity is lower, with a higher Q, and
a lower S-wave velocity variation.

Following the fuzzy inference system described in Section 4, we
have set up rules for the further fuzzy classifications. Since the
continent-wide map of 1 Hz Lg coda Q(Q,) covers only the conti-
nent area and the shear wave velocity variation data pattern shows
stronger correlation with onshore tectonic features, the classification
for continental and oceanic area has been based on different data
sets. The continental and oceanic classification will be explained
later in Section 7.2.

For the continental area, all three data sets are considered in the
fuzzy rules:

(i) IF seismic moment rate density is ‘High’, AND Q is ‘Low’,
AND S-wave velocity variation is ‘Low’, THEN the region is ‘Ac-
tive’.

(ii) IF seismic moment rate density is ‘Low’, AND Qy is ‘High’
AND S-wave velocity variation is ‘High’, THEN the region is
‘Stable’.

For the oceanic area, only seismic moment rate density data are
considered:

(i) IF seismic moment rate density is ‘High’, THEN the region
is ‘Active’.

(i1) IF seismic moment rate density is ‘Low’, THEN the region
is ‘Stable’.

Following the same framework as shown in the Section 4, to
design the membership functions of each linguistic variable in the
fuzzy rules designed in this section, we fit the data with distribution
models and take the CDF of the fitted distribution as membership
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Figure 11. Geographic distribution of the Activeness Index (degree of being active) derived from this study using the fuzzy inference system.

function of being ‘High’. Conversely, we take the survival function
as membership function of being ‘Low’ as shown in Figs 9 and
8. The best fitting normal distribution with mean value of 10.19
Nm km~? and standard deviation of 1.56 for global seismic moment
rate density data (in logarithm). For global 1 Hz Lg coda QO (Qy), the
best fitting distribution model is a Gamma distribution model with
the shape parameter, a = 8.79, and the scale parameter, b = 59.71.
For shear wave velocity variation at 175km depth data, the best
fitting normal distribution has a mean value of 1.26, and standard
deviation of 1.6.

5.1 Activeness Index Map from fuzzy inference system

The Earth surface is rendered on to a regular grid with a spacing of
0.5° and this grid is used as a reference for the three input data. The
Activeness Index for the centroid of each grid has been calculated
using the fuzzy inference system described in Section 4. A global
map showing the Activeness Index (inferred as degree of being an
active in this study) has then been created and represented in Fig. 11.
As expected, the highest values are concentrated along the main
subduction zones known globally and are mostly corresponding
to the plate boundaries (e.g. spreading ridges). From the map, the
gradient change of activeness from more active region to more stable
region can be clearly observed.

6 FUZZY CLASSIFICATION FOR
CRATON REGION

GMPEs for stable continental regions are generally assigned to
cratonic regions (low deformation with slow attenuation) and non-
cratonic regions (low deformation with fast attenuation) (Akkar
et al. 2012; Delavaud et al. 2012). A craton is defined as a por-
tion of continental crust that has attained and maintained long-term
stability, with tectonic activity mostly confined to its margins. Al-
though there is no strict age connotation in this definition, for exam-
ple, some segments of crust could have attained cratonic stability
during the Proterozoic, the term is most commonly applied to sta-
ble segments of Archean crust. Long-term stability is thought to
be a function, in part, of thicker lithosphere involving a relatively
cool but compositionally buoyant keel of Fe-depleted upper mantle

(Bleeker 2003). However, to our knowledge, there is no neat quan-
titative definition that can be used to distinguish the cratonic region
from non-cratonic region in stable continents. On the global scale,
it is not trivial to determine if each region has remained unde-
formed since the Precambrian. Properties such as low attenuation,
thick lithospheric mantle root, are mostly distributed in Archen to
Palacoproterozoic crust, however. We use shear wave velocity vari-
ation (Mooney et al. 2012), 1 Hz Lg coda Q(Q,) (Mitchell, personal
communication 2012), and worldwide Geologic Stratigraphy map
as proxies for these properties.
Using these proxies, we define the following rules:

(i) IF shear wave velocity variation is ‘Very High’, AND Q, g is
“Very High’, AND the crustal age is ‘Very Old’, THEN the region
is ‘Craton’.

(i1) IF shear wave velocity variation is ‘Not Very High’, AND
Q16 is ‘Not Very High’, AND the crustal age is ‘Not Very Old’,
THEN the region is ‘Non-Craton’.

With these rules established, we then define the membership
functions for each linguistic statement. As suggested in Mooney
et al. (2012), shear wave velocity variation at 175 km has a good
correlation with stable continental craton regions. A value of §Vs
around 2.5 per cent corresponds to the edges of a craton whereas a
8Vs around 3.5 per cent identified the core of the craton. Regions in
which §Vs >3.5percent do not appear to produce earthquakes of
magnitude larger than 6.0.

To define the membership function ‘very high’ shear wave ve-
locity variation (§Vs), we take the values 2.5 per cent and 4 per cent
of §Vs for zero membership and full membership of ‘Very High’
shear wave velocity variation (8Vs) respectively and then we select
an S-shaped function to smooth the in-between values (eq. 6), and a
Z-shaped function for the membership function of ‘ not very high’
§Vs(eq. 7):

Degree of belief, very high §Vs =

0, x<a
2034y, g <x < ¢t
b—a’ > — 2
x) = 6
=1 e ©)
1, x>b
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According to Mitchell ez al. (2008, 1997) spatial variations of Qy
show clear correspondence with variations in some upper mantle
and crustal properties. It is also expected that higher Q, values exist
in more stable regions (the low attention property in craton region).
We observe from the global Q, distribution, that the highest Q, val-
ues usually concentrate in cratons. Using the Q, value distribution
and the worldwide craton distribution map, we use two values of Q,
550 and 750, which define zero membership and full membership
respectively. As in the case of §Vs, we use a S-shaped membership
function to define the degree of being very high Qy; the membership
function of being very low Qy is specified using eqs (6) and (7) (see
also Fig. 12).

As cratons are considered to be the oldest parts of continents, in
the geologic timescale, the oldest eon (the Archean) has an assigned
age of at least 2500 Ma. Most of the cratons are considered to have
formed during the Archean (before 2500 Ma) to Palacoproterozoic
(1600 to 2500 Ma), so here we collect the locations of Archean
to Palacoproterozoic crust on the globe. To build the membership
function for this categorical data set, we decide that if the geologic
unit is Archean, then we assign full membership of being “very old
in crustal age’. If the geologic unit is Palaeoproterozoic then half-
membership of being ‘very old’ is assigned, and if the geologic unit
is younger than Palaeoproterozoic then membership of being ‘very
old’ is set to zero (eq. 8):

Degree of belief, very old crust =
1, for Archean
0.5,

0, otherwise.

for Palaeoproterozoic

®)

We apply a Mamdani type of fuzzy inference process again using
three input variables (Q(Qy), shear wave velocity variation, and
the age of continental crust), and their corresponding membership
functions of each statement to obtain ‘The degree of membership
to a Cratonic region’ (Craton index) (Fig. 13).

7 DIGITAL TECTONIC
REGIONALIZATION MODEL

In the active regions, we differentiate between tectonic regimes asso-
ciated with subduction zones, active shallow crust regions (generally
close to plate boundaries where high seismicity occurs in the up-
per part of the crust) and oceanic regions (earthquakes with mainly
oceanic travel paths). In the classification scheme, we differentiate
subduction and non-subduction using the slab geometry models (see
Section 3). If the target location has been defined as subduction, then
an additional separation between interface and within-slab subduc-
tion is applied using the location of the investigated site with respect
to the location of the slab. For the identification of the oceanic re-
gions, we use the data set describing the oceanic crustal age. If an
age is assigned at the target site, then we assume the site belongs to
oceanic region.

We subdivide the stable regions according to the crustal mate-
rial types (i.e. regions of the crust with similar geophysical and
geologic characteristics) into continental cratonic regions (low de-
formation with low attenuation), non-cratonic regions (low defor-
mation but significant attenuation) and oceanic regions (earthquakes
with mainly oceanic travel paths). We set the cratonic regions using
the results described in Section 6. For a representative delineation,
if the degree of cratonic is larger than 0.5, then it is considered as a
cratonic region. We consider the cratonic and non-cratonic regions
to be mutually exclusive. The determination of oceanic crust in
stable region follows the same boundary as in active region.

7.1 Identification of subduction zones

In order to define if a target site should be included in a subduction
region, we check its surface map position relative to the surface
projection of polygons describing the slab surface. If the target site
is inside one of these polygons, it is classified as a subduction-related
site.

In the subduction-related site, the further discrimination between
interface, in-slab and the active shallow zone is performed by taking
into account the depth of the target relative to the slab (Fig. 14).

For example, to identify the relative location to the slab at the
top shallow layer of the earth (here we define a depth from 0km
to 30 km), instead of planar grids on the earth surface, a cell with
volume, with a range of depth is used here for the subclassification.

Downl oaded from https://acadenic.oup.com gji/article-abstract/213/2/1263/4794950
by Geof or schungszent rum Pot sdam user
on 26 March 2018



Data-driven tectonic regionalisation 1275

| —— 1 . . | |
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Craton Index

Figure 13. Geographic distribution of the Craton Index (degree of being cratonic) across the globe derived from this study using the fuzzy inference system.
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Figure 14. The computational flowchart for the complete tectonic classification.

When the target cell is above the slab, then it is considered as an
active shallow region. If the cell is across the slab, then it is classified
as Subduction-Interface, or if the cell is below the slab interface,
then it is Subduction-Intraslab.

7.2 Oceanic region and continent region classification

The areas where the travel paths are mainly through oceanic crust
exhibit characteristic attenuation properties (Akkar et al. 2012). The
Miiller et al. (2008) digital oceanic spreading age measurement has
been used as a means of identifying where oceanic crust was found.

If the target area has a spreading age assigned (no matter what
the age is), then it is classified as oceanic region. If there is no
spreading age assigned in the target area, then it will be considered
as continental region.

7.3 An example global tectonic regionalization

We illustrate in Fig. 14 the scheme utilized to provide a global
classification of tectonic regimes across the globe. First, for the
target site, we check if the activeness (degree of being active) is
larger equal than 0.5. If yes, the region will be defined as Active
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Figure 15. The map shows the tectonic regionalization model derived from our study for the top 30 km of the Earth.

Region, and if not, it becomes a Stable Region. Depending on the
region assigned, a second classification level is applied.

In the case of Stable Regions, if the target site has a crustal
spreading age assigned, it is classified as oceanic. Otherwise, we
check the corresponding degree of being craton (see Fig. 13). If the
value is greater than or equal to 0.5, the target site is classified as
craton, otherwise, it will be assigned to a non-craton region.

For Active Region, we check if the target site belongs to a sub-
duction region. If yes, it will be classified into Subduction Region.
For Non Subduction Region, we check if the target site has been
assigned a crustal spreading age. If yes, the region is classified as
Active Oceanic Region, and if not, the region is classified into Active
Shallow Region.

By applying for each site of a global regular grid with a spacing
of 0.5 ° the classification scheme just described we obtained a global
tectonic regionalization model. In Fig. 15, we show the result of this
operation for the shallow layer (0-30 km).

8 COMPARISON WITH EXPERT-DRIVEN
(GROUND MOTION DATABASES)
CLASSIFICATION

Expert-driven rules have been applied to classify the earthquakes
included in the Pacific Earthquake Engineering Research Center
NGA-West 2 ground motion database (Ancheta e al. 2014) and the
European RESORCE database (Akkar et al. 2014) for the active
regions, and for the NGA-East database (Goulet ef al. 2014) for the
stable regions. Reiterating the seismic hazard assessment context,
we make use of these databases in which a prior regionalization is
assumed, in order to understand the performance of our data-driven
classification result against the expert-driven classification.

From the location of each earthquake, we find the cell in the
global regular grid containing its epicentre and consequently we
obtain the seismic moment rate density (Nmkm™2), Lg coda O
(Qo value, and shear wave velocity variation value to calculate the
degree of ‘High’ seismic moment rate density, ‘High’ Lg coda
0O (Qy, and ‘High’ shear wave velocity variation according to the

membership functions we have designed (Fig. 9). As shown in
Fig. 16, the NGA-West 2 events mostly locate in areas with higher
seismic moment, lower O, and lower shear wave velocity variation.
NGA-East events on the other hand show low-to-median seismic
moment, higher O, and shear wave velocity variation. This observa-
tion confirms the ability of the selected parameters to discriminate
between active and stable regions defined on the basis of common
expert understandings.

The top panel in Fig. 17 illustrates the frequency distribution of
the activeness index values obtained for all the earthquakes in the
NGA West 2 and NGA East databases. The histograms obtained
for the two data sets show a clear separation and distinct domains.
This plot demonstrates that in this case, the resolution ability of the
computed activeness index is high. In the bottom panel, we show the
results of a similar analysis obtained using the earthquakes included
in the RESORCE database (Akkar ef al. 2014), a ground motion
database from Europe and the Middle East. This histogram also
shows that many earthquakes in the RESORCE database are, in gen-
eral, closer to the NGA-West event cluster than the NGA-East event
cluster although the histogram appears slightly left-skewed due to
the low-to-intermediate levels of seismicity and low-to-intermediate
levels of crustal attenuation (Fig. 16)

To further illustrate the relevance of the classification in a seismic
risk context, it is applied to a selection of major cities from across
the globe. The choice of cities reflects the variety of tectonic as
well as sociopolitical environments. From the city distribution on
the three diagrams (Fig. 16), many cities depart from the general
definition of either active region or stable region. Cities such as
Paris, London, Cape Town, Bangkok and Ulan Bator, have been
located at sites with low seismic moment rate density but also
low Q(Qy) and low shear wave velocity variation. On the other
hand, cities such as Caracas are located at sites with high seismic
moment but high Q(Qp) and high shear wave velocity variation
examples. This evidently suggests the existence of the relevant in-
termediate environment between the active region and the stable
region and echoes the need to adopt a fuzzy framework for the
propose.
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Figure 16. Left top: the distribution for degree of belief in high seismic moment rate density and high §Vs for NGA-West2, NGA-East earthquake events. In
each plot, as a reference, we also show the corresponding memberships obtained for some major cities. Left middle: the distribution for degree of belief in high
seismic moment rate density and high Qy. Left bottom: the distribution for degree of belief in high §Vs and high Qy. Right top: the distribution for degree of
belief in high seismic moment rate density and high §Vs for RESORCE earthquake events. Right middle: the distribution for degree of belief in high seismic
moment rate density and high Q. Right bottom: the distribution for degree of belief in high §Vs and high Q.

From the distribution of activeness obtained in our study for
NGA-East and NGA-West 2 events (Fig. 17, left panel), the fuzzy
inference system presented successfully reproduces an existing clas-
sification from the two databases. The delineation of two databases
is roughly located at an activeness index equals to 0.5 (the median
value of activeness index) which has been taken as the threshold
value for the delineation for active and stable regions as mentioned
in Section 7.
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9 DISCUSSION

In the scheme of calculating the activeness index, three global data
sets (seismic moment rate density, Oy, and 8Vs) are used. We
demonstrated the capability of the three variables chosen to suf-
ficiently classify the earthquake events occurred in active region
(NGA-West 2) and stable region (NGA-East), and to mimic the
result of an expert-driven classification. As the whole regionaliza-
tion scheme is written in a reproducible computational framework,
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Figure 17. Classification in terms of the Activeness Index of earthquake
epicentres included in different databases. Top: NGA-West and NGA-East
databases. Bottom: RESORCE database.

it is readily adaptable to plug new data sets into the classification
scheme. We do not discount the possibility that other data sets may
contribute additional value to this process. Initially, a wider selec-
tion of global geophysical databases was appraised, whose proper-
ties might be expected to correlate well with certain elements of
the earthquake process, but several were discarded. As indicated
previously, the global strain rate model, which, although a strong
indicator of seismic potential, has a large number of modelling as-
sumptions implicit in its creation, including the prior assignment of
deforming and non-deforming cells. The global stress drop database
of Allmann & Shearer (2009) was also studied carefully, and whilst
stress drop is arguably one of the most important parameters in the
earthquake process the spatial sampling was still too sparse to cap-
ture the potential stress drop distribution and its spatial variability
in a manner that would be meaningful for an analysis such as this. In
addition, the global heatflow database (compiled by University of
North Dakota) was also consulted, yet the resulting heatflow trends
in continental lithosphere remained difficult to interpret in the con-
text of the other data sets, displaying little coherence with other
properties of the lithosphere. As such, it was perceived as redun-
dant, with the more pertinent geophysical properties of the crust
better captured by the O, and § Vs data sets. These decisions could
potentially be revised as the databases themselves develop and new
research emerges. They could also be reconsidered if wishing to
refine the regionalization at a local or regional scale.

In this study, all data in the classification are equally weighted,
inferring the same importance for each data set within the scheme.
Various weighting schemes could be adopted if we believe that cer-

tain data are more important for reasons such as its relevance to the
problem and/or its reliability and means of acquisition. In the cur-
rent development, the equal weighing approach gives a satisfactory
classification result. An investigation to identify the relevance or
the reliability of data to derive a more informative weightings for
the classification can be done to explore the possibility to improve
the classification result, however, it is beyond the scope of this study.

Our classification of the cratonic regions shows results in agree-
ment with Tang et al. (2013), who has defined the craton region
at a global scale from a petrological and geochemical perspective.
Some discrepancies are nonetheless observed. In Australia, for ex-
ample, if we compare our results against the ones of Burbidge et al.
(2012), the cratonic areas appear much narrower in our study than
in their model. This might be explained by the use of a broader defi-
nition of the cratonic areas (they have included also the non-reactive
Proterozoic crust region).

For the subduction classification, we directly apply the digital
global subduction geometry models as the primary source of infor-
mation to inform the classification. Potential further refinements
could be possibly made by adding additional information such
as bathymetry and Moho depth. No attempt is made in this analysis
to distinguish between different types of subduction environments,
which may be particularly pertinent in attempting to relate geo-
physical properties of subductions zones to parameters controlling
earthquake recurrence such as maximum magnitude or seismo-
genic coupling. It is possible to speculate on accessible measures
that could further discriminate between different types of subduc-
tion zones, including oceanic crustal age or fractal coefficient of
roughness in the bathymetry. For a particular location of interest,
these could help elucidate those subduction regions that provide the
most suitable analogues (in terms of seismogenic productivity or
limits on rupture extent) as that under consideration.

For the oceanic regions, we adopt the digital oceanic age model by
Miiller et al. (2008) as a reference data set, from which membership
of the oceanic crust categories is simply assigned. We recognize our
current approach might not only be affected by high uncertainties,
it also neglects the important transition from subduction forearcs to
stable oceanic lithosphere.

The capacity to make inferences from data is inseparably con-
nected with uncertainty, which includes the uncertainties in data
generation process (e.g. location, magnitude etc. for the seismic-
ity), the uncertainties in the classification algorithm (such as the
fuzzy rule induction), or the fuzzy operation selection. Many of
these uncertainties are more of an epistemic, and would hopefully
be reduced over time as more data are collected. Decreasing the
spatial cell resolution may be possible in some regions, though this
should be approached with caution. The fuzzy methods incorpo-
rate imprecision quite elegantly into the classification process, yet
downscaling the spatial resolution may provide a diminishing re-
turn as there can exist the potential for the process to over model
the apparent spatial variability within a particular data set.

Questions regarding the resolution of the partition, both in terms
of spatial scale and of further subdivision of the classes, inevitably
lead to the consideration of how to compare, in a quantitative sense,
one regionalization against another. Here the context is critical. For
selection and application of ground motion models, one can at-
tempt to measure the suitability of a given regionalization using
the distribution of ground motion residuals with respect to a single
reference model. From an undifferentiated database of ground mo-
tion records, it is possible to use the random effects residuals from
nonlinear mixed regression of the reference model to determine if a
given random effect (i.e. for a given region type) is significant. This
concept is illustrated clearly by Stafford (2014). Assessment of the
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overall fit, including an appraisal of the parsimony within the region-
alization, could be quantified from by comparing the total fits of the
regionalized ground motion models. Information theoretic methods
may be well suited to this problem in order to penalise over-fitting.
Similarly, for seismogenic source modelling a natural test is to use
the tectonically analogous regions to develop a smoothed seismic-
ity recurrence model that can be applied within a prospective (or
pseudo-prospective) test. In this strategy, it can also be assessed
whether further a given regionalization improves the prediction of
activity rates for difference magnitudes across a global grid (Bird
etal 2015, e.g.). An objective framework for testing how regional-
ization can improve seismic hazard models is something that should
be considered as regionalization itself plays a greater role in both
seismogenic source and ground motion modelling.

The outcomes of this work are particularly relevant in the context
of the construction of new seismic hazard models. The methodol-
ogy and the results discussed, are useful tools for the construction
of components of seismic hazard models such as the selection or
calibration of appropriate GMPEs at regional and national scales
(e.g. Delavaud et al. 2012). For each site one can obtain a subjec-
tive probability of membership of different tectonic classes, which
can be mapped directly into analyses of epistemic uncertainty via
logic-trees, a widely used tool for quantification of epistemic uncer-
tainties in PSHA. Our revised regionalization model can be used in
the GMPEs development process by classifying the seismograms
according to the tectonic regime in which they belong.

An interesting circumstance for which the fuzzy methodology
may provide new insight is when the earthquake and the receiver
(the target site) are located in different tectonic regimes. Currently
these cases are seldom addressed, but can be of particular relevance
when investigating hazard in regions where high crustal deformation
(notionally active) transition rapidly into low deformation (notion-
ally stable). Some possible uses of the degrees of membership re-
turned by the fuzzy approach could be for the assignments of weights
for the GMPE:s in different tectonic regimes according to the rela-
tive length of the earthquake-to-receiver path in each. For example,
if the earthquake located in active shallow region and the receiver
is in stable continent region, then along the earthquake-to-receiver
travel path, we can identify the relative proportion of path which
located in active shallow region and that located in stable continent
region. This information can be used, in conjunction with the over-
all degree of membership for the site, as a means of assigning the
weights in the logic tree model for different tectonic regions.

10 CONCLUSION

Using seismological and tectonic information, a tectonic region-
alization model has been obtained using a reproducible compu-
tational scheme. The process adopted for delineating tectonic re-
gions is transparent and replicable across the globe. Moreover, the
framework is flexible and it can be easily modified in the future
when a new, relevant data set becomes available. All the applica-
tion described herein was demonstrated in a global context, it can
be applied also at a local or continental in scale, depending on the
availability and resolution of the relevant data set.

A classification-scheme based on fuzzy logic can successfully
incorporate concepts that are approximate rather than precise, such
as the activeness index (degree of being active) and craton index
(degree of being cratonic) derived in the study. This result can be
incorporated into logic-tree models, a widely used tool for quantifi-
cation of epistemic uncertainties in PSHA.

The proposed zonation will offer the possibility of updating and
developing new tectonic region-specific proxies. New zonations
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tailored for a specific purpose can also be easily implemented fol-
lowing the proposed approach. Our data-driven classification has
showed the highly consistency with the expert-driven classification
when applied to existing ground motion data sets; however, further
testing of new regionalization models should be done in future stud-
ies to understand their relative performance and potential impact on
seismic hazard assessment.
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