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[1] The empirical Båth’s law indicates that the earthquake process is self-similar and
provides an opportunity to estimate the magnitude of the largest aftershock subsequent to
a main shock. However, the analysis of this relation is limited to a small magnitude range
and also depends on the aftershock selection rules. As an alternative, we analyze, in this
paper, the cumulative seismic moment of aftershocks relative to the main shock moment,
because (i) it is a physical quantity that does not only take the largest aftershock into
account; (ii) background activity can be considered and as a result estimations are less
affected by selection rules; and (iii) the effects of the catalog cut-off magnitude can be
corrected, what leads to larger magnitude range for the analysis. We analyze the global
preliminary determination of epicenters U.S. Geological Society catalog (combined with
centroid moment tensor focal mechanisms) and find that the seismic moment release of
aftershocks is on average approximately 5% of the main shock seismic moment. We show
that the results can be well fitted by simulations of the Epidemic Type Aftershock
Sequence model. In particular, we test whether simulations constrained by predictions of
the static stress-triggering model, proposing a break of self-similarity due to the finite
seismogenic width, are in agreement with observations. Our analysis shows that the
observed dependency on the main shock magnitude as well as systematic variations with
the main shock fault plane solution can be both explained by the constraints based on the
static stress triggering.
Citation: Zakharova, O., S. Hainzl, and C. Bach (2013), Seismic moment ratio of aftershocks with respect to main shocks,
J. Geophys. Res. Solid Earth, 118, 5856–5864, doi:10.1002/2013JB010191.

1. Introduction
[2] It is well known that earthquakes are strongly cor-

related in time and space. A good example of such a
correlation is aftershock triggering by main shock. The event
dependence can be partly explained by stress changes and
structural heterogeneity of the crust [Stein, 1999]. In the
present work, we focus on the dependency between the
magnitude of main shocks and their aftershocks and after-
shock cascading triggering. One important empirical feature
of aftershock sequences is the Båth’s law [Båth, 1965]. This
law states that the magnitude difference�m between a main
shock and its largest aftershock does not depend on the size
of the mother event; although �m varies a little with the
region of interest [Felzer et al., 2002; Console et al., 2003]
and is different in strike-slip and reverse/normal faulting
environments [Tahir et al., 2012]. According to the Båth’s
law, this magnitude difference is in general equal to 1.2.

[3] The observation that �m is constant indicates that the
total number of aftershocks scales with � 10bmm as a func-
tion of the main shock magnitude mm, where b is the b value
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of the Gutenberg-Richter law. This is equivalent to a scaling
with the seismic moment Mm of the main shock according to
� M(2/3)b

m . In contrast, a break of the scaling is expected in
physical models of earthquake triggering due to the limited
size of the seismogenic depth (change of material proper-
ties with depth from brittle crust to viscous-elastic mantel).
In particular, recent results of a clock advance model based
on the static stress interaction suggest that the productiv-
ity of small main shocks scales with �Mm, while that for
larger events scales approximately according to �M 2/3

m
[Hainzl et al., 2010]. Consequently, the empirical observa-
tion of the Båth’s law seems to disprove the static stress-
triggering model.

[4] However, it has to be taken into account that the quan-
tity �m has a rather limited resolution. In particular, it can
be only analyzed in the magnitude range mm � mc +2, where
mc represents the completeness magnitude of the analyzed
catalog [Helmstetter and Sornette, 2003]. Furthermore, the
result is biased by cluster selection rules because of missed
aftershocks or misinterpretation of independent background
events as aftershocks. To minimize these problems, we focus
in this study on the ratio R between the seismic moment
released by aftershocks and by the main shock. As shown
in the following, this value, based on observations, can
be corrected for background events and undetected smaller
magnitude events. This enables the analysis of observed
seismicity and its comparison with earthquake models in a
significantly larger magnitude range.
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[5] We compare observations with simulations of the Epi-
demic Type Aftershock Sequence (ETAS) model [Ogata,
1988]; in particular, also to a model version in which the
aftershock-trigger potential is constrained by the results
of the scaling aspect of the static stress-triggering model.
After introducing the applied methodologies in section 2, we
test in section 3 several predictions of the restricted ETAS
model, in particular, the value of �m and R as a function of
the main shock magnitude as well as their dependency on
the focal mechanism. Our findings are finally discussed and
summarized in sections 4 and 5.

2. Methods
[6] In the present work, we focus on two values of earth-

quake sequences—the magnitude difference between the
main shock and its largest aftershock

�m = mm – ma,max (1)

and the ratio R between the seismic moment released by
all aftershocks and the main shock. For the latter, we use
the formula M(m) = 109.1+1.5m [Hanks and Kanamori, 1979]
and calculate the seismic moment released by the main
shock Mm = M(mm), before-main shock activity Mf =P

i:ti<tm M(mi) (all events which occurred before the main
shock) and after-main shock activity Ma =

P
i:ti>tm M(mi) (all

events in the sequence after the main shock), where tm is the
main shock occurrence time.

[7] While the presence of the background events can-
not be directly considered in the �m-value, the influence
of the background activity can be taken into account by
calculating the difference Ma – Mf. However, it should be
noted that Mf also includes potential foreshocks. Hence,
the term Ma – Mf can be interpreted as the excess of the
after-main shock seismic moment release relative to the
before-main shock release. For the estimation of the before-
and after-main shock seismic moment release, we use time
windows [–T, 0] and [0, T], respectively. Thus, the calculated
ratio between triggered and main shock seismic moment
release is

R =
Ma – Mf

Mm
. (2)

However, the resulting R value is an underestimation of the
true value of the seismic moment ratio, because of missed
events with magnitudes below the detection threshold mc.
This means that the seismic moments of events with mag-
nitudes m < mc are not considered in equation (2), but
this can be corrected for a given b value. Let us assume
that the frequency-magnitude distribution of foreshocks and
aftershocks is given by the Gutenberg-Richter law, 10a–bm,
where only the a value is different between the foreshock
and aftershock distribution. The ratio between the total seis-
mic moment release and the observed one for foreshocks and
aftershocks in the magnitude range [mc, mm] is given by

C(mm) =

mmR
–1

109.1+1.5m10a–bmdm

mmR
mc

109.1+1.5m10a–bmdm

=
1

(1 – 10–(1.5–b)(mm–mc))
(3)

Because this correction factor is the same for foreshocks
and aftershocks, the corrected unbiased value of the seis-
mic moment release ratio is consequently Rcorr(mm) =
C(mm)R(mm).

[8] Based on the seismic moment ratio, we are able to
calculate an equivalent magnitude difference

�meff = –
log10(Rcorr)

1.5
= mm – ma,eff (4)

with the effective magnitude for the triggered activity

ma,eff =
log10[(Ma – Mf)C(mm)] – 9.1

1.5
. (5)

The effective magnitude can be seen as a replacement of the
magnitude ma,max in the Båth’s law (�m = mm – ma,max),
which takes the cumulative seismic moment release of all
aftershocks into account. To avoid the situation, when R =
0, we calculate the effective magnitude difference �meff
from the average of R over all clusters. We analyze these
quantities (�m, R, and �meff) for earthquake sequences in
observational global data sets and ETAS simulations, which
are both introduced in the following subsections.

2.1. Observational Data
[9] We analyze the global U.S. Geological Society pre-

liminary determination of epicenters (PDE) catalog in com-
bination with the catalog of centroid moment tensor (CMT)
focal solutions. While the magnitudes are taken using the
PDE catalog, the fault plane solutions are added from the
CMT data set for that cases in which events could be
matched. For the analyzed time period between 1973 and
2011, we used a cutoff magnitude of mc = 5.0 and only
consider shallow events with a depth less than 50 km. The
magnitude of completeness is equal to the cutoff magnitude.

[10] To separate seismic events into main shocks
(independent earthquakes) and their respective fore-
shocks/aftershocks (dependent earthquakes), no unique
procedure exists and several alternative cluster selection pro-
cedures have been introduced in the past. A summary of
the most prominent clustering procedures is given by van
Stiphout et al. [2012]. In our work, we follow the window-
based procedure of Tahir et al. [2012] for cluster selec-
tion. According to this, an earthquake with magnitude m is
defined as a main shock, if it is the largest earthquake within
the time period [–T, +T] and a distance range D(m). The spa-
tial window is set to be a multiple of the rupture length, i.e.,
D(m) = �L(m), where L(m) = 10–2.44+0.59m is a subsurface
rupture length for all types of focal mechanisms in kilo-
meters [Wells and Coppersmith, 1994] and � is a constant
variable coefficient. The time interval for our subsequent
analysis is T = 1 year, although typical aftershock sequences
are longer. However, longer time intervals would lead to an
enlarged contamination by background activity. Using the
fixed time span of 1 year, we account for the same fraction
of aftershocks independently of the main shock magnitude.
According to the Omori-Utsu law [Utsu et al., 1995], this
fraction of aftershocks fa = Nafter(T = 1year)/Nall(Tall) is, e.g.,
equal to 0.97 and 0.95 for p = 1.2 and the total aftershock
duration of Tall = 10 years and Tall = 100 years, respectively.
The parameter � is set in the range [1, 5] in accordance with
general observations of aftershock occurrences. The lower
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Figure 1. The distribution of cluster numbers (PDE cata-
log) with respect to the magnitude of the main shock and
selection criteria. Each bar is related to the number of clus-
ters, which are used for the calculations of the effective
magnitude and seismic moment ratio. Dark colored bars
indicate the number of main shocks used for the Båth’s law
estimation and include at least one aftershock. The mag-
nitude value indicates the mean value of each bin with
width 0.25.

limit for � can be defined according to the minimum area of
the aftershock distribution, i.e., the radius of space window
is equal to one rupture length. The upper boundary for the
rupture length is less clear, because remote aftershock trig-
gering is known to occur very far away and these events will
be missed for smaller values of �. However, increasing � will
also increase the number of independent background events
that are wrongly identified as foreshocks or aftershocks. That
is why we use different radii in the range between one and
five rupture lengths in our cluster selection procedure and
compare the corresponding results.

[11] Not all the data can be used for the analysis of the
Båth’s law because the calculation of �m requires at least
one aftershock in a cluster. To illustrate the number of clus-
ters available for the different calculations, we present a

histogram of the number of clusters with respect to the main
shock magnitude in Figure 1. Dark colors indicate the num-
ber of main shocks, which can be utilized for the �m value
estimation, while the light colors show the number which
can be used for all other calculations. We provide histograms
for all applied spatial windows of the cluster selection. For
magnitudes larger than 7.5, the number of clusters is the
same for all types of analyses, while for smaller magnitudes,
less than 10% of the clusters can be used for the calcula-
tions related to the Båth’s law. In addition, Figure 2 shows
the histograms for the number of clusters that we obtained
after combining the PDE catalog with CMT solutions as a
function of the main shock rake and time, respectively.

2.2. ETAS Simulations
[12] For comparison with the observed data, we addition-

ally analyze Monte-Carlo simulations of the Epidemic Type
Aftershock Sequence (ETAS), which is nowadays one of the
standard models for describing the first-order statistical fea-
tures of earthquake clustering [Zhuang et al., 2012]. This
statistical model is constructed based on a number of well-
established empirical laws. The temporal correlations are
described by the Omori-Utsu law, which states that the rate
of triggered aftershocks decays with time t relative to the
main shock according to [Utsu et al., 1995]

n(t) =
K

(t + c)p , (6)

where K, c, and p are constant parameters. Furthermore, the
aftershock productivity parameter K depends exponentially
on the main shock magnitude, K � 10˛mm . However, while
the functional form is well established, the estimations of
the parameter ˛ vary largely between different estimation
procedures [Hainzl and Marsan, 2008].

[13] The ETAS model introduced by [Ogata, 1988] is
based on these empirical relations and assumes that every
earthquake has a potential to trigger its own aftershocks.
There is no preestablished difference between main shocks,
foreshocks, and aftershocks in the ETAS model. All events
in the ETAS model are equivalent, and events with smaller
magnitudes can also generate earthquakes with larger
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Figure 2. Histograms of the number of clusters (PDE + CMT catalog) as a function of (a) the rake of
the main shock and (b) the occurrence time for different selection criteria. In Figure 2b, the different color
shadings refer to the different rupture styles.
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magnitudes. Earthquakes are only retrospectively classified
as main shocks, foreshocks, and aftershocks by their time
occurrence in the cluster. As a consequence of the aforemen-
tioned, the earthquake rate � at time t is described in the
ETAS model by

�(t) = � +
X
i:ti<t

g(mi)f(t – ti) (7)

= � +
X
i:ti<t

K0 10˛(mi–mmin) (c + t – ti)–p ,

where � is a constant background rate, K0 is a constant and
mmin is a minimum considered magnitude [Ogata, 1988].

[14] We assume a minimum and maximum magnitude of
mmin = 3 and mmax = 9 for our forward simulations and a
doubly truncated Gutenberg-Richter law for the magnitude
distribution with a standard b value of 1.

[15] To avoid complications by incorrect earthquake clas-
sifications, we ignore the spatial component of the triggering
process and thus account for all foreshocks and aftershocks
independently of their distance to the main shock. For event
simulations in time span of 1 year, we use the Monte-Carlo
method. To determine one cluster, which consists of one
simulated earthquake sequence, we use the following steps:

[16] 1. setting the first event of the simulated sequence to
have a zero time and a magnitude randomly selected from
the Gutenberg-Richter distribution;

[17] 2. performing a Monte-Carlo simulation of triggered
activity initiated by the first event within T;

[18] 3. removing all events with magnitudes less than cut-
off magnitude mc = 5 (unobserved seismicity);

[19] 4. defining the event with the maximum magnitude in
the sequence as the main shock;

[20] 5. classifying foreshocks as all events before and
aftershocks as all events after this main shock.

[21] The described procedure is applied to each simulated
sequence. Note that the definition of main shock, foreshocks,
and aftershocks is identical to that for the observational
data set. However, each synthetic sequence is only related
to correlated events containing no independent background
activity. Thus, our synthetic simulations correspond to the
result of a perfect cluster selection procedure. In most simu-
lations, the initial event is small and no events are simulated
above mc, but we typically simulated 108 sequences for
each parameter set, leading to a sufficient statistics for main
shocks in the analyzed magnitude range mc < mm < mmax.
Note that for simplicity, the duration of the total cluster was
chosen to be T = 1 year. Thus, the time period for after-
shock selection can be smaller than T. However, because the
majority of clusters has no or only a very short foreshock
sequence, this is not crucial. We checked the results of ETAS
simulations for a time window of T = 2 years to be sure that
the results are stable.

[22] For our simulations, the parameters of the Omori-
Utsu law are set to some typical values, namely c = 0.001
days and p = 1.2. However, we find that the results do not
depend significantly on this particular choice. In contrast,
the productivity parameters K0 and ˛ are not directly fixed.
Due to the large observational uncertainties and its impact
regarding the Båth’s law, we explore different values of ˛ in
the range between 0.5 and 1.1. The best fit of the simulated
data to the observed one in the case of the Bath’s law cor-
responds to ˛ = 0.95. Hereinafter, we use ˛ = 0.95 for all

ETAS simulations presented in this paper. Finally, for given
parameters c, p, and ˛, we determine K0 indirectly by setting
the branching ratio r to a reasonable value.

[23] One can describe the aftershock triggering as a
branching process, where each mother event has its own
“branch” of aftershocks (every event has only one precur-
sor). The branching ratio r shows the average fraction of
triggered events, which is the average number of daugh-
ter events per precursor event, and can be calculated by
[Helmstetter et al., 2005]

r =
Z mmax

mmin

pdf(m)Na(m)dm, (8)

where pdf(m) is the probability density function of the earth-
quake magnitudes, which in the case of the doubly truncated
Gutenberg-Richter distribution becomes

pdf(m) =
ln (10) b

1 – 10–b(mmax–mmin) 10–b(m–mmin) . (9)

Furthermore, Na(m) is the average number of direct after-
shocks triggered by an event of magnitude m

Na(m) = K010˛(m–mmin)
Z
1

0
(c + t – ti)–pdt

=
K010˛(m–mmin)c1–p

p – 1
(p > 1) . (10)

Consequently, the branching ratio is related to the model
parameters according to

r = K0
c1–p

p – 1
b

b – ˛
1 – 10(˛–b)(mmax–mmin)

1 – 10–b(mmax–mmin) (11)

Depending on the value of the branching ratio, it is possible
to separate significantly different cases of model behav-
ior: a branching ratio of r > 1 leads to exploding seismic
sequences; 0 < r < 1 describes a stationary regime with
decaying aftershock sequences; while r = 0 implies that all
events are independent and thus represents a Poisson pro-
cess. The first case (r > 1) does not have any long-term
observational evidence and the branching ratio value has a
range r ' 0.5 – 0.8 according to observations [Sornette and
Werner, 2005a; Shearer, 2012]. This range of values is also
used to set K0 in our forward simulations.

2.3. Restricted ETAS Simulations
[24] In the case of the restricted ETAS simulations, we

use constraints for the aftershock productivity based on the
hypothesis of static stress triggering. For this purpose, we
exploit the results of [Hainzl et al., 2010], who analyzed a
simple clock-advance model. The model assumes that the
total number of triggered events Na in response to a Coulomb
stress change �CFS is equal to the number of events which
would have been triggered as independent events by an
equivalent tectonic stress loading during a much longer time
interval. In this case, the number of triggered aftershocks can
be shown to be

Na =
V
hMi

�CFS, (12)

where V is a seismogenic volume and hMi is the average
long-term seismic moment release per earthquake. The latter
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Figure 3. (a, b) The mean value of the magnitude difference between the main shock and its largest
aftershock for sequences with at least one aftershock. The observed values (colored dots) for differ-
ent spatial selection windows according to [Tahir et al., 2012] are compared to ETAS simulations
(mmin = 3, mmax = 9, mc = 5, b = 1.0, c = 0.001 days, p = 1.2,˛ = 0.95) (black lines). In Figure 3a, the
aftershock productivity scales with K010˛m and K0 are calculated from the branching parameter r. In
contrast, in Figure 3b, the productivity is restricted by the results of [Hainzl et al., 2010]. The set of
parameters (W = 10 km, mmax = 8.5) corresponds to the strike-slip regime; (W = 20 km, mmax = 8.0) -
normal; (W = 40 km, mmax = 9.0) - reverse.

is related to the magnitude distribution (equation (9)) and
can be calculated using the following formula

hMi � 109.1+1.5mmin
b

1.5 – b
10(1.5–b)(mmax–mmin) – 1

1 – 10–b(mmax–mmin) [Nm]. (13)

[25] The spatial distribution of�CFS depends on the rup-
ture size and thus on the earthquake magnitude. However,
the seismogenic depth Dseis interval, in which aftershocks
can nucleate, is limited. This limitation of the seismogenic
zone affects the trigger potential of large earthquakes and
leads to a break of the scaling properties. According to
numerical results of Hainzl et al. [2010], the crossover
magnitude m* can be approximated by

m* =
(log10(W/4)2 + 3.49)

0.91
, (14)

where W = Dseis/sin(dip) is the maximum rupture width
of earthquake ruptures in the seismogenic zone for a given
dip angle. This magnitude value separates approximately
following two cases [Hainzl et al., 2010]:

[26] 1. m < m* - a main shock magnitude is less than
m*. All significant stress changes typically occur within
the seismogenic zone and the aftershock number scales
according to

Na(m) = 2
M(m)
hMi

= 2
109.1+1.5m

hMi
(15)

[27] 2. m � m* - a main shock with a magnitude larger or
equal to m*. Parts of significant stress changes occur outside
the seismogenic volume and leads to

Na(m) = Na(m*)101.07(m–m*) , (16)

where Na(m*) is given by equation (15).

[28] These forecasts of the static stress-triggering model
are now implemented in the ETAS model leading to the
so-called restricted model version (RETAS). In particu-
lar, the function g(m) = K010˛(m–mmin) in equation (7)
is now replaced by Na(m)/

R
1

0 (c + t – ti)–pdt, while all
other simulation parameters (c, p, b, mmin, mmax, mc) remain
the same. As a result we have the following equation for the
RETAS model:

�R(t) = � +
X
i:ti<t

Na(m)R
1

0 (c + t – ti)–pdt
(c + t – ti)–p (17)

where Na(m) is substituted depending on the event magni-
tude, with one of the formulas (15) and (16), respectively.

[29] The model directly depends on the maximum rupture
width W or alternatively on the width of the seismogenic
depth layer Dseis and the dip. However, the results also
depend significantly on mmax via hMi. Thus, to explore the
dependence, we perform simulations with the RETAS model
with three different parameter sets, roughly representing the
three types of a focal mechanism: (W = 10 km, mmax = 8.5) -
strike-slip; (W = 20 km, mmax = 8.0) - normal; (W = 40 km,
mmax = 9.0) - reverse.

3. Results
3.1. Båth’s Law

[30] The Båth’s law states that the magnitude of the largest
aftershock is approximately 1.2 magnitudes less than that of
the main shock. In Figure 3, we present the magnitude dif-
ference between the main shock and the largest aftershock
of the sequence as a function of a main shock magnitude.
The straight dashed black line corresponds to the Båth’s
law (mm – ma,max = 1.2), while the results for the real cat-
alog are shown by colored lines for different spatial cluster
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Figure 4. (a, b) The average corrected seismic moment ratio Rcorr(m) and (c, d) effective magnitude
difference�meff as a function of the main shock magnitude. For the description of the symbols and lines,
see Figure 3.

selection windows. They are the same for the Figures 3a and
3b, where the observations are compared to the results of
the synthetic simulations of the standard and the restricted
ETAS model, respectively. Note that in the case of the stan-
dard ETAS model, the ˛ value and the branching ratio r
have been used as free parameters to optimize the fit to
the observations because of the lack of physical constraints.
This leads to an ˛ value of 0.95 which is close to b = 1
and branching ratios between 0.4 and 0.6. In contrast, the
restricted ETAS model (Figure 3b) depends only on the max-
imum width W of ruptures in the seismogenic zone and the
maximum possible magnitude mmax. Thus, the observations
can be compared to simulations for reasonable values for
different focal mechanisms.

[31] Our analysis clearly demonstrates that the Båth’s law
can only be examined in a small magnitude range. In par-
ticular, stable results for the Båth’s law can only be found
in a repetition between 7 and 8 for the PDE catalog (see
Figure 3). This can be explained by the absence of sufficient
statistical data for events with magnitudes larger than 8. Here
the results for the synthetic catalog are less affected, because
the number of simulated sequences can be increased to get
stable results. The deviations of the curves for mm < 7 are, on

the other hand, the result of the fact that �m cannot account
for main shocks that did not trigger any m � mc aftershock,
because in this case the corresponding value is undefined.
Thus,�m is the result of averaging only over sequences with
ma,max � mc and consequently �m! 0 for mm ! mc.

[32] Furthermore, the results for the observational data are
biased by the cluster selection rules. In contrast, we have no
problems in the case of our simulations to properly select
the dependent events, because we have, by construction, all
triggered events above mc in the catalogs without contamina-
tion with independent background events. Moreover, ETAS
simulations do not have any spatial component, which could
influence the cluster selection. In the present work, we use
only the information about magnitude and time of the events
of a synthetic catalog. This is not the case for the PDE cata-
log analysis, and the results are found to depend significantly
on the selection parameters. Only a spatial selection win-
dow of D = 3L gives a result close to 1.2 �m, while the
value is around 1.4 for D = L and 1.1 for D = 5L (see
Figure 3). Increasing of spatial windows leads not only to the
larger number of distant aftershocks, but also for more and
more independent events. Thus, �m will decrease necessar-
ily toward 0 for D!1. Vice versa, a significant number of
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ETAS simulations with the b value as an input parameter (calculated for the case D = 5L) according to
the rake of the main shock.

aftershocks is missed for too small selection windows lead-
ing to an overestimation of �m. Due to this interplay, an
intermediate value of D has to be chosen, but anyway, the
choice remains arbitrary.

[33] To show in which range observational data has larger
uncertainties, we calculated the standard deviation of all val-
ues of interest. For simulations we do not present any error
estimation, because the result of the ETAS model is stable
for a large number of simulations. The error estimation for
the data was made using a bootstrap method with a Monte-
Carlo procedure for data resampling. As events in the catalog
are dependent (the magnitude and time of event determine
its membership in the cluster), we apply a suitable resam-
pling procedure—random sampling with replacement—by
bootstrapping the earthquake clusters used for analysis. In
the case of N clusters, we take randomly the same number
of clusters from the subset of aftershock sequences using
Monte-Carlo method. The random selection gives the repli-
cation of about 37% of original points. As a result, we
estimate the errors (standard deviation), which take into
account the epistemic uncertainty related to a lack of data.
Figure 3 presents plus/minus one standard deviation of the
magnitude difference in the all magnitude range. Error bars
are reliable for mm � 8; for the magnitudes mm > 8 the stan-
dard deviation cannot be estimated correctly using bootstrap
method, because too few observations are available for this
range. The largest standard deviation for�m is around 0.22.

[34] The ETAS model result closest to the Båth’s law cor-
responds to a branching ratio 0.5 and ˛ = 0.95. For other ˛
values, �m is slightly increasing (˛ < 0.95) or decreasing

(˛ > 0.95) with increasing main shock magnitudes above
7. For a higher branching ratio r = 0.6, �m is underesti-
mated, and for a smaller one r = 0.4, it is overestimated. In
contrast, the RETAS simulations do not depend on ˛ and r.
However, Figure 3b shows that also in this case of limited
degrees of freedom, the results are in good agreement with
the observations. The worst fit is observed for the “normal”
fault type set of parameters (W = 20 km and mmax = 8.0),
however, normal fault main shocks are the smallest sample
in the PDE catalog above magnitude 7. In spite of the limi-
tations, all simulations within the physical reasonable range
show a rather good correspondence with the Båth’s law and
the observed data.

3.2. Seismic Moment Ratio R and Effective Magnitude
Difference �meff

[35] The magnitude range which can be analyzed is signif-
icantly larger in the case of the seismic moment ratio Rcorr(m)
and the effective magnitude difference �meff. This becomes
clear in Figure 4, where the results for the simulations of the
ETAS and RETAS models are compared to the results of the
PDE catalog. The reason is that also main shocks with no
aftershocks above mc are taken into account. In these cases,
the seismic moment of the aftershocks is zero. Furthermore,
the cluster selection criteria are less critical, because sub-
tracting the seismic moment released in the preceding time
window, Mf, avoids a systematic effect of the included back-
ground activity. In fact, the results for the three different
spatial windows show no systematic trend for the PDE cata-
log. Quite large fluctuations for the observed data are likely
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related to the relative small amount of main shocks in the
magnitude bins.

[36] The comparison of the observed values with the syn-
thetic data shows that both ETAS and RETAS reproduce the
observations within one error interval. Overall, the RETAS
model with less degrees of freedom can reproduce the gen-
eral trend of the observed data even better, particularly in the
case of the effective magnitude difference�meff (Figure 4d).
The values of �meff are significantly smaller than �m and
range between 0.7 and 1, with a slight negative trend for
increasing main shock magnitudes.

[37] Errors estimated for corrected seismic moment ratio
Rcorr and �meff give one more indirect confirmation that
these values can be analyzed in a wide range of magnitudes.
For Figures 4a and 4b, the standard deviation of Rcorr is
only slightly increasing up to magnitude 8, which shows
that results are equally reliable. For Figures 4c and 4d,
errors are approximately in the same range for all magni-
tudes (mm � 8). On average, errors are larger than in the
case of the Båth’s law (see Figure 3), but remain smaller
than ˙0.32.

3.3. Dependence on the Focal Mechanism
[38] We analyze the sequence characteristics as a func-

tion of the rake of the main shocks similar to the work of
Tahir (M. Tahir and J.-R. Grasso, Faulting style controls on
the Omori law parameters from global earthquake catalogs,
submitted to Journal of Geophysical Research, 2012). For
this purpose, we evaluate the parameters in bins of 30ı. It is
found that the focal mechanisms have some obvious corre-
lations with parameters such as the b value, mmax (the max-
imum magnitude observed in the specific rake range), dip
and seismic moment released by aftershock sequences (see
Figure 5).

[39] The standard ETAS model depends only on the b
value, on the contrary, the RETAS model explicitly depends
on the dip, b, and mmax. The observed b value is found to be
unable to explain the variations of the R ratio of the real data
in the case of a standard ETAS model (see the green curve
in Figure 5). We therefore compare the observed variation of
R with the R values forecasted by the RETAS model based
on the observed dip, b, and mmax values in each rake bin.
Specifically, we use the dip, b, and mmax values as input to
calculate m* and hMi and run 108 simulations to get the aver-
age seismic moment ratio for a given rake bin. We find that
the RETAS model is overall in agreement within error bars
with the observed data. For fitting, we used a depth of the
seismogenic zone of Dseis = 10 km. Smaller or larger values
would lead to a scaling of the resulting curve to smaller or
larger R values, respectively. The errors shown in Figure 5
for the RETAS model are smaller than for the observational
data, because they are only related to the uncertainties of the
b and dip input values.

[40] The seismic moment released by aftershock activ-
ity is proportional to the number of events in the post-main
shock sequence. On its turn, the number of aftershocks
(equation (12)) is controlled by two factors: the maxi-
mum rupture width W and the average seismic moment
per earthquake which depends on b value and the max-
imum magnitude. In response to these dependencies, the
seismic moment ratio has a tendency to be the largest in
the case of normal, intermediate for thrust and lowest for

strike-slip faulting. This means that the amount of aftershock
energy with respect to the main shock magnitude seems to
be the largest for normal faulting and the lowest for strike-
slip faulting.

4. Discussion
[41] The seismic moment ratio R and the correspond-

ing effective magnitude difference �meff (which are based
on all clusters, but not only on the subsets with at least
one aftershock) are shown to be superior to �m, because
these values are less affected by cluster selection rules and
can be analyzed in a significantly larger magnitude range.
However, similarly to �m, these parameters are strongly
fluctuating for single aftershock sequences due to the power
law distribution of seismic moment release related to the
Gutenberg-Richter magnitude distribution. Thus, any fore-
cast of these values for individual forecasts is subject to
large uncertainties.

[42] The average properties of a large sample of observed
aftershock sequences can yield important insights into the
physical processes underlying earthquake triggering. The
best ETAS model needs ˛ � b and a branching ratio of
approximately 0.4 to explain the observations for the global
data. Here it is important to emphasize that the branching
parameter depends on the minimum earthquake magnitude.
For practical reasons, we used in our simulations a minimum
magnitude of 3, which is certainly above the true minimum
earthquake magnitude m0 in nature. According to [Sornette
and Werner, 2005b], the true branching ratio r can be esti-
mated from the value r(mmin) obtained for simulations in the
magnitude range [mmin, mmax]. For the special case ˛ = b it
is given by

r = r(mmin)
mmax – m0

mmax – mmin

1 – 10–b(mmax–mmin)

1 – 10–b(mmax–m0)

� r(mmin)
mmax – m0

mmax – mmin
(18)

This leads, for example, to a branching ratio of approx-
imately 0.7 for m0 = –2. Vice versa, the limit of r = 1
is related to an absolute minimum magnitude of about
m0 = –6.

[43] This extrapolation implies a scale invariance of the
trigger potential. However, we have shown in the last section
that the RETAS model with a break of the scaling prop-
erties leads to similar or even better results. Additionally,
the RETAS model can explain the observed dependence on
the focal mechanism of the main shock (rake-dependence).
Thus, the good agreement between the RETAS model and
the observations indicates that static stress triggering could
work. This would also imply that the trigger potential
of small magnitude events is weaker than expected by
the ETAS model and, consequently, the overall process is
clearly subcritical.

[44] Besides aftershocks, aseismic postseismic deforma-
tion is often triggered by main shocks. The aseismic moment
release is sometimes several times larger than the after-
shock moment. Thus, it might be important to additionally
include the aseismic moment release in the analysis of R and
�meff, which is, in principal, straightforward. However, this
is difficult in practice and is left for future work, because
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the information related to postseismic deformations are not
systematically recorded in earthquake catalogs.

5. Conclusion
[45] The seismic moment released by aftershocks is

shown to be an alternative diagnostic tool to characterize
aftershock sequences. As demonstrated in the present paper,
the seismic moment release ratio and the corresponding
value of �meff can be analyzed in a much wider range com-
pared to the often used value of �m, which is related to the
magnitude difference between the main shock and its largest
aftershock. Our obtained results for global seismicity (PDE
world catalog) indicate that the seismic moment released
by aftershocks is approximately 5% of the main shocks
seismic moment. Furthermore, the seismic moment release
seems to be correlated with the focal mechanism, in partic-
ular, with the rake of the main shock. Both observations are
used to test the agreement with the static stress-triggering
hypothesis, which predicts that the total number of after-
shocks is directly related to observable parameters such as
the seismogenic width and the parameters of the magni-
tude distribution. Additionally, static stress triggering can
explain a break of the aftershock productivity scaling, which
is related to the finite width of the seismogenic zone. While
the standard ETAS model based on scale-invariant triggering
probabilities is found to reproduce the general features quite
well, it does not explain the systematic variations with the
focal mechanism. Furthermore, the productivity parameters
of this model, K0 and ˛, are free fitting parameters with-
out any direct physical interpretation. In contrast, the ETAS
model constrained by static stress triggering, the so-called
RETAS model, is found to reproduce the observations even
better, but without free fitting parameters. Our results indi-
cate that the constraints derived from static stress triggering
are in agreement with the data, and that these results can be
used to constrain the average total seismic moment released
by aftershock sequences.
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