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Abstract: The traditional way of solving non-linear least

squares (LS) problems in Geodesy includes a linearization

of the functional model and iterative solution of a non-

linear equation system. Direct solutions for a class of non-

linear adjustment problems have been presented by the

mathematical community since the 1980s, based on total

least squares (TLS) algorithms and involving the use of sin-

gular value decomposition (SVD). However, direct LS so-

lutions for this class of problems have been developed in

the past also by geodesists. In this contributionwe attempt

to establish a systematic approach for direct solutions of

non-linear LS problems from a "geodetic" point of view.

Therefore, four non-linear adjustment problems are inves-

tigated: the fit of a straight line to given points in 2D and in

3D, the fit of a plane in 3D and the 2D symmetric similarity

transformation of coordinates. For all these problems a di-

rect LS solution is derived using the samemethodology by

transforming the problem to the solution of a quadratic or

cubic algebraic equation. Furthermore, by applyingTLSall

these four problems can be transformed to solving the re-

spective characteristic eigenvalue equations. It is demon-

strated that the algebraic equations obtained in this way

are identical with those resulting from the LS approach. As

aby-product of this research twonovel approaches are pre-

sented for the TLS solutions of fitting a straight line to 3D

and the 2D similarity transformation of coordinates. The

derived direct solutions of the four considered problems

are illustrated on examples from the literature andalso nu-

merically compared to published iterative solutions.
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1 Introduction
For more than two centuries mathematicians and geode-

sists have solved overdetermined algebraic problems that

often occur in the mathematical modelling of measure-

ment results using the method of least squares (LS), see

[1]. The simplicity of the “recipe” of the LS adjustment

is recognised by its wide application in geodesy, a sci-

ence that traditionally deals with redundant observations

whilst seeking an “optimal” solution. In geodetic litera-

ture the method of LS is mostly applied in the form of

one of the twomainly referred adjustmentmodels, namely

the Gauss-Markov Model (GMM), see [2, p.137ff.], and the

Gauss-Helmert Model (GHM), see e.g. [2, p.172ff.]. The two

models can be found in [3, pp.7-26] aswell, under the name

parametric (case) adjustment and combined (case) adjust-

ment respectively. Both models have as common feature

the linearization of the functional model and the iterative

solution of a non-linear equation system.

In contrast to the classic LS solutions, the so called

total least squares (TLS) solution for LS problems within

the errors in variables (EIV) model started to be consid-

ered in the scientific community in the last three decades.

It should bementioned that the term EIV ismainly used by

the statistical community for a special case of non-linear

LS problems, e.g. a definition is given in [4] or [5, p.5]. Ob-

viously the traditional geodetic approach can easily han-

dle problems within the EIV, as it is presented for example

in [3, p.10], [6, p.102] or [7]. Moreover, an attempt to intro-

duce the TLS approach as a generalization of (ordinary) LS

was udertaken in [8]. Within literature the solutions com-

ing from TLS are often distinguished from the classical LS

by stating that TLS functions differently due to a contra-
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diction adjustment model, see e.g. [9, 10], which can be

formulated as

l = (A − EA) x + el,
dim(A) = n × m,
rank(A) = m < n,

(1)

where l and el are the vectors of observations and their
random errors, respectively. EA are random errors in the

coefficient matrix A and x is the vector containing the un-
known parameters. For a full rank TLS coefficientmatrixA
in (1) the number of observations n is larger than the un-

known parametersm. By the definition of TLS [5, p. 33] the
TLS solution is based on the minimization of the objective

function

|| [A, l] − [^A,^l] ||F → min, (2)

with || ||F being the Frobenius norm of a matrix. The ad-

justed matrices
^A and

^l are

[
^A,^l] = [A, l] − [EA, el]. (3)

The objective function under minimization can be also ex-

pressed as in [11] by

elTel + vec(EA)Tvec(EA) → min, (4)

with “vec” indicating a function that stacks the columns of

the error matrix EA into one vector. In this study, the terms

TLS and TLS solution will refer to the solution of model (1)

by minimizing the objective function (4) through SVD of

the augmented matrix [A, l] (i.e. the matrix containing the

coefficient matrix A and the observation vector l).
In the literature there are expectations that TLS might

produce a “more realistic” solution than the classic LS as

indicated for example in [11, 12]. This has been caused pos-

sibly by the work of Golub and Van Loan [9], where the

solution of TLS was compared with that of LS for fitting a

straight line in 2D. In the latter study, the LS solution was

assumed when only the y-coordinates were regarded as

observed values and the x-coordinates as error free, which
led to the misleading conclusion that TLS functions differ-

ently from LS. The absence of any work from the geodetic

literature is noticeable. For geodesists it has been already

clear that the most important steps for the adjustment of

observations is to build a correct model and minimize the

errors of a correct objective function. When these require-

ments are fulfilled then for a linear problem the solution

will be unique, regardless of the solution strategy that has

been followed, e.g. TLS, GHM or some other approach.

Contrary to the belief that TLS is an additionalmethod

like LS (or even a generalisation of it), Neitzel and Petrovic

[13] showed that in fact TLS can be regarded as a special

case of the LS method within the GHM for the example of

fitting a straight line to equally weighted two-dimensional

(2D) data. The iterative solution of the GHM has been

proven to be equivalent to the TLS solution. Thus is any

discussion unnecessary, which of the two approaches is

better. It is only necessary always to model the given prob-

lem and not something completely different from it. How-

ever, in contrast to GHM, the elegant solution of TLS was

derived with no need for iterations or starting values and

by making use of singular value decomposition (SVD).

Moreover, Felus and Schaffrin [11] attempted to derive

the TLS solution for the example of a 2D similarity trans-

formation of coordinates using SVD. However, Neitzel [14]

showed that their solution needed modifications and pro-

vided the correct TLS results by evaluating the solution ob-

tained by an iteratively linearised GHM. Additionaly, an it-

erative TLS solution for the same problem was presented

in [15].

Concerning the two latter LS problems, it has been

shown that a TLS solution can be obtained equivalently

from a linearized GHM, following the traditional geodetic

procedure for solving non-linear LS problems. Hence, the

following questions arise out of this:

– If it is possible to solve an adjustment problem with

TLS and SVD, is it also possible to obtain the same

eigenvalue problem from a geodetic point of view

and solve the problem directly?

– Are there additional non-linear LS problems (be-

sides the generally well-known case of the straight

line fitting to equally weighted 2D data) which can

be solved directly?

– Is it possible to classify those non-linear LS prob-

lems with a direct solution and solve them by using

a systematic approach?

These objectives gave the motivation for deeper and

further investigation of the solutions obtained by using

TLS.Wewant to develop a clearmathematical relationship

between TLS and direct solutions of non-linear LS prob-

lems for the following four individual cases:

1. Fitting a straight line in 2D,

2. Fitting a straight line in 3D,

3. Fitting a plane in 3D,
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4. 2D similarity transformation of coordinates.

In all four cases under investigation the coordinates in

all directions are regarded asmeasurements. In TLS litera-

ture these problems are often distinguished as EIV model.

Moreover,we alwayspostulate a regular adjustmentmodel

and the observations are equally weighted and uncorre-

lated.

The concept of solvingnon-linear LSproblemsapplied

here is directly based on [16], where the non-linear prob-

lem of fitting a straight line to a set of points in 3D space

was examined. In that work, the developed LS solution

was obtained by solving an eigenvalue problem, which is

one of the key elements of TLS as well. In this contribu-

tion, under the title "Götterdämmerung³ over total least

squares", we want to establish a systematic approach for

solving the four investigated adjustment problems, based

on the solution of [16]. Our mathematical approach in-

volves a sophisticated parametrization of the problem

which can be always solved by building a Lagrange func-

tion that results in a quadratic or cubic algebraic equation.

The equivalence between singular values and Lagrange

multipliers has been analyzed already in [18, p. 44]. A

flowchart presenting both ways of solving directly non-

linear LS problems is depicted in Fig. 1.

This article is arranged as follows:

– In the first section the direct LS solution for the prob-

lem of fitting a straight line in 2D is approached from

geodetic point of view. A TLS solution is provided

as well, which sets the foundation for the math-

ematical relationship between the two individual

estimates (i.e. the direct LS and the TLS).

– It follows a second section which studies the fitting

of a straight line in 3D. Following the same proce-

dure as in the first section two individual solutions

are obtained, one for a direct LS and a novel TLS so-

lution for fitting a straight line in space using SVD.

– The next two following sections are dealing with fit-

ting a plane in a 3D point cloud and the 2D similar-

ity transformation of coordinates. Here, a novel ap-

proach is presented for the TLS solution of the 2D

transformation.

3 The downfall of the gods (in Germanic mythology), see Oxford dic-

tionary. In the context of LS adjustment, the same term has been

firstly used in [17].

Special cases
of non-linear
LS problems

LS TLS

Sophisticated
parametriza-

tion

Augmented
matrix

Lagrange
function

Singular
value de-

composition

Characteristic
polynomial

Direct
solution
for the

unknowns

Figure 1: Flowchart for two possible direct solutions of non-linear LS
problems.

All investigated cases are compared with already existing

algorithms or models (for example with LS solutions from

the GHM), numerical examples are presented at the end

of each section. It should be pointed out that direct solu-

tions for the non-linear problem of fitting a straight line

in 2D as well as for the case of fitting a plane in 3D can

be found already in [19] and they coincide with those pre-

sented in this contribution. However, curiously, this work

of Linkwitz [19] is rarely cited.

2 Fitting a straight line in 2D
One of the first attempts to solve the non-linear problem

of LS for fitting a straight line to a set of points in plane

(i.e. in the 2D space) non-iteratively was done by Adcock

[20] who provided an elegant way of finding the direct so-

lution to the problem. Pearson [21] investigated the same

problem by minimizing the sum of the squared orthogo-

nal distances of every point to the requested line and he

extended his study to fitting a plane to a set of points in

space (i.e. in the 3D space) as well.

On the other hand, more recently, the work of [9] pro-

vided an analysis of the TLS problem followed by the con-

tributions of [8, 22–24]. These authors always comprised
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the example of the straight line fit as the most appropriate

example for illustrating the idea of TLS.

At the beginning an amount of 2D data is observed,

e.g. a point cloud with coordinates in x and y-direction.
The question is how to fit a straight line to the measured

point cloud. A straight line in 2D is represented in coordi-

nate form [25, p. 217] by

y − y
0

a =

x − x
0

b . (5)

This line passes through a point with coordinates x
0

and y
0
, and is parallel to a direction vector with compo-

nents a and b. Assuming that the observed points lie on

this straight line and that the measurements are error-free

(which is never the case), x and y can be regarded as ob-

served coordinates of a point in 2D.

2.1 LS line fit in 2D

In this section we try to develop a direct LS solution for

fitting a straight line in 2D when both coordinates are sub-

ject to errors. The unknown line parameters can be esti-

mated directly by constructing and minimizing an appro-

priate Lagrange function and by solving a system of lin-

ear normal equations. Our goal is to show that the pro-

posed approach leads, according to the chosen technique

for solving linear equation systems, to the solution of such

algebraic equations that are equivalent to TLS (the solu-

tion for fitting a straight line in 2D by TLS is presented and

analysed in the next section).

2.1.0.1 Definition of the problem

From a geodetic point of view it is of great importance

to clarify from the beginning which quantities are obser-

vations and hence subject to random errors. This is nec-

essary in order to define the target (or objective) function

of the problem in an appropriate way. In this investigation

let us assume that both coordinates (in x and y-direction)
are subject to measurement errors. Furthermore, let all

measurements be uncorrelated and of the same accuracy.

Therefore, the aim is to find the shortest distance of each

“measured” point to an adjusted straight line. As noticed

already in [20] the same accuracy of all coordinate mea-

surements corresponds to the normal distance

d2i = v2xi + v
2

yi , (6)

asmeasure of deviations, with i = 1, ..., n (n is the number

of observed points). This problem is depicted in Fig. 2.

The normal distance of every point to the requested

line can be expressed by [25, p. 218]

di =
(yi − y0) b − (xi − x0) a

a2 + b2 . (7)
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Figure 2: Example of fitting a straight line to 2D points with both x
and y coordinates subject to measurement errors.

The least squares criterion can be applied to obtain

the minimum normal distances of a point cloud to the fit-

ted line by minimizing the sum of the squared normal dis-

tances

n∑︁
i=1

d2i → min. (8)

There are infinitely many choices for a condition that con-

nects the two unknown parameters a and b for the gen-

eral equation of the straight line (5). We will not restrict

the problem to the usual a = 1 or b = 1, for the reason that

some lines in plane are excluded with these choices (e.g if

we choose a = 1, then there is no solution for lines paral-

lel to the x-direction). From all remaining restrictions, the

most appropriate for us is

a2 + b2 = 1, (9)

as it allows all lines in the plane to be calculated. Geomet-

rically this restriction can be seen as a normalization of

the orthogonal distances from every point to the requested

line (i.e. the denominator of the orthogonal distance of

Eq. (7) becomes 1). Therefore, the objective function of this
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problem can be expressed by

Ω(a, b, y
0
, x

0
) =

n∑︁
i=1

d2i

=

n∑︁
i=1

((yi − y0) b − (xi − x0) a)2.
(10)

2.1.0.2 Elimination of two unknowns

The elimination of the unknown parameters x
0
and y

0

is possible by showing that they can be taken as equal to

the coordinates of the centre of mass

yc =
1

n

n∑︁
i=1

yi and xc =
1

n

n∑︁
i=1

xi (11)

of the 2D points, which are regarded as observations. This

has already been proven in [20], where it was shown that

the requested line passes through the centre of mass of the

2D point set. In [16] the 3D case is covered. Here a similar

proof for the case of the 2D line fit is presented in short.

Multiplying all terms of the objective function of equa-

tion (10) results in

Ω(a, b, y
0
, x

0
) = A y2

0
+ B y

0
+ C (12)

with

A = nb2,

B = −2n
[︃
b2
(︃
1

n

n∑︁
i=1

yi

)︃
+ ab

(︃
1

n

n∑︁
i=1

xi − x0

)︃]︃
,

C = a2
n∑︁
i=1

(xi − x0)2 + b2
n∑︁
i=1

y2i − 2ab
n∑︁
i=1

xiyi

+2abx
0

n∑︁
i=1

yi .

(13)

Assuming that the parameters a, b and x
0
are known,

functions A, B and C become constant with A being posi-

tive. Therefore Eq. (12) would represent a parabola with a

minimum at

y
0
= −

B
2A . (14)

Inserting the expressions from (13) into (14) yields

y
0
=

1

n

n∑︁
i=1

yi +
a
b

(︃
1

n

n∑︁
i=1

xi − x0

)︃
. (15)

Analogously it can be shown that

x
0
=

1

n

n∑︁
i=1

xi +
b
a

(︃
1

n

n∑︁
i=1

yi − y0

)︃
. (16)

It is easy to check by substitution that

y
0
=

1

n

n∑︁
i=1

yi and x
0
=

1

n

n∑︁
i=1

xi , (17)

satisfy the equations (15) and (16). Thus the equation of a

line in 2D can be reformulated as

y − yc
a =

x − xc
b . (18)

2.1.0.3 LS line fit with reduced coordinates

Equation (18) canbe further simplifiedby reducing the

coordinates to a coordinate system with its origin in the

centre ofmass of thegivenpoints. The reduced coordinates

of a point can be described by

y′ = y − yc and x′ = x − xc , (19)

which leads to

y′ b = x′ a. (20)

Hence, the normal distance of every reduced point to the

requested line can be rewritten as

di =
y′i b − x′i a
a2 + b2 . (21)

The reduction means that the investigated straight

line passes through the centre of mass which has been

translated to the centre of the coordinate system, as de-

picted in Fig. 3. Consequently, the objective function (10)

can be rewritten (with eliminated unknowns x
0
, y

0
) as

Ω(a, b) =
n∑︁
i=1

d2i =
n∑︁
i=1

(y′i b − x′i a)2

= b2
n∑︁
i=1

y′i
2

− 2ab
n∑︁
i=1

y′ix′i + a2
n∑︁
i=1

x′i
2

.

(22)

We seek for a least squares solution for the unknown

parameters a and b that minimizes Eq. (22) subject to the

constraint (9). Therefore, we can introduce the Lagrangian

K(a, b, k) = Ω(a, b) − k(a2 + b2 − 1), (23)

where k is the Lagrangemultiplier. By differentiating func-

tion K with respect to the unknown parameters a and b
and setting the partial derivatives to zero we obtain

∂K
∂a = a

(︂ n∑︁
i=1

x′i
2

− k
)︂
− b
(︂ n∑︁

i=1
y′ix′i

)︂
= 0, (24)

∂K
∂b = −a

(︂ n∑︁
i=1

y′ix′i
)︂
+ b
(︂ n∑︁

i=1
y′i
2

− k
)︂
= 0, (25)
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Figure 3: Example of fitting a straight line to a set of 2D points with
coordinates reduced to the centre of mass.

subject to a2 + b2 = 1. If the Lagrange multiplier were

known, then Eq. (24) and (25) would represent a homoge-

neous system of equations which is linear in the unknown

line parameters a and b. For a nontrivial solution the de-

terminant of the equation system must be equal to zero:⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
(︂ n∑︁
i=1

x′i
2

− k
)︂

−

n∑︁
i=1

y′ix′i

−

n∑︁
i=1

y′ix′i
(︂ n∑︁
i=1

y′i
2

− k
)︂
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒ = 0, (26)

which leads to the quadratic equation(︂ n∑︁
i=1

x′i
2

− k
)︂(︂ n∑︁

i=1
y′i
2

− k
)︂
−

(︂ n∑︁
i=1

y′ix′i
)︂
2

= 0, (27)

with one unknown parameter k and two real and positive
solutions kmin and kmax. It can be shown that the smaller

of the two solutions for k, denoted by kmin, corresponds
to the minimum of the objective function (22). The solu-

tion for the adjusted unknown parameters a and b can be
computed by substituting the Lagrangian factor kmin into
equations (24)-(25) subject to the constraint (9).

An equivalent direct solution for the discussed non-

linear problem has already been presented by Linkwitz

[19]. In his contribution the Hessian normal form is em-

ployed for the representation of the line in plane and leads

to the same quadratic equation. The solution is obtained

also by solving an eigenvalue problem.

2.2 TLS line fit in 2D

An alternative solution for finding the line fitting to a set

of points in 2D can be provided by TLS [8, 9]. According

to [9] the solution of TLS can be represented geometrically

by minimizing the orthogonal distances as it is depicted

in Fig. 3. It is noteworthy that in the latter contribution the

LSproblemof fitting a straight line in 2Dwas regarded only

when the y-coordinates are observations, in contrast to the
definition and solution of the LS problem that was pre-

sented in the previous section. Thus, our target is to pro-

vide a clear insight of the TLS approach and show that it is

equivalent to the developed approach of section 2.1.

Rearranging the functional model of Eq. (19), which

already contains the reduced coordinates of the measured

points to the centre of mass, yields

y′ = −β x′ (28)

with

−β = ab . (29)

It is to be noted that using the functional model of

Eq. (28) is equivalentwith employing a restriction of a = 1.

Therefore, it is not possible to describe all straight lines

in plane, however, these are limited cases (in this case all

lines that are parallel to the y-direction). Nevertheless, it is
possible to build the TLS model of Eq. (1) with the respec-

tive quantities

A =

⎡⎢⎢⎢⎢⎣
−x′

1

−x′
2

.

.

.

−x′n

⎤⎥⎥⎥⎥⎦ , EA =

⎡⎢⎢⎢⎢⎣
−ex′

1

−ex′
2

.

.

.

−ex′n

⎤⎥⎥⎥⎥⎦ ,

l =

⎡⎢⎢⎢⎢⎣
y′
1

y′
2

.

.

.

y′n

⎤⎥⎥⎥⎥⎦ , el =
⎡⎢⎢⎢⎢⎣
ey′

1

ey′
2

.

.

.

ey′n

⎤⎥⎥⎥⎥⎦ , x̂ =

(︁
^β
)︁
.

(30)

Matrix A contains the coefficients of Eq. (28) with respect

to the unknown parameter β.

2.2.0.1 The minimum eigenvalue principle

The TLS solution has been presented amongst others

by Felus and Schaffrin [11], by employing the minimum

eigenvalue principle. The first step is to construct the aug-

mented matrix

[A, l] =

⎡⎢⎢⎢⎢⎣
−x′

1
y′
1

−x′
2

y′
2

.

.

.

.

.

.

−x′n y′n

⎤⎥⎥⎥⎥⎦ . (31)
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By decomposing the augmented matrix [A, l] with the
help of SVD yields

UΣVT

= SVD([A, l]), (32)

where the matrices U and V are orthogonal and contain

the left and right singular vectors of the augmentedmatrix

respectively andmatrix Σ is diagonal carrying the singular
values. The TLS solution canbe derived bynormalising the

right singular vector of matrix V that corresponds to the

minimum singular value (this is the last column of V) [5,
p.35], with

v = [v1,m+1, · · · , vm,m+1, vm+1,m+1]T , (33)

wherem is the number of unknown parameters. Thus, the

TLS solution for the adjusted vector of unknowns is

x̂ =

1

vm+1,m+1
[v
1,m+1 : vm,m+1]T. (34)

It must be mentioned that in TLS literature Eq. (34) is pre-

sented with a negative sign as in [11], which is caused by

the form of the functional model. In this study the func-

tional model (Eq. 28) has been developed in such a way

that the negative sign is not necessary anymore.

2.2.0.2 Connection with the eigenvalue/eigenvector
decomposition

To understand deeper the operation of SVD and the

derivation of the adjusted unknowns of Eq. (34) it is im-

portant to connect SVD with the eigenproblem of the sym-

metric non-negative definite matrices ([A, l]T[A, l]) and
([A, l][A, l]T). According to [26, p.18] matrix V containing

the right singular vectors of [A, l] can also be estimated

from the eigenvalue decomposition (EVD) of the squared

matrix ([A, l]T[A, l]) by

VΛVT

= EVD([A, l]T[A, l]), (35)

where matrix Λ is a diagonal matrix carrying the eigenval-

ues of [A, l]. According to [27, p.427] a relationshipbetween
eigenvalues and singular values can be expressed as

λi = σi2, (36)

with λ and σ being the eigenvalues and singular values,

respectively. For an explicit solution of the eigenproblem

for the straight line fit we build the squared matrix

[A, l]T[A, l] =

⎡⎢⎢⎢⎢⎢⎢⎣

n∑︁
i=1

x′i
2

−

n∑︁
i=1

y′ix′i

−

n∑︁
i=1

y′ix′i
n∑︁
i=1

y′i
2

⎤⎥⎥⎥⎥⎥⎥⎦ = B. (37)

The eigenvalues and eigenvectors of matrix B can be com-

puted from the generalised eigenvalue problem [25, p. 278]

By = λy ⇒ (B − λI)y = 0, (38)

with I denoting an identity matrix and y an eigenvector

of B. The eigenvalues of matrix B can be determined by

searching for non-trivial solutions y ̸= 0, i.e. by solving

the characteristic equation of the eigenvalues⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒

n∑︁
i=1

x′i
2

− λ −

n∑︁
i=1

y′ix′i

−

n∑︁
i=1

y′ix′i
n∑︁
i=1

y′i
2

− λ

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒ = 0, (39)

i.e.(︂ n∑︁
i=1

x′i
2

− λ
)︂(︂ n∑︁

i=1
y′i
2

− λ
)︂
−

(︂ n∑︁
i=1

y′ix′i
)︂
2

= 0. (40)

This is a quadratic equation with two solutions for the

unknown eigenvalues λmin and λmax. By rearranging the
eigenvalues and eigenvectors appropriately, the TLS solu-

tion for the adjusted line parameter β can be found from

Eq. (34). Thus, by normalizing the eigenvector that corre-

sponds to the smallest eigenvalue yields

β =

−

n∑︁
i=1

y′ix′i

n∑︁
i=1

x′i
2

− λmin

. (41)

As expected the TLS solution for the line parameters is

identical to thedevelopedLS solution. The equivalence be-

tween the two solutions is in Eq. (29) and using the mini-

mum Lagrange multiplier kmin in Eq. (24).
Furthermore, the developed characteristic equation of

the eigenvalues (40) corresponds to the quadratic equa-

tion (27) from the direct LS solution. The conclusion is that

the presented direct LS solution for the non-linear straight

line fit in plane already provides the exact result for TLS.

2.3 Numerical example - line fit 2D

In this section a numerical example is presented for vali-

dating the results of the current investigation. The exam-

ple dataset that was chosen is the one used in [13] and can

be found in Table 1. The measured coordinates are uncor-

related and both in x and y-direction under the influence

of random errors.
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Table 1: Example dataset for straight line fitting in 2D

point no. x-coord. [m] y-coord. [m]

1 0 0
2 1 1
3 2 4
4 3 9

For solving the non-linear problem of fitting a straight

line to the four points of the presented dataset, an itera-

tive solution of a GHMhas been proposed in [13] (however,

in this case only one iteration was sufficient for a LS solu-

tion). The results of the GHM are listed in Table 2.

Table 2: Results from [13]

Estimated parameters GHM solution

−
^β (Steigung â) 3.241804

𝛾 (Achsabschnitt ^b) -1.362705

Secondly, the presented direct LS solution for the un-

known line parameters a and bwas obtained. Building the
objective and Lagrange function of equations (22) and (23)

leads to a homogeneous system of linear equations with

one unknown parameter
^k, that can be estimated by solv-

ing ⃒⃒⃒⃒
⃒ (5 − k) −15

−15 (49 − k)

⃒⃒⃒⃒
⃒ = 0. (42)

This yields a quadratic equation with the solutions for the

unknown parameters kmin = 0.3729460886 and kmax =
53.6270539113. The direct LS solution of the line param-

eters can be found in Table 3. The adjusted parameters a
and b were utilized to compute β.

Table 3: Direct LS solution - line fit 2D

Estimated parameters LS solution

â 0.9555698150338
^b 0.2947648700171

Derived parameters

−
^β = â

^b
3.2418035940925

𝛾 -1.3627053911388

Parameter 𝛾 can be easily derived by bringing the co-

ordinate system into its original position. In this sense

Eq. (28) for the straight line can be rewritten as

y = −β x + 𝛾 . (43)

Finally, the TLS estimate was derived for the un-

known line parameters. The determinant of the gener-

alised eigenvalue problem was built following the proce-

dure for the eigenvalue/eigenvector solution of matrix B
(Eq. 39), which results in the characteristic equation of the

eigenvalues (quadratic equation) with solutions for λmin =
0.3729460886 and λmax = 53.6270539113. The TLS so-

lution for the adjusted line parameters is presented in Ta-

ble 4 and is of course equal to the results in Table 3. Both

solutions coincide numerically with the iterative result of

the linearized GHM.

Table 4: TLS solution - line fit 2D

Estimated parameters TLS solution

−
^β 3.2418035940925

𝛾 -1.3627053911388

3 Fitting a straight line in 3D
The problem of fitting a straight line to a set of 3D points

hasbeenexaminede.g. in [28–30]. The latter contributions

provided iterative algorithms for minimizing the sum of

the squared orthogonal distances of each 3D point to the

fitted line and thus obtaining a least squares estimate for

the unknown line parameters. Non-iterative adjustment

solutions for the straight line fit in space can be found in

[16, 31]. Both solutions can be transformed in an eigen-

value problemwhich gives themotivation for investigating

the relationship with the TLS solution.

A straight line in 3D can be represented in coordinate

form by

y − y
0

a =

x − x
0

b =

z − z
0

c , (44)

for a line that passes through a point with coordinates x
0
,

y
0
and z

0
and is parallel to a direction vector with compo-

nents a, b and c. The target is to minimize the errors in all

x, y and z coordinates, which implies the non-linearity of

the problem. Similarly to the previous case it is possible to

reduce the number of the unknowns of the model by re-

placing the parameters x
0
, y

0
and z

0
with the coordinates

Bereitgestellt von | Bibliothek des Wissenschaftsparks Albert Einstein
Angemeldet

Heruntergeladen am | 23.02.18 14:01



Götterdämmerung over total least squares | 51

of the centre of mass

yc =
1

n

n∑︁
i=1

yi , xc =
1

n

n∑︁
i=1

xi ,

zc =
1

n

n∑︁
i=1

zi ,
(45)

of the n given points. The proof that this parameter re-

placement is allowed, can be found in [16]. Therefore,

Eq. (44) can be rewritten as

y − yc
a =

x − xc
b =

z − zc
c . (46)

Obviously a reduction of all coordinates to the centre

of mass leads to the elimination of xc, yc and zc, which
results in

y′
a =

x′
b =

z′
c , (47)

with x′, y′ and z′ being coordinates reduced to the centre
of mass.

3.1 LS line fit in 3D

To find the best fitting line to a 3D point cloud the normal

distances of all pointsmust beminimized. The normal dis-

tance of a point to the investigated line is

di =
(y′i b − x′i a) + (x′i c − z′i b) + (z′i a − y′i c)

a2 + b2 + c2 . (48)

A LS solution can be derived byminimizing the sum of

the squared distances under the restriction

a2 + b2 + c2 = 1. (49)

The latter restriction has been chosen as the most appro-

priate for this case, similarly to the investigated problemof

the previous section. Thus, by utilizing Eq. (49) it is possi-

ble to derive a simplified expression of the orthogonal dis-

tances

di = (y′i b − x′i a) + (x′i c − z′i b) + (z′i a − y′i c). (50)

The objective function can be described by

Ω(a, b, c) =
n∑︁
i=1

d2i

=

n∑︁
i=1

((y′i b − x′i a) + (x′i c − z′i b) + (z′i a − y′i c))2

= a2
(︂ n∑︁

i=1
x′i
2

+

n∑︁
i=1

z′i
2

)︂
+ b2

(︂ n∑︁
i=1

y′i
2

n∑︁
i=1

z′i
2

)︂
+c2
(︂ n∑︁

i=1
y′i
2

+

n∑︁
i=1

x′i
2

)︂
− 2ab

n∑︁
i=1

y′ix′i

−2ac
n∑︁
i=1

y′iz′i − 2bc
n∑︁
i=1

x′iz′i .

(51)

In order to derive the minimum solution of the objective

function under the restriction of Eq. (49) the Lagrangian

K(a, b, c, k) = Ω(a, b, c) − k(a2 + b2 + c2 − 1) (52)

can be built. A differentiation of function K with respect

to the unknown line parameters a, b and c and setting the
resulting partial derivatives to zero, leads to the equations

∂K
∂a = a

(︂ n∑︁
i=1

x′i
2

+

n∑︁
i=1

z′i
2

− k
)︂
− b

n∑︁
i=1

y′ix′i

−c
n∑︁
i=1

y′iz′i = 0,

(53)

∂K
∂b = −a

n∑︁
i=1

y′ix′i + b
(︂ n∑︁

i=1
y′i
2

+

n∑︁
i=1

z′i
2

− k
)︂

−c
n∑︁
i=1

x′iz′i = 0,

(54)

and

∂K
∂c = −a

n∑︁
i=1

y′iz′i − b
n∑︁
i=1

x′iz′i

+c
(︂ n∑︁

i=1
y′i
2

+

n∑︁
i=1

x′i
2

− k
)︂
= 0,

(55)

subject to a2 + b2 + c2 = 1. Similarly as in the previous

investigated problem, we can interpret Eq. (53) to (55) as a

homogeneous system of equations, where the solution of

the unknown parameter k can be obtained by solving⃒⃒⃒⃒
⃒⃒⃒ (p1 − k) q

1
q
2

q
1

(p
2
− k) q

3

q
2

q
3

(p
3
− k)

⃒⃒⃒⃒
⃒⃒⃒ = 0, (56)

with the respective elements

p
1
=

n∑︁
i=1

x′i
2

+

n∑︁
i=1

z′i
2

, p
2
=

n∑︁
i=1

y′i
2

+

n∑︁
i=1

z′i
2

,

p
3
=

n∑︁
i=1

y′i
2

+

n∑︁
i=1

x′i
2

, q
1
= −

n∑︁
i=1

y′ix′i ,

q
2
= −

n∑︁
i=1

y′iz′i and q
3
= −

n∑︁
i=1

x′iz′i .

(57)

Equation (56) leads to a cubic equation with the un-

known parameter k. As in the previously investigated case
(direct LS solution for fitting a straight line in 2D), the ad-

justed line parameters a, b and c can be estimated by sub-

stituting kmin into Eq. (53) - (55).
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3.2 TLS line fit in 3D

ATLS solution for fitting a straight line in 3Dusing SVDhas

not been studied yet. Our goal is to derive the TLS solution

of fitting a line to a set of points in space for the first time

and compare it with the developed direct LS solution from

the previous section.

In order to build the adjustment model of Eq. (1), it is

necessary to derive an appropriate functional model. Re-

arranging Eq. (47) yields

x′α − y′β = 0,

0 α − z′β = x′,
−z′α + 0 β = y′,

(58)

where

α = −ac and β = −bc . (59)

Thus, the respective matrices and vectors for building the

TLS adjustment model are

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x′
1

−y′
1

0 −z′
1

−z′
1

0

.

.

.

.

.

.

x′n −y′n
0 −z′n
−z′n 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, EA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ex′
1

−ey′
1

0 −ez′
1

−ez′
1

0

.

.

.

.

.

.

ex′n −ey′n
0 −ez′n
−ez′n 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

l =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

x′
1

y′
1

.

.

.

0

x′n
y′n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, el =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

ex′
1

ey′
2

.

.

.

0

ex′n
ey′n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and x̂ =

[︃
α̂
^β

]︃
. (60)

The first column of matrix A contains the coefficients

of the functional model (58) with respect to the unknown

parameter α, whilst in the second column are the coeffi-

cients with respect to the unknown parameter β. The aug-
mented matrix is

[A, l] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x′
1

−y′
1

0

0 −z′
1

x′
1

−z′
1

0 y′
1

.

.

.

.

.

.

.

.

.

x′n −y′n 0

0 −z′n x′n
−z′n 0 y′n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (61)

The right singular vectors of the augmented matrix

can be estimated by the eigenvalue/eigenvector decompo-

sition that was described by Eq. (35). Thus, the squared

augmented matrix can be expressed by

[A, l]T[A, l] =

⎡⎢⎣ p
1

q
1

q
2

q
1

p
2

q
3

q
2

q
3

p
3

⎤⎥⎦ = B , (62)

with the respective elements p and q corresponding to

those of Eq. (57). The eigenvalues and eigenvectors of ma-

trix B can be found by employing the generalised eigen-

value problem of Eq. (38), which results in⃒⃒⃒⃒
⃒⃒⃒ (p1 − λ) q

1
q
2

q
1

(p
2
− λ) q

3

q
2

q
3

(p
3
− λ)

⃒⃒⃒⃒
⃒⃒⃒ = 0. (63)

The derived determinant provides the characteristic

equation of the eigenvalues. In this case this is a cu-

bic equation with three solutions for the unknown eigen-

values λ. The adjusted line parameters α̂ and
^β can be

found by employing the minimum eigenvalue principle of

Eq. (34), with the right eigenvector corresponding to the

smallest eigenvalue of matrix B holding the TLS solution

for the adjusted 3D line parameters.

Obviously the elements of matrix B coincide with

those from the direct LS solution. The determinants of

Eq. (56) and (63) are equal, leading to identical charac-

teristic equations. Therefore, the TLS solution for the non-

linear problem of the straight line fit in space is identical

with the presented direct LS solution.

3.3 Numerical example - line fit 3D

The dataset for the current numerical example has been

presented in [31, p.64] and contains the 3D coordinates of

points that are subject to fitting a straight line, see Table 5.

The results from [31] for the adjusted line parameters are

listed in Table 6, including the orientation components n̂x,
n̂y and n̂z, which coincide with the line parameters pre-

sented by Eq. (47).

The results of the direct LS solution are presented in

Table 7. The Lagrangemultipliers derived from Eq. (56) are

^k =

⎧⎪⎨⎪⎩
178.9137883045

136.5705193088

73.3716754581 (
^kmin)

(64)

Furthermore, the TLS solution for fitting a straight line

to the same dataset can be found in Table 8. It should be

mentioned that Eq. (34) would have an opposite sign in

this case due to the chosen functional model. The eigen-
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values derived from the determinant of Eq. (63) are

^λ =

⎧⎪⎨⎪⎩
178.9137883045

136.5705193088

73.3716754581 (
^λmin)

(65)

It is directly visible that the direct LS solution for the

non-linear case of fitting a straight line in 3D is identical

with that of TLS. Both solutions coincide perfectly with the

results from [31].

Table 5: 3D point cloud from [31, p.64]

x-coordinates y-coordinates z-coordinates

55.7290 -25.834 71.0470
28.2310 -9.0070 50.3240
18.8000 -3.2250 43.2170
12.5270 0.6280 38.4700
2.1830 6.9560 30.6860
-5.6310 11.7410 24.7830
-17.2090 18.8330 16.0690
-30.0190 26.6700 6.4140
-34.7260 29.5680 2.8520
-55.6250 42.3630 -12.8930

Table 6: LS solution for line fit in 3D from [31, p.64]

Estimated line orientation components

Parameter n̂x 0.7173305867
Parameter n̂y -0.4393417007
Parameter n̂z 0.5407547498

Derived line parameters

Parameter α̂ = − n̂yn̂z 0.812460178
Parameter ^β = − n̂xn̂z -1.326535896

Table 7: Direct LS solution - line fit 3D

Estimated line parameters

Parameter â 0.43934170067853
Parameter ^b -0.71733058666835
Parameter ĉ -0.54075474984038

Derived line parameters

Parameter α̂ = − âĉ 0.81246017868213
Parameter ^β = − ^b

ĉ -1.32653589613424

Table 8: TLS solution - line fit 3D

Estimated line parameters

Parameter α̂ 0.81246017868213
Parameter ^β -1.32653589613424

4 Fitting a plane in 3D
The third case under investigation is the non-linear prob-

lem of fitting a plane to a 3D point cloud with all coordi-

nates being subject to measurement errors. It is assumed

also for this case that the coordinates of the points are re-

garded as observations, which are equally weighted and

uncorrelated. Several results from various TLS algorithms

were presented for this problem in [12], which resulted in

a slight deviation from the LS solution. However, it was al-

ready proven that the TLS solution is identicalwith a direct

LS solution for fitting a straight in 2D and 3D. Therefore, a

mathematical relation between the TLS and LS is built fol-

lowing the same way as in the previous cases.

The general equation of a plane in 3D reads [25, p. 214]

Ax + By + Cz + D = 0, (66)

with x, y and z being the observed 3D coordinates of a

point that lies in the plane. A, B , C and D are the plane

parameters.

A reduction of the number of the unknown plane pa-

rameters is, also in this case, possible and can be proven

to be equivalent to the procedure presented in the previ-

ous sections. Therefore, by reducing the coordinates of the

point cloud to the centre of mass, see Eq. (45), results in

a simplified model. Parameter D can be eliminated which

leads to

Ax′ + By′ + Cz′ = 0. (67)

4.1 LS plane fit in 3D

Fitting a plane to a set of 3D points, with all coordinates

subject to measurement errors, is similar to the case of fit-

ting a straight line in space, as thenormal distance of every

point to the requested plane must be minimized. The nor-

mal distance for this problem can be expressed as [25, p.

216]

d = Ax
′
+ By′ + Cz′√

A2 + B2 + C2
. (68)
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The LS criterion is applied and a solution is estimated

by minimizing the sum of the squared normal distances

n∑︁
i=1

d2i → min, (69)

subject to the constraint

A2 + B2 + C2 = 1, (70)

since also in this case Eq. (67) can be scaled by an arbitrary

factor, whichmeans that only two out of the three parame-

tersA,B or C are independent. Thus, the objective function
of this LS problem is

Ω(A, B, C) =
n∑︁
i=1

d2i =
n∑︁
i=1

(Ax′i + By′i + Cz′i)2. (71)

We search for a LS solution for the unknown parame-

ters A, B and C that minimizes Eq. (71) subject to the con-

straint (70). These two equations can be utilised to build

the Lagrangian

K(A, B, C, k) = Ω(A, B, C) − k(A2 + B2 + C2 − 1). (72)

The differentiation of K with respect to the unknown

parameters A, B and C leads, after setting the partial

derivatives to zero, to the system of equations

∂K
∂A = A

(︂ n∑︁
i=1

x′i
2

− k
)︂
+ B
(︂ n∑︁

i=1
y′ix′i

)︂
+C
(︂ n∑︁

i=1
x′iz′i

)︂
= 0,

(73)

∂K
∂B = A

(︂ n∑︁
i=1

y′ix′i
)︂
+ B
(︂ n∑︁

i=1
y′i
2

− k
)︂

+C
(︂ n∑︁

i=1
y′iz′i
)︂
= 0

(74)

and

∂K
∂C = A

(︂ n∑︁
i=1

x′iz′i
)︂
+ B
(︂ n∑︁

i=1
y′iz′i
)︂

+C
(︂ n∑︁

i=1
z′i
2

− k
)︂
= 0,

(75)

subject to (70). The solution for the unknown parameter k
can be derived by solving⃒⃒⃒⃒

⃒⃒⃒ (r1 − k) s
1

s
2

s
1

(r
2
− k) s

3

s
2

s
3

(r
3
− k)

⃒⃒⃒⃒
⃒⃒⃒ = 0, (76)

with

r
1
=

n∑︁
i=1

x′i
2

, r
2
=

n∑︁
i=1

y′i
2

, r
3
=

n∑︁
i=1

z′i
2

,

s
1
=

n∑︁
i=1

y′ix′i , s2 =
n∑︁
i=1

x′iz′i and s
3
=

n∑︁
i=1

y′iz′i .
(77)

Equation (76) is a cubic equation and has three solu-

tions for the unknown k. The adjusted plane parameters

A, B and C can be further estimated following the same

procedure of the previously investigated cases, either by

substituting parameter kmin into Eq. (73) - (75) under the

restriction (70) or by transforming the equation system to

an eigenvalue problem. The presented direct solution for

fitting a plane in 3D coincides with that from [19].

4.2 TLS plane fit in 3D

The TLS solution for fitting a plane in 3D can be estimated

analogously to the investigations of [12], following how-

ever an alternative functional model from the latter contri-

bution. Based on our approach to the TLS estimate, using

the coordinates reduced to the centre of mass, the func-

tional model of Eq. (66) can be rewritten as

z′ = −AC x
′
−

B
C y

′ ⇒ z′i = αx′ + βy′, (78)

with

α = −AC and β = −BC . (79)

The following matrices and vectors can be introduced

in order to build the TLS model of Eq. (1)

A =

⎡⎢⎢⎢⎢⎣
x′
1

y′
1

x′
2

y′
2

.

.

.

.

.

.

x′n y′n

⎤⎥⎥⎥⎥⎦ , EA =

⎡⎢⎢⎢⎢⎣
ex′

1

ey′
1

ex′
2

ey′
2

.

.

.

.

.

.

ex′n ey′n

⎤⎥⎥⎥⎥⎦ ,

l =

⎡⎢⎢⎢⎢⎣
z′
1

z′
2

.

.

.

z′n

⎤⎥⎥⎥⎥⎦ , el =
⎡⎢⎢⎢⎢⎣
ez′

1

ez′
2

.

.

.

ez′n

⎤⎥⎥⎥⎥⎦ and x̂ =

[︃
α̂
^β

]︃
. (80)

The first column of the coefficient matrix A contains

the coefficients of the functional model of Eq. (78) with

respect to the unknown plane parameter α while in the

second column are the coefficients with respect to the un-

known parameter β. Further, it is possible to obtain the

augmented matrix

[A, l] =

⎡⎢⎢⎢⎢⎣
x′
1

y′
1

z′
1

x′
2

y′
2

z′
2

.

.

.

.

.

.

.

.

.

x′n y′n z′n

⎤⎥⎥⎥⎥⎦ (81)
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and the square matrix [A, l]T[A, l] being equal to

[A, l]T[A, l] =

⎡⎢⎣ r
1

s
1

s
2

s
1

r
2

s
3

s
2

s
3

r
3

⎤⎥⎦ = B, (82)

with the respective elements fromEq. (77). The eigenvalues

and eigenvectors of matrixB can be computed through the

generalised eigenvalue problem by solving⃒⃒⃒⃒
⃒⃒⃒ (r1 − λ) s

1
s
2

s
1

(r
2
− λ) s

3

s
2

s
3

(r
3
− λ)

⃒⃒⃒⃒
⃒⃒⃒ = 0, (83)

This characteristic equation is a cubic equation with

three solutions for the unknown parameter λ (eigenvalue).
The adjusted plane parameters α and β can be estimated

once again using the minimum eigenvalue principle.

The presented LS solution for fitting a plane in 3D co-

incides perfectly with the TLS solution. This can be seen

from the developed determinants in Eq. (83) and (76), that

both lead to the same cubic characteristic equation.

4.3 Numerical example - plane fit 3D

To show the equality of the results for the case of the plane

fit in 3D, a numerical example is presented. The input data

is a synthetic dataset example that was used in [12] and is

listed in Table 9. The coordinates are regarded as uncorre-

lated observations and in all directions (x, y and z) subject
to measurement errors.

Table 9: Dataset for fitting a plane in 3D from [12]

point no. x-coord. [m] y-coord. [m] z-coord. [m]

1 -10 -5.25 3.75
2 -9 -1.25 -9.25
3 -11 1.75 8.75
4 -10 6.75 -5.25
5 9 -6.25 4.75
6 10 -2.25 -8.25
7 11 0.75 9.75
8 10 5.75 -4.25

The direct least squares solution for fitting a plane in

3D was derived by employing the presented mathematical

approach. Equation (76) results in a cubic equation with

three solutions for the unknown parameter

^k =

⎧⎪⎨⎪⎩
808.2763501846

416.6394328791

142.0842169363 (
^kmin)

(84)

The solution
^kmin can be used to obtain a direct LS estima-

tion for the adjusted plane parameters A, B and C, which
are presented in Table 10.

Table 10: Direct LS solution for plane fit in 3D

Estimated plane parameters LS solution

Parameter ^A -0.0448859450686
Parameter ^B -0.9780188144589
Parameter ^C -0.2036282163638

Derived plane parameters

Parameter α̂ = − ^A
^C

-0.2204308708793
Parameter ^β = − ^B

^C
-4.8029631252650

Furthermore, the unknown plane parameters α and

β were estimated according to the presented TLS model.

Thus, the determinant of Eq. (83) leads to a cubic char-

acteristic equation with three solutions for the unknown

eigenvalues

^λ =

⎧⎪⎨⎪⎩
808.2763501846

416.6394328791

142.0842169363 (
^λmin)

(85)

The TLS solution for the adjusted plane parameters

can be obtained by employing the minimum eigennvalue

principle, using the eigenvector that corresponds to the

smallest eigenvalue. The results are listed in Table 11.

Table 11: TLS solution for plane fit in 3D

Estimated plane parameters TLS solution

Parameter α̂ -0.2204308708793
Parameter ^β -4.8029631252650

Various TLS solutions from several algorithms for the

requested plane parameters have been presented in [12].

Their eigenvalue solution coincides with our solution and

can be found in Table 12.

Table 12: Eigenvalue solution from [12]

Estimated plane parameters TLS solution

Parameter α̂ (Easterly slope) -0.22043
Parameter ^β (Northerly slope) -4.80296
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The results coming both from TLS and the developed

direct LS solution for the non-linear case of fitting a plane

in space are identical, corresponding to equal character-

istic equations. It has been demonstrated that both solu-

tions coincide numerically with that of [12].

5 2D Similarity transformation
The last case under investigation is the 2D similarity trans-

formation of coordinates, which is one of the most fre-

quent geodetic and photogrammetric applications. A first

attempt to estimate the TLS solution of the problem using

SVD was that of Felus and Schaffrin [11] by presenting a

Strucured TLS (STLS) algorithm for solving the problem.

Neitzel [14] has shown that this algorithmneeds to bemod-

ified for estimating the correct solution. For this reason,

the same problemwas examined again and amodified ap-

proach has been presented in [15]. The latter solution is it-

erative, however, it is stated that a TLS solution using SVD

could be possible. Here, a new approach is presented for

a direct solution of the problem (LS, and also TLS solution

via SVD).

The well-known equation for the planar coordinate

transformation can be given as[︃
Xi
Yi

]︃
=

[︃
cosϕ − sinϕ
sinϕ cosϕ

]︃[︃
µ 0

0 µ

]︃[︃
xi
yi

]︃
+

[︃
tx
ty

]︃
,

(86)

see for example [11]. Equation (86) can be rewritten as

Xi = (µ cosϕ)xi − (µ sinϕ)yi + tx
Yi = (µ sinϕ)xi + (µ cosϕ)yi + ty ,

(87)

with i = 1, ..., n being the number of the observed homol-

ogous points between the source xy and the target XY sys-

tem. The unknown transformation parameters between

the two systems are:

– ϕ = rotation angle

– µ = scale factor
– tx = translation in x-direction
– ty = translation in y-direction

By substituting

ξ
1
= µ cosϕ and ξ

2
= µ sinϕ, (88)

we obtain the simplified equation system

Xi = ξ1 xi − ξ2 yi + tx
Yi = ξ2 xi + ξ1 yi + ty .

(89)

For a realistic functional model the translation vector has

to be present. However, the elimination of the translations

(elimination of two unknown parameters) is possible and

can be proven in the same way as for the previous investi-

gated cases by showing that

tx = Xc − ξ1 xc + ξ2 yc ,
ty = Yc − ξ2 xc − ξ1 yc .

(90)

with xc and yc denoting the coordinates of the centre of

mass of the points in the source system and Xc and Yc in
the target system. The latter coordinates can be computed

by

xc =
1

n

n∑︁
i=1

xi , yc =
1

n

n∑︁
i=1

yi ,

Xc =
1

n

n∑︁
i=1

Xi , Yc =
1

n

n∑︁
i=1

Yi .
(91)

Therefore, a reduction of all coordinates to the centre of

mass leads to a simplified model for the reduced coordi-

nates

X′
i = ξ1 x′i − ξ2 y′i

Y ′
i = ξ2 x′i + ξ1 y′i .

(92)

5.1 LS 2D similarity transformation

In order to obtain a direct solution in the same manner

as in the previous sections, an additional unknown pa-

rameter will be taken into consideration. The functional

model of Eq. (92) can be rewritten equivalently to the over-

parametrized system of equations

−𝛾 X′
i = α x′i − β y′i ,

−𝛾 Y ′
i = β x′i + α y′i .

(93)

with

ξ
1
= −

α
𝛾

and ξ
2
= −

β
𝛾
. (94)

The enforced additional unknown parameter (𝛾 can

be seen as an additional parameter) requires to apply a re-

striction between the unknowns. For the purposes of this

research, a meaningful constraint is chosen as

α2 + β2 + 𝛾2 = 1. (95)

The coordinates of the points in both coordinate systems

are subject to measurement errors. By employing the least

squares criterion, the goal is to minimize the errors in all

homologous points and in both directions. This is equiv-

alent to the minimization of the euclidean distances be-

tween the points in the target system and the transformed

homologous points from the source system

n∑︁
i=1

D2

i → min, (96)
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with the distances between two homologous points ex-

pressed as

D2

i = (α x′i − β y′i + 𝛾 X′
i)
2

+(β x′i + α y′i + 𝛾 Y ′
i )
2

.

(97)

Therefore, the objective function is

Ω(α, β, 𝛾) =
n∑︁
i=1

D2

i

=

n∑︁
i=1

[︁
(α x′i − β y′i + 𝛾 X′

i)
2

+(β x′i + α y′i + 𝛾 Y ′
i )
2

]︁
.

(98)

A LS solution for the unknown transformation param-

eters α, β and 𝛾 is desired, that minimizes the objective

function of Eq. (98) under the constraint (95). The La-

grange function can be built as

K(α, β, 𝛾, k) = Ω(α, β, 𝛾) − k(α2 + β2 + 𝛾2 − 1). (99)

A differentiation of the Lagrangian K with respect to

the unknown transformation parameters α, β and 𝛾 re-

sults, when setting the partial derivatives to zero, in the

following system of equations

∂K
∂α = α

(︂ n∑︁
i=1

x′i
2

+

n∑︁
i=1

y′i
2

− k
)︂

+𝛾

(︂ n∑︁
i=1

x′iX′
i +

n∑︁
i=1

y′iY ′
i

)︂
= 0,

(100)

∂K
∂β = β

(︂ n∑︁
i=1

x′i
2

+

n∑︁
i=1

y′i
2

− k
)︂

+𝛾

(︂ n∑︁
i=1

x′iY ′
i −

n∑︁
i=1

y′iX′
i

)︂
= 0,

(101)

and

∂K
∂𝛾 = α

(︂ n∑︁
i=1

x′iX′
i +

n∑︁
i=1

y′iY ′
i

)︂
+β
(︂ n∑︁

i=1
x′iY ′

i −
n∑︁
i=1

y′iX′
i

)︂
+𝛾

(︂ n∑︁
i=1

x′i
2

+

n∑︁
i=1

y′i
2

− k
)︂
= 0,

(102)

subject to α2 + β2 + 𝛾2 = 1. Similarly to the previous cases

it is possible to estimate k by solving⃒⃒⃒⃒
⃒⃒⃒ (v

1
− k) w

1
w
2

w
1

(v
1
− k) w

3

w
2

w
3

(v
2
− k)

⃒⃒⃒⃒
⃒⃒⃒ = 0, (103)

which leads to a cubic equationwith one unknownparam-

eter. The respective elements are

v
1
=

n∑︁
i=1

x′i
2

+

n∑︁
i=1

y′i
2

, v
2
=

n∑︁
i=1

X′
i
2

+

n∑︁
i=1

Y ′
i
2

,

w
1
= 0, w

2
=

n∑︁
i=1

x′iX′
i +

n∑︁
i=1

y′iY ′
i ,

and w
3
=

n∑︁
i=1

x′iY ′
i −

n∑︁
i=1

y′iX′
i .

(104)

The solution for the adjusted transformation param-

eters α, β and 𝛾 can be estimated either by substituting

parameter kmin to Eq. (100) - (102) or by transforming the

determinant of Eq. (103) into an eigenvalue problem.

5.2 TLS 2D similarity transformation

In this section a new approach for the TLS solution of the

2D similarity transformation is presented. By utilizing the

functional model of Eq. (92) and following the same ap-

proach as in the previous cases we can built the TLS ad-

justment model with the relevant matrices

A =

⎡⎢⎢⎢⎢⎢⎢⎣
x′
1
−y′

1

y′
1

x′
1

.

.

.

.

.

.

x′n −y′n
y′n x′n

⎤⎥⎥⎥⎥⎥⎥⎦ , EA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ex′
1

−ey′
1

ey′
1

ex′
1

.

.

.

.

.

.

ex′n −ey′n

ey′n ex′n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

l =

⎡⎢⎢⎢⎢⎢⎢⎣
X′
1

Y ′
1

.

.

.

X′
n
Y ′
n

⎤⎥⎥⎥⎥⎥⎥⎦ , el =
⎡⎢⎢⎢⎢⎢⎢⎣
eX

1

eY
1

.

.

.

eXn
eYn

⎤⎥⎥⎥⎥⎥⎥⎦ , x̂ =

[︃
^ξ
1

^ξ
2

]︃
. (105)

The augmented matrix [A, l] can be described in this case

by

[A, l] =

⎡⎢⎢⎢⎢⎢⎢⎣
x′
1
−y′

1
X′
1

y′
1

x′
1

Y ′
1

.

.

.

.

.

.

.

.

.

x′n −y′n X′
n

y′n x′n Y ′
n

⎤⎥⎥⎥⎥⎥⎥⎦ . (106)

The essential right eigenvectors of the augmentedma-

trix can then be derived by the eigenvalue/eigenvector de-

composition of the squared matrix

[A, l]T[A, l] =

⎡⎢⎣ v
1

w
1

w
2

w
1

v
1

w
3

w
2

w
3

v
2

⎤⎥⎦ = B, (107)
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with the respective elements from Eq. (104). The solution

for the transformation parameters is determined from the

generalised eigenvalue problem by solving⃒⃒⃒⃒
⃒⃒⃒ (v

1
− λ) w

1
w
2

w
1

(v
1
− λ) w

3

w
2

w
3

(v
2
− λ)

⃒⃒⃒⃒
⃒⃒⃒ = 0. (108)

As expected, the derived determinant of Eq. (108) is iden-

tical to the one of the direct solution of Eq. (103). Certainly,

the resulting cubic equation for the solution of the only un-

known term k is identical to the characteristic equation of
the eigenvalues λ, too.

5.3 Numerical example - 2D similarity
transformation

The dataset of the numerical example for the case of the

2D similarity transformation contains the 2D coordinates

of homologous points in two coordinate systems and can

be found in Table 13. The observations respectively the co-

ordinates of the points are assumed to be equallyweighted

and uncorrelated. The data originates from [32, pp.397-

402], while the same example has been utilised in [14].

Table 13: Example dataset for the 2D similarity transformation

Point no. Target S. Source S.
i Xi[m] Yi[m] xi[m] yi[m]

1 -117.478 0 17.856 144.794
2 117.472 0 252.637 154.448
3 0.015 -117.41 140.089 32.326
4 -0.014 117.451 130.40 267.027

The results of theGHM for the adjusted transformation

parameters between the coordinate systems presented in

Table 14 originate from the contribution of Neitzel [14]. In

this case an iterative solution was employed for deriving

the requested transformation parameters ξ
1
and ξ

2
.

The developed direct LS solution for the 2D similar-

ity transformation is presented in Table 15. The adjusted

transformation parameters α, β and 𝛾 can be used to com-

pute the parameters ξ
1
and ξ

2
from Eq. (94).

Based on the solution of Eq. (108) and the minimum

eigenvalue principle, it is possible to obtain the TLS so-

lution for the adjusted transformation parameters of the

same dataset. The TLS results are presented in Table 16.

Furthermore, it is possible to derive the primal trans-

formation parameters between the two coordinate sys-

tems. The rotational angle ϕ as well as the scale factor µ

Table 14: Results from [14]

Estimated parameters GHM solution

Parameter ^ξ
1

0.99900748077781
Parameter ^ξ

2
-0.04109806319405

Scale factor µ̂ 0.99985248784424
Rotational angle ^ϕ -2o21′20.72′′

Translation parameter ^tx -141.2628 mm
Translation parameter ^ty -143.9316 mm

Table 15: Direct LS solution for the 2D similarity transformation

Estimated parameters LS solution

Parameter ^ξ
1
= −

α̂
𝛾̂

0.99900748077781

Parameter ^ξ
2
= −

^β
𝛾̂

-0.04109806319405

Table 16: TLS solution for the 2D similarity transformation

Estimated parameters TLS solution

Parameter ^ξ
1

0.99900748077781
Parameter ^ξ

2
-0.04109806319405

can be computed by substituting the estimated terms
^ξ
1

and
^ξ
2
into Eq. (88). Thus, the rotational angle is

^ϕ = arctan

(︃
^ξ
2

^ξ
1

)︃
(109)

and the scale factor

µ̂ =
^ξ
1

cos
^ϕ
. (110)

Similarly, the translation parameters tx and ty can be com-

puted by Eq. (90). The solution of the latter transformation

parameters coming from the direct LS approach, as well as

from TLS, is identical with the presented solution of [14] in

Table 14.

It has been shown also for this problem that the de-

veloped direct LS solution is identical to the TLS solution

and both of them correspond numerically with the results

obtained from the rigorous GHM.

6 Discussion and Conclusions
Within this study a mathematical relationship between

TLS and possible direct LS solutions for four individual

non-linear problems is developed. The investigated cases

are the fit of a straight line in 2D and 3D, the fit of plane
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in 3D and the 2D similarity transformation of coordinates,

with themeasurements being equallyweighted anduncor-

related. It has been shown that all cases investigated here

can be regarded as a group of non-linear problems, which

can be transformed in such a way that a direct solution is

possible. The following common features were identified

for all the developed direct LS solutions:

1. A non-linear and over-parametrised functional

model was used to express each individual prob-

lem, see for example Eq. (7) for fitting a straight line

to a 2D point set.

2. A reduction of the observed coordinates to the cen-

tre of mass was proven in any case to be admissible.

Moreover, this reduction leads everytime to the elim-

ination of some unknown parameters.

3. Choosing an appropriate restriction between the

unknown parameters for the adjustment of each

investigated problem, it was possible to obtain an

apparently linear relationship between the observa-

tions and the unknowns.

4. The developed objective function forminimising the

sum of squared residuals leads always to a homo-

geneous system of normal equations which is linear

with respect to the unknown parameters and has a

direct solution.

5. The derived direct solutions have been proven to be

identical with the TLS solutions obtained by using

SVD.

For fitting a straight line in 2D with the coordinates

in both directions subject to measurements errors, a di-

rect solution was derived by solving an eigenvalue prob-

lem that leads to a characteristic equation (i.e. a quadratic

equation), which is similar to the solution presented in

[19]. An identical solution (and identical characteristic

equation) was obtained also from the TLS adjustment us-

ing SVD. On a numerical example it has been shown that

the results of the developed direct solution coincide ex-

actly with the TLS solution and the iterative non-linear

GHM of [13].

Also for the next two examples it is already known that

a direct solution exists. In [16] the case of fitting a straight

line to 3D is covered, while in [19] the problem of fitting

a plane in 3D was investigated. Here the equivalence of

these two direct LS solutions with those of TLS using SVD

is clearly demonstrated and a novel TLS solution for fitting

a straight line in a 3D point cloud is presented. Moreover,

the methodology applied is the same as in the first case.

The last discussed case in this contribution is the 2D

similarity transformation of coordinates. The TLS solution

of the problem using SVD has been presented in the first

place by Felus and Schaffrin [11]. However, Neitzel [14]

obtained the LS solution of the same problem by means

of an iterative linearized GHM and showed that modifica-

tionswere necessary in the TLS algorithmof [11]. The corre-

sponding modified TLS solution of the same problem was

presented in [15]. The latter TLS solutionhasbeenobtained

iteratively and a solution via SVD is not clearly defined

there, however, it is stated that such a solution is possible.

In this contribution a direct solution is presented for

the 2D similarity transformation of coordinates. The coor-

dinates of the points in both the target and the source sys-

tem are regarded as uncorrelated observations, subject to

measurements errors. Additionally, a novel approach for a

TLS solution with SVD is derived. It has been shown that

both the direct and TLS solution are identical and they co-

incide numerically with the solution from [14].

In contrast to TLS, the developed systematic approach

for solving directly non linear LS problems provides a clear

description of the observed quantities and the unknown

parameters of the problem. An optimal solution can be

estimated by minimizing a clearly defined objective func-

tion which is based on the method of LS. The investigated

class of problems leads always to a system of normal equa-

tions that can be solved with various techniques, for ex-

ample SVD or EVD. Therefore, the clarity of the developed

method can enable scientists to deeply understand the

concept of TLS and set it under scrutiny when it comes to

the solution of non-linear LS problems.

Now, it is clear that a direct solution exists for a cer-

tain class of non-linear LS problems that includes the four

investigated cases. The derived direct LS solution was ob-

tained in all cases by solving a characteristic equation,

which was always identical to the characteristic equation

of the eigenvalues from the corresponding TLS solution.

The choice between the twooptions for a solution is always

on the user’s preference. Therefore, this contribution can

serve as a systematic approach for solving directly nonlin-

ear LS problems, even if the user has never been in contact

with the "TLS-world".
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