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Abstract 

In engineering geodesy point clouds derived from terrestrial laser scanning or from photogrammetric approaches are 
almost never used as final results. For further processing and analysis a curve or surface approximation with a 
continuous mathematical function is required. In this paper the approximation of 2D curves by means of splines is 
treated. Splines offer quite flexible and elegant solutions for interpolation or approximation of “irregularly” distributed 
data. Depending on the problem they can be expressed as a function or as a set of equations that depend on some 
parameter. Many different types of splines can be used for spline approximation and all of them have certain advantages 
and disadvantages depending on the approximation problem. In a series of three articles spline approximation is 
presented from a geodetic point of view. In this paper (Part 1) the basic methodology of spline approximation is 
demonstrated using splines constructed from ordinary polynomials and splines constructed from truncated polynomials. 
In the forthcoming Part 2 the notion of B-spline will be explained in a unique way, namely by using the concept of 
convex combinations. The numerical stability of all spline approximation approaches as well as the utilization of 
splines for deformation detection will be investigated on numerical examples in Part 3. 
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1 Introduction 
In engineering geodesy point clouds derived from areal (area-wise, in contrast to point-wise) measurement methods 
such as terrestrial laser scanning or photogrammetry are almost never used as final result. In computer-aided design 
(CAD) or deformation analyses a curve or surface approximation with a continuous mathematical function is required. 
An overview of curve and surface approximation of 3D point clouds, including polynomial curves, Bézier curves, B-
Spline curves and NURBS curves, is given by Bureick et al. [2016b]. This paper will focus on the approximation of 2D 
curves by means of splines. 

In the literature several different mathematical representations of splines can be found. The notion of spline, however, is 
almost always related to B-splines as pointed out by Lucas [2003]. In general, the goal of this article is to describe, in a 
most comprehensible way, different mathematical representations of a spline in 2D and its utilization in data 
approximation. In this article only univariate splines are used, in a form of a spline function or in a form of a parametric 
spline curve. For the approximation the minimization of L2 norm (least-squares adjustment) is used. 

When it comes to teaching or explaining splines, throughout the literature various approaches can be found. In general, 
they start with a brief or long historical introduction, sometimes with a quite elaborate explanation of their development 
as presented e.g. by Farin [1993]. However, the discussion of splines, in most of the literature, quickly turns into 
elaboration of Bézier curves and B-splines (basis splines), see e.g. the textbooks by De Boor [1978] or Farin [1993]. 
For a person not familiar with Bézier curves or B-splines this transition seems quite unnatural and confusing. In 
addition, one can get a false impression that splines can be represented only in those forms. 

Another important point is that beside the complex and non-intuitive mathematical formulation of the B-splines, it is 
hard to find an explicit and comprehensive derivation in the literature. In that fashion, usually for the computation of a 
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B-spline, immediately the De-Boor’s algorithm [De Boor 1986] is prescribed as a recipe, and the further computation is 
performed without any deeper understanding of the B-splines as such. Our impression is that in some articles the B-
spline approximation is done even without any deeper understanding of least-squares adjustment. However, the B-
splines and NURBS, see e.g. the textbook by Piegl and Tiller [2012], were mainly developed and widely used in the 
field of computer graphics. Their intensive use in this field significantly influenced the use of B-splines in many other 
fields as well. Therefore, it is natural that all methods for spline computation (interpolation, approximation, smoothing 
etc.) are mainly interpreted in the above mentioned ways. 

When it comes to quantitative analysis, almost in all of the listed literature regarding the cubic spline and especially the 
B-spline approximation, there is no proper quality assessment in the sense that there is almost no interpretation of the 
residuals, no standard deviations, no reliability measures. The final result is lacking quantitative information about 
precision and reliability. Thus, there is no numerical justification for the quality of the approximation. In all examples 
results are interpreted mainly by visualization. It is completely understandable that the quantification is not of crucial 
importance in computer graphics, because the approximation is used mainly for getting a result which satisfies aesthetic 
requirements. On the contrary, in geodesy quality assessment is a process, which is as important as the data 
approximation. 

In the field of geodesy, the notion of splines, particularly the spline approximation is considered in a different way. 
However, the existing literature in general does not clearly elaborate these notions, since there is a lack of simple and 
comprehensible publications on splines. Therefore, this article is a qualitative research on the topic of splines, from a 
geodetic point of view, which elaborates in details the univariate spline approximation in most of its forms.   

The main goal of this contribution is a detailed description of how to derive and interpret different types of splines 
(without B-splines) from a geodetic point of view. This comprises, after the definition of a spline in section 2, the 
following objectives: 

(i) Spline function constructed from ordinary cubic polynomials (Section 3). 
(ii) Spline function constructed from truncated polynomials (Section 4). 
(iii) Spline curve constructed from ordinary cubic polynomials (Section 5). 

In all three cases a piecewise approximation with polynomials of degree three with constraints for continuity, 
smoothness and curvature is applied. In (i) and (ii) spline functions in the form ( )y f x  are used. In (i) the constraints 

for continuity, smoothness and curvature are formulated explicitly while the constraints in (ii) are implicitly taken into 
account. Thus (i) and (ii) are equivalent formulations for the same problem. In (iii) spline functions of the form 

1( )x f t  and 2 ( )y f t  are applied. In contrast to (i) and (ii), x and y are considered independently of each other which 

enables the representation of arbitrary curves. 

In Part 2 of a series of three articles a clear and comprehensive explanation of B-splines from a geodetic point of view 
will be elaborated. In Part 3 the considered approaches for spline approximation will be compared by using numerical 
examples. 

2 Definition of a spline 
Historically the word “spline” appears in the naval industry. It is a thin rod of some flexible material equipped with a 
groove and a set of weights (called ducks or rats) with attached arms designed to fit into the groove, see Figure 1. Such 
device was used by architects (particularly naval architects) for drawing smooth curves trough a set of given points. To 
accomplish this, the spline was forced to pass through the given points by adjusting the location of the ducks along the 
rod. 
 

 
 

Figure 1: Spline and ducks 
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The situation in Figure 1 can be seen as a mechanical realization of a spline interpolation where one tries to interpolate 
given knots by means of piecewise continuous polynomials which meet at these knots. Considering a 2D Cartesian 
coordinate system, see Figure 2, the coordinates of knots are denoted by ( , )

j jk kx y ; hence j = 0, 1, …, n is the index 

(ordinal number) of the knot and n the number of segments. Character k stands for “knot” and is not an index; hence 

jkx  means “x-value of the knot j”. 

Schumaker [2007, p. 6] explains that in the mid-1700s the following was discovered by Euler and the Bernoulli 
brothers. Knowing that the shape of such a bent rod has smallest strain energy, they found how to approximate its 
centerline with a function. To illustrate it, suppose that the points of contact of the ducks with the spline are located at 
the points ( , )

j jk kx y  for j = 0, 1, ..., n in a Cartesian plane as depicted in Figure 2. Then the centerline of the spline is 

approximately given by the function S(x) with the following properties: 

1. S(x) is a piecewise cubic polynomial with knots at 
0kx , 

1kx , …, 
nkx , 

2. S(x) is a linear polynomial for x ≤ 
0kx  and x ≥ 

nkx , 

3. S(x) has two continuous derivatives everywhere, 
4. ( )

j jk kS x y  for j = 0, 1, ..., n. 

Schumaker [2007, p. 7] concludes that, defined like this, S(x) (see Figure 2) represents, in a way, the best interpolating 
function. This is one of the reasons why the cubic spline is accepted as the most relevant of all splines. Consequently, 
later in mathematics the term “spline” refers to a smooth piecewise polynomial function. It is widely accepted that it is 
initially introduced by Schoenberg [1946]. The main motivation for introduction of splines is creation of a stable 
interpolating function through an arbitrary number of points, which would preserve the smoothness (curvature) as well 
as the shape of the dataset. The preservation of the curvature at the knots is of crucial importance, e.g. in engineering 
(railways, roads, etc.). 
 

y

1kx
1jkx
 jkx

1jkx
 nkx

1( )S x
( )jS x

1( )jS x
( )nS x

x
1nkx
0kx

 

Figure 2: Spline interpolation 

 
According to the above mentioned properties we can define a spline function as 

 

0 1

1

1

1( ),

( ),( )

( ),

j j

n n

k k

j k k

n k k

S x x x x

S x x x xS x

S x x x x





 


   


  




  , (1) 

where the function for a cubic polynomial in each segment j can be written as 

 2 3
0 1 2 3( ) , 1,2, ,

j j j jjS x a a x a x a x j n      . (2) 

The property that the spline has to meet exactly the data at the given knots yields the conditions 

 
1 1

( )
j jj k kS x y
 

  and ( )
j jj k kS x y ,   1, 2, ,j n  . (3) 

The property that S(x) has two continuous derivatives everywhere yields the constraints 
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 1( ) ( ) , 1, 2, , 1
j jj k j kS x S x j n    , (4) 

 1( ) ( ) , 1, 2, , 1
j jj k j kS x S x j n    . (5) 

From equation (2) and Figure 2 we can notice n polynomial functions Sj(x) and n + 1 knots. Since the cubic function 
has four parameters, the spline S(x) has 4n unknowns. From (3) we obtain 2n and from (4) and (5) we get 2(n – 1) 
condition equations. This results in 4n – 2 condition equations to solve for 4n unknowns and hence the equation system 
is underdetermined. 

To solve this problem, arbitrary conditions can be introduced, but usually the missing constraints are introduced at the 
first and the last knot. Three types of conditions, also denoted as “boundary conditions” are commonly used, see e.g. 
the handbook of mathematics by Bronshtein and Semendyayev [2007, p. 931]: 

a) 
0

( ) ( ) 0
nk kS x S x   , yielding a so-called natural spline, 

b) 
0 0( ) , ( )

nk k nS x f S x f     where 0f   and nf   are given values, 

c) 
0

( ) ( )
nk kS x S x , in the case of 0 nf f , 

0
( ) ( )

nk kS x S x   and 
0

( ) ( )
nk kS x S x  , yielding a periodic spline. 

Notice that the “boundary condition” a) is equivalent with the “property” 2. in the above definition of Schumaker 
[2007, p. 6] which describes the behavior of an elastic rod, which outside the region delimited by knots adopts the 
(natural) linear form ( 0S   ). The determination of the coefficients for the cubic interpolation spline is explained e.g. 
in the aforementioned handbook by Bronshtein and Semendyayev [2007, p. 932]. 

The main application of spline interpolation is designing curves through a sparse sequence of data points. For example 
in CAD the user wants to obtain an aesthetically pleasing curve even when the data points that are used as knots for the 
resulting spline are quite sparse. 

In engineering geodesy this situation changes since from modern sensors such as terrestrial laser scanners very dense 
sequences of data points can be captured with high acquisition speed of up to one million points per second. Due to the 
high point density and the fact that measurements are affected by random measurement errors, it is no longer 
appropriate to apply a spline interpolation. Observation errors and other abrupt changes in the data points would be 
modeled, resulting in a strongly oscillating spline. The solution is to divide the sequence of points into not so many 
intervals determined by the predefined knots. Within these intervals we consider an overdetermined configuration and 
hence the parameters of a piecewise cubic polynomial can be computed via least-squares adjustment. Conditions for 
smoothness at the knots (where two polynomials meet) can be introduced as additional constraints. 

This case, where the spline does not follow all the data points exactly but as close as possible under a predefined target 
function, e.g. sum of the weighted squared residuals, is called spline approximation, see Figure 3. In the following 
different approaches for spline approximation will be elaborated. 
 

y

1kx
1jkx
 jkx

1jkx
 maxx

1( )S x
( )jS x

1( )jS x

( )nS x

x
1nkx
minx

 

Figure 3: Spline approximation 

 

3 Spline function constructed from ordinary cubic polynomials 
The spline function constructed from ordinary cubic polynomials offers the most intuitive approach to the problem from 
a geodetic point of view. For formulating this approximation problem, cubic polynomials are used for each piece of the 
spline. Furthermore, three different equations are introduced as additional constraints at the knots. The values yi are 
introduced as observations, the values xi are introduced as fixed (error-free) values. Examples for this case are: 
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- Signal registration at certain time intervals, whereby the time measurement is much more precise than the signal 
registration and can therefore be regarded as error-free. 

- Measurements at fixed sensor positions, e.g. measurement of the vertical component during a load test of a structure 
with displacement sensors located at fixed positions. 

- Approximation of point clouds to obtain a result which satisfies aesthetic requirements and where the interpretation of 
residuals (e.g. for deformation analysis) is not the main focus. 

In the following we always consider an overdetermined configuration that enables us to compute the parameters of the 
spline via least-squares adjustment (L2 norm minimization). In contrast to spline interpolation, in spline approximation 
a solution can be found from minimization of the sum of the weighted squared residuals without imposing any extra 
conditions to the first and the last point of the spline. Conditions for smoothness at the “inner” knots can be introduced 
as additional constraints. 

A cubic spline approximation as a special case of restricted least squares is proposed by Buse and Lim [1977]. 
However, they introduced constraints at the end nodes, and their solution for the system of equations is slightly 
different. There is also a solution without constraints at the end knots, proposed by Klaus and Van Ness [1967], but 
with a different mathematical definition of the spline, which was initially published by Walsh et al. [1962]. It should be 
emphasized that the spline approximation approach proposed in this section is not new and probably was already used 
before. However, the authors were not able to find a publication where exactly the same approach is presented. 

3.1 Definition of the problem 
Let: 
 1 2, , , , ,

j j j ji my y y y   be a sequence of observed values within an interval j, with mj being the number of 

observations within the interval j, 
 2

0LL LLΣ Q  be the variance-covariance matrix of all observations 
jiy , 

 1 2j j j ji mx x x x       be a non-decreasing sequence of error-free values referring to the observations within 

an interval j, and 
 

1 2 1j nk k k kx x x x


       be a non-decreasing sequence of user-defined values for the knots on the x-axis which 

are regarded as error-free. As mentioned before, the first knot 
0kx and the last knot 

nkx , see Figure 2, have no 

particular influence on the adjustment, they are just 
0 minkx x  and maxnkx x . Therefore, when the positioning of the 

knots is discussed we refer only to the knots 
1 1
, , , ,

j nk k kx x x


  , see Figure 3, on which some constraints are imposed. 

The positioning of the knots plays a key role in spline approximation problems. This problem is further discussed in 
section 3.4. 

To determine: 
• 

1 1 1 10 1 2 3 0 1 2 3 0 1 2 3( , , , ), , ( , , , ), , ( , , , )
j j j j n n n n

a a a a a a a a a a a a   which represent a set of parameters for the cubic 

polynomials ( )jS x  that has to be estimated for all intervals 
1

[ , )
j jk kx x


. 

According to (2) the functional model for the cubic polynomials reads 

 2 3
0 1 2 3( )

j j j j j j j j ji j i i i iy S x a a x a x a x       , (6) 

with j = 1, 2, ..., n as index for an interval 
1

[ , )
j jk kx x


. Furthermore, i = 1, 2, ..., mj represents an index for all pairs of 

observed and fixed values within an interval j. 

Since we consider an overdetermined system of equations, a spline approximation is performed without putting any 
extra conditions on the first and the last knots of the spline. The dataset is subdivided into intervals w.r.t. the x-axis by 
predefined knots. For each interval 

1
[ , )

j jk kx x


 there is a set of at least two pairs of values ( , )
j ji ix y  inside of it. 

According to (3), (4) and (5) for constructing a spline, the conditions 

 1( ) ( ) , 1, , 1
j jj k j kS x S x j n     , (7) 

 1( ) ( ) , 1, , 1
j jj k j kS x S x j n      , (8) 

 1( ) ( ) , 1, , 1
j jj k j kS x S x j n     (9) 
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are imposed on the knots. These knots 
jkx  are also coordinates on the x-axis but their number and their values are 

freely specified, or can be determined by some knot placement strategy, see section 3.4. 

After defining all these quantities, we can create a spline approximation from an overdetermined configuration using 
the Gauss-Markov model with additional constraints for the unknowns. 

3.2 Formulation of the adjustment problem 
Based on the functional model (6) considering 

jiy  as observations and 
jix  as fixed values the observation equations 

 

1 1 1 1 1 1 1 1 1

2 3
0 1 2 3 1

2 3
0 1 2 3

2 3
0 1 2 3

ˆ ˆ ˆ ˆ 1, , ,

ˆ ˆ ˆ ˆ 1, , ,

ˆ ˆ ˆ ˆ 1, ,

j j j j j j j j j

n n n n n n n n n

i i i i i

i i i i i j

i i i i i n

y v a a x a x a x i m

y v a a x a x a x i m

y v a a x a x a x i m

     

     

     









 (10) 

for each segment j = 1, …, n of the spline can be set up. The construction of the observation vector is presented in two 
steps. First, all observation vectors for each segment of the spline are introduced as 

 

1 1 1 1

T

1 1 2 3

T

1 2 3

T

1 2 3

,

,

.

j j j j

n n n n

m

j m

n m

y y y y

y y y y

y y y y

   

   

   

L

L

L











 (11) 

Afterwards, these vectors are concatenated in one observation vector 

 
TT T T

1 j n   L L L L  . (12) 

The constraint equations 

 

1 1 1 1 1 1 1 2 2 1 2 1 2 1

2 2 2 2 2 2 2 3 3 2 3 2 3 2

1 1 1 1 1 1 1 1 1

2 3 2 3
0 1 2 3 0 1 2 3

2 3 2 3
0 1 2 3 0 1 2 3

2 3 2
0 1 2 3 0 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
n n n n n n n n n n n n n

k k k k k k

k k k k k k

k k k k k

a a x a x a x a a x a x a x

a a x a x a x a a x a x a x

a a x a x a x a a x a x a
        

      

      

      



1

3

nkx


 (13) 

enforce the spline to be continuous at the knots. The next set of constraint equations 

 

1 1 1 1 1 2 2 1 2 1

2 2 2 2 2 3 3 2 3 2

1 1 1 1 1 1 1

2 2
1 2 3 1 2 3

2 2
1 2 3 1 2 3

2 2
1 2 3 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ2 3 2 3 ,

ˆ ˆ ˆ ˆ ˆ ˆ2 3 2 3 ,

ˆ ˆ ˆ ˆ ˆ ˆ2 3 2 3
n n n n n n n n n n

k k k k

k k k k

k k k k

a a x a x a a x a x

a a x a x a a x a x

a a x a x a a x a x
      

    

    

    


 (14) 

enforces the spline to have the first derivative at the knots. This implies that the spline will have smooth transition at the 
knots. The last set of constraint equations 

 

1 1 1 2 2 1

2 2 2 3 3 2

1 1 1 1

2 3 2 3

2 3 2 3

2 3 2 3

ˆ ˆ ˆ ˆ2 6 2 6 ,

ˆ ˆ ˆ ˆ2 6 2 6 ,

ˆ ˆ ˆ ˆ2 6 2 6
n n n n n n

k k

k k

k k

a a x a a x

a a x a a x

a a x a a x
   

  

  

  


 (15) 
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enforces the spline to have a second derivative at the knots, which implies that the curvature at the knots will be 
continuous. Rearranging the equations (13) - (15) yields for continuity 

 
1 1 1 1

2 3 2 3
0 1 2 3 0 1 2 3ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0 ,

j j j j j j j j j j j j j jk k k k k ka a x a x a x a a x a x a x
   

         (16) 

for smoothness it is 

 
1 1 1

2 2
1 2 3 1 2 3ˆ ˆ ˆ ˆ ˆ ˆ2 3 2 3 0 ,

j j j j j j j j j jk k k ka a x a x a a x a x
  

       (17) 

and for the curvature we obtain 

 
1 12 3 2 3ˆ ˆ ˆ ˆ2 6 2 6 0 .

j j j j j jk ka a x a a x
 

     (18) 

The vector of unknown parameters for each cubic polynomial in the spline can be formulated separately for each 
segment as 

 

1 1 1 1

T

1 0 1 2 3

T

0 1 2 3

T

0 1 2 3

ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ,

j j j j

n n n n

j

n

a a a a

a a a a

a a a a

   

   

   

X

X

X





 (19) 

and afterwards the entire vector of unknowns can be written as 

 
T

T T T
1

ˆ ˆ ˆ ˆ
j n

   X X X X  . (20) 

From the stochastic model 

 2
0LL LLΣ Q , (21) 

with 2
0  as theoretical variance factor the corresponding weight matrix is obtained from 

 1
LL
P Q , (22) 

supposing the cofactor matrix to be non-singular. Having a look at the observation equations (10) it is obvious that this 
spline approximation problem is linear and hence can easily be written in matrix notation 

 ˆ L v AX , (23) 

where A is the design matrix that contains the coefficients of the unknowns. Equation (23) together with (21) is denoted 
Gauss-Markov model, see e.g. the textbook by Niemeier [2008, p. 137]. Considering the sequence of the unknowns in 
(19) and (20) the design matrix for the first interval reads 

 

1 1 1

1 1 1

1 1 1

2 3
1 1 1

2 3
2 2 2

1

2 3

1

1

1 m m m

x x x

x x x

x x x

 
 
   
 
  

A
   

, (24) 

for the second interval we obtain 

 

2 2 2

2 2 2

2 2 2

2 3
1 1 1

2 3
2 2 2

2

2 3

1

1

1 m m m

x x x

x x x

x x x

 
 
   
 
  

A
   

. (25) 

This construction of Aj matrices continues until the end of the last interval. Finally the entire design matrix has the form 
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  1 ndiagA A A . (26) 

Having a look at the constraint equations (16) - (18) it is obvious that they are also linear and hence can easily be 
written in matrix notation 

 ˆ ,q C X 0  (27) 

with q =1, 2, 3, where the matrices Cq contain the coefficients of the unknowns. Every row of these matrices refers only 
to two consecutive intervals, i.e.: 

• Unknowns from the first row refer to the first two intervals, 
0 1

[ , )k kx x  and 
1 2

[ , )k kx x . 

• Unknowns from the second row refer to the second and the third interval, 
1 2

[ , )k kx x  and 
2 3

[ , )k kx x . 

• This continues until the last row where the unknowns refer to the last and its preceding interval, 
2 1

[ , )
n nk kx x
 

 and 

1
[ , )

n nk kx x


. 

Considering the sequence of the unknowns in (19) and (20) the matrix C1 that imposes continuity at the knots is 

 

1 1 1 1 1 1

2 2 2 2 2 2

1

2 3 2 3

2 3 2 3

1

3

1 1 0 0 0 0 0

0 0 0 0 1 1 0
.

0 0 0 0 0 0 0 0 0 0 0 0
n

k k k k k k

k k k k k k

k

x x x x x x

x x x x x x

x


    
 

      
 
  

C




   



 (28) 

Matrix C2 contains the coefficients from the equations of constraints that preserve the smoothness of the spline at the 
knots and is expressed as 

 

1 1 1 1

2 2 2 2

1

2 2

2 2

2

2

0 1 2 3 0 1 2 3 0 0 0 0 0

0 0 0 0 0 1 2 3 0 1 2 3 0
.

0 0 0 0 0 0 0 0 0 0 0 0 3
n

k k k k

k k k k

k

x x x x

x x x x

x


   
 

     
 
  

C




   



 (29) 

Matrix C3 contains the coefficients from the equations of constraints which enforce continuous curvature at the knots 
written as 

 

1 1

2 2

1

3

0 0 2 6 0 0 2 6 0 0 0 0 0

0 0 0 0 0 0 2 6 0 0 2 6 0
.

0 0 0 0 0 0 0 0 0 0 0 0 6
n

k k

k k

k

x x

x x

x


  
 

    
 
  

C




   


 (30) 

3.3 Least-squares adjustment 
We are facing a linear least-squares adjustment problem having a system of observation equations along with equations 
of constraints. For solution of such a system when constrained optimization is applied, the Lagrange multiplier method 
can be used. Therefore, we construct the Lagrange function and minimize it. First, the objective function is formulated 
as 

 T Tˆ ˆ ˆ( ) ( ) ( )    X v Pv AX L P AX L  (31) 

with the residuals 

 ˆ v AX L  (32) 

from (23). Afterwards, the constraint equations ˆ
q C X 0  are multiplied by the Lagrange multipliers 2λq for q =1, 2, 3 

and we obtain 

 ˆ2 q q C X 0 . (33) 
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The number 2 in 2λq does not change anything; it only makes the further minimization process easier. Furthermore, the 
Lagrange function is the sum of the objective function (31) and the function on the left side of constraint equations (33), 
and we obtain 

 T
1 2 3 1 1 2 2 3 3

ˆ ˆ ˆ ˆ( , , , ) 2 2 2         X v Pv C X C X C X . (34) 

For minimization of the objective function which is additionally constrained, we minimize the Lagrange function by 

taking the partial derivatives of (34) w.r.t. the unknowns X̂  and λq. Afterwards, every derivative is set to be equal to 
zero and we obtain 

 

T T T T T
1 1 2 2 3 3

1

2

3

ˆ ,

ˆ ,

ˆ ,

ˆ .

     







A PAX C C C A PL

C X 0

C X 0

C X 0

 (35) 

This system of matrix equations can be written in a matrix form 

 

T T T T T
1 2 3

1 1

2 2

3 3

ˆ





    
    
        
    

         

A PA C C C A PLX

C

C 0 0

C

, (36) 

and the solution for the unknowns can be derived by using matrix inversion. However, matrix inversion is prone to 
rounding errors and even the use of double-precision floating-point format for computation is in many cases not 
sufficient. An error analysis in matrix computations and alternative direct and iterative solutions for linear systems can 
be found e.g. in the comprehensive textbooks by Golub and Van Loan [1996] or Björck [2015]. 

After the solution is obtained, we can compute the residuals from (32) and the a posteriori estimate of the reference 
standard deviation from 

 
T

0s
r


v Pv

, (37) 

where r is the redundancy of the adjustment problem. For quality assessment of the adjustment results the cofactor 
matrix Qxx for precision measures and Qvv for reliability measures can be computed with the formulas that can be found 
e.g. in the textbook by Niemeier [2008]. The value s0 can be applied in knot placement strategies described in the next 
section. 

3.4 Knot placement strategies 
The distribution of the knots plays a crucial role in spline approximation problems and can be considered as a separate 
scientific topic. The basic problem comprises two fundamental challenges: 

1. systematic or heuristic choice of the knots, 

2. selection of suitable quality criteria according to which the resulting spline approximation can be assessed. 

According to these specifications, the nodes are rearranged in an iterative process until the quality criteria are met. 

As an example for a knot placement strategy let us take the one presented by Gálvez et al. (2015) where a sophisticated 
evolutionary approach is applied for the choice of the knots. As quality criteria they applied the root mean square error 
(RMSE) which is equivalent to the reference standard deviation (37). Noting that the best RMSE might be obtained at 
the expense of a large number of variables, possibly leading to overfitting, Gálvez et al. (2015) also computed AIC 
(Akaike Information Criterion) and BIC (Bayesian Information Criterion) functions to provide an adequate trade-off 
between the quality of approximation and the complexity of the model. 

In this article we do not focus on the development of new knot placement strategies, so a simple approach in form of a 
uniformly distributed knot sequence is chosen, proposed by De Boor [1986], also called equidistant arrangement by 
Yanagihara and Ohtaki [2003]. The term uniformly distributed knot sequence describes that all knots have equal 
spacings within the dataset [xmin, xmax] to which the spline is fitted. 
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One possible way of assessing the resulting spline approximation is to use the well-known “global test” to check the 
functional and the stochastic models of the adjustment, see e.g. the textbook by Niemeier [2008, p. 167]. Alternatively 
the term “overall model test” is used, e.g. by Teunissen [2000, p. 93]. Ghilani [2010, p. 315, p. 528 ff] uses the term 
“goodness-of-fit test”. A hypothesis is to be tested, whether 2

0s  coincides with the a priori value 2
0  or not. For testing 

such a hypothesis, the χ2-test is applied. After formulating the null hypothesis 

 2 2
0 0 0: { }H E s   (38) 

and the corresponding alternative hypothesis 

 2 2
0 0: { }AH E s   (39) 

a test statistic can be computed and compared with the quantile of the χ2-distribution 2
, 1f   , where f represents the 

degree of freedom that coincides with the redundancy r and  represents the probability of error, e.g.  = 5%. If the test 
decision is that we fail to reject the null hypothesis, the functional and the stochastic models of the adjustment are 
regarded as appropriate. If the test decision is that we have to reject the null hypothesis H0 in favor of the alternative 
HA, two cases can occur: 

• 2 2
0 0s  : The stochastic model was chosen too pessimistic or too many knots were introduced to represent the spline 

that led to an overfitting. 
• 2 2

0 0s  : The stochastic model was chosen too optimistic or outliers are present. If the stochastic model is appropriate 

and no outliers are present, this case can occur if the knots are not chosen in an appropriate way. This problem will be 
discussed in the following. 

The initial assumption is that we have no previous knowledge about the distribution of the observed points. Hence, we 
cannot immediately specify the number of knots and their positions for obtaining an optimal result. With the help of the 
overall model test the knot placement can be performed as follows: 

- A least-squares adjustment is performed with three knots, thus one knot is in the middle of the dataset, while the first 
and the last knots are at the beginning and the end of the interval. 

- Afterwards the overall model test is performed. 
- If we fail to reject the null hypothesis (38), the final result is obtained. 
- If the null hypothesis is rejected, a new adjustment is performed with four uniformly distributed knots. 
- This increasing of the number of knots continues until we fail to reject the null hypothesis (38). 

Figure 4 shows a flowchart of this iterative procedure. 

 

 
 

Figure 4: Flowchart of the iterative procedure for the spline approximation 
 

3.5 A posteriori analysis 
After a solution is obtained, the well-known tools for an a posteriori analysis of adjustment results can be applied. From 
the wide range of analysis tools we select some of them for significance testing of parameters, assessment of reliability, 
and a more in-depth analysis of the goodness-of-fit. 
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As proposed by Buse and Lim [1977] and shown in a numerical example, the t-test for the significance of an individual 
coefficient allows testing the hypothesis 3 0

j
a   to determine whether the cubic term in the jth interval is significant. In 

the same contribution it is shown how “structural changes” in the data can be detected as a jump discontinuity in the 
third derivative at a knot 

jkx , again with the help of the t-test. Furthermore it is shown how the F-test can be applied to 

test the validity of the imposed constraints. 
 

In addition to the investigations proposed by Buse and Lim [1977], further analyses can be carried out. As a measure of 
reliability, the partial redundancy numbers 

 ( )i vv ii ir q p   (40) 

can be computed for each observation, where ( )vv iiq  is the ith diagonal element of the cofactor matrix of the residuals 

Qvv and pi the ith diagonal element of the weight matrix of the observations P. Low redundancy numbers, e.g. ri < 30%, 
indicate observations that lack sufficient checks to detect blunders, and thus the chance that undetected blunders affect 
the shape of the spline is high. Using the partial redundancy numbers it is furthermore possible, to compute individual 
variance components for each interval j. From the residual vector vj, the weight matrix Pj and the redundancy 

 
1

jm

g ij
i

r r


   (41) 

for the group of observations in an interval j, the variance component 

 
T

2
0

j j j

j
g j

s
r


v P v

 (42) 

can be computed for the corresponding interval. The square root of this value provides a reference variance for each 
interval, which can help to check whether the knot placement has yielded a meaningful result for all intervals. 
 

For the analysis of systematic deviations between the given data and the adjusted spline, an investigation of a residual 
plot for each interval is recommended. Furthermore the following test, based on the explanations of Helmert [1924, p. 
334 ff], can be applied. Considering the residuals for the observations in an interval j, the expected value for the sum of 
+/- signs for purely random deviations is zero with a standard deviation of jm , where mj is the number of 

observations in the corresponding interval. If the absolute value of the sum of +/- signs is greater than jm , there is a 

first indication that systematic deviations can be assumed. This test can also help to check whether the knot placement 
has yielded a meaningful result for all intervals. 
 

3.6 Discussion 
The spline approximation presented in section 3 is general and the most intuitive. The functional model is simple and 
the constraints are explicitly defined. The approximation is applied using the constrained L2 norm minimization. 
Hypothesis testing is applied to check the mathematical model in combination with a variation of the knots. A 
uniformly distributed knot sequence is maybe not the optimal solution for a spline approximation; however, it is the 
simplest one to be applied. Other knot placement and knot removal strategies are using the notions of fixed and free 
knots, and some of them also include the concept of regularization which substantially complicates the adjustment. The 
knot placement strategies are a separate scientific topic and many authors, e.g. Cox et al. [1989], Schwetlick and 
Schütze [1995], Park [2011] have addressed this problem. An overview of strategies to determine the knot vector is 
offered by Bureick et al. [2016a] and [2016b]. Current research by Gálvez et al. (2015) or Harmening and Neuner 
[2016] focusses on choosing the optimal number of B-spline control points using the Akaike Information Criterion and 
the Bayesian Information Criterion. Bureick et al. [2016b] developed an algorithm which determines the knot vector of 
a B-Spline with a mixture of Monte-Carlo methods and an evolutionary algorithm. 

4 Spline function constructed from truncated polynomials 
As in the previous section, spline functions in the form ( )y f x  are used, but in contrast to an explicit formulation of 

the constraints for continuity, smoothness and curvature, a functional model is used where these constraints are taken 
into account implicitly. A functional model of this kind is the model that uses truncated polynomials. This type of 
spline function is created in such a way that the constraint is not given explicitly as an equation, but is “hidden” in the 
function. This approach was used by Smith [1979] for statistical data smoothing. 



Manuscript 
   

12 (22) 

The idea behind the truncated polynomials is quite simple, even though in the literature, e.g. in the technical report by 
De Boor and Rice [1968], it is not always described in a comprehensive way. On the contrary, Fuller [1969] explains 
the idea in a nice and easily understandable way. In place of “truncated polynomials” he calls them “grafted 
polynomials”. The considered class of functions is more general than splines and includes them as a special case. The 
polynomials for different intervals might be of different degrees and not all of the usual constraints have to be imposed 
in knots. Here we only consider the special case of cubic splines. The function can be easily derived. In the first step, 
the spline function with n segments can be written as 

 

1 1 1 1

2 1 2 1 2 1

2 3
0 1 2 3

2 3
1 2 3

2 3
1 2 3

2 3
1 2 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ,

j j j j j j

n n n n n n

k k k

k k k

k k k

y b b x b x b x

b x x b x x b x x

b x x b x x b x x

b x x b x x b x x

    

      

      

     




 (43) 

with 1 2 3 0
j j j

b b b    for 
jkx x . In the next step, in each polynomial after the first interval only the last part, 

3
3 ( )

j ji kb x x , is taken into consideration. This part is in the literature called the “truncated part” of the polynomial for 

the given interval. This, at first sight strange truncation is nicely explained by Fuller [1969]. Each new interval brings a 
new cubic polynomial, i.e. 4 additional parameters. Imposing 3 conditions (7), (8) and (9) reduces the number of new 
additional parameters to one. That just 3 j

b  remains is explained by Smith [1979]. Hence, the whole expression can be 

rewritten as 

 1 1 1 1 2 1

2 3 3
0 1 2 3 3

3 3
3 3

( )

( ) ( ) ,
j j n n

k

k k

y b b x b x b x b x x

b x x b x x

      

    




 (44) 

with 3 0
j

b   for 
jkx x . However, this notation appears to be unorganized, because 3 j

b  repeats in each interval. For 

solving this notation issue, the unknowns for the first interval are changed from 
1 1 1 10 1 2 3, , ,b b b b  to 0 1 2 3, , ,a a a a , and the 

index for the unknown 3 j
b  from the truncated part of the polynomials is changed into bj. Finally, the function is given 

as 

 2 3 3
0 1 2 3

2

( )
j

n

j k
j

y a a x a x a x b x x 


      , (45) 

where the small “plus” (+), after the brackets from 3( )
jj kb x x  , represents an additional indicator for the truncated part 

which is accepted as a standard notation in the literature [Smith 1979]. This truncated part is defined as 

 
( ) if

( )
0 if

j j

j

j

k k

k
k

x x x x
x x

x x





    
. (46) 

This additional restriction indicates that the full polynomial, along with the truncated parts, can be developed up to the 
last interval 

1
[ , )

n nk kx x


, see Figure 2. 

4.1 Definition of the problem  

Let: 

 1 2, , , , ,
j j j ji my y y y   be a sequence of observed values within an interval j, with mj being the number of 

observations within the interval j, 
 2

0LL LLΣ Q  be the variance-covariance matrix of all observations 
jiy , 

 1 2j j j ji mx x x x       be a non-decreasing sequence of error-free values referring to the observations within 

an interval j, and 
 

1 2 1j nk k k kx x x x


       be a non-decreasing sequence of user-defined values for the knots on the x-axis which 

are error-free. Their placement is already described in section 3.1, as well as in section 3.4. Also in this functional 
model, the first knot 

0kx and the last knot 
nkx  are not taken into consideration. 
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To determine: 

• 0 1 2 3 2, , , , , , , ,j na a a a b b b   which represent a set of parameters for a cubic polynomial that has to be estimated w.r.t. 

each interval 
1

[ , )
j jk kx x


. 

According to (45) and (46) the functional model for the truncated polynomials reads 

 2 3 3
0 1 2 3

2

( )
j

n

i i i i j i k
j

y a a x a x a x b x x 


      , (47) 

and 

 
( ) if

( )
0 if

j j

j

j j

i k i k

i k
i k

x x x x
x x

x x





    
, (48) 

with i as an index for all pairs of observed and fixed values within an interval. In the first interval 
0 1

[ , )k kx x  index i 

ranges from i = 1, 2, ..., m1, in the subsequent intervals 
1

[ , )
j jk kx x


, with j = 2, 3, ..., n, index i ranges from i = 1, 2, ..., mj.  

Having defined all these quantities, we can create a spline approximation from an overdetermined configuration using 
the Gauss-Markov model. 

4.2 Formulation of the adjustment problem 
Based on the functional model (47) together with (48) and considering 

jiy  as observations and 
jix  as fixed values the 

observation equations 

 

1 1 1 1 1

2 2 2 2 2 2 1

3 3 3 3 3 3 1 3 2

2 3
0 1 2 3 1

2 3 3
0 1 2 3 2 2

2 3 3 3
0 1 2 3 2 3 3

0 1

ˆ ˆ ˆ ˆ , 1,2, , ,

ˆˆ ˆ ˆ ˆ ( ) , 1, 2, , ,

ˆ ˆˆ ˆ ˆ ˆ ( ) ( ) , 1,2, , ,

ˆ ˆ
n n

i i i i i

i i i i i i k

i i i i i i k i k

i i

y v a a x a x a x i m

y v a a x a x a x b x x i m

y v a a x a x a x b x x b x x i m

y v a a x



 

     

       

         

  









1 2 1

2 3 3 3 3
2 3 2 3

ˆ ˆ ˆˆ ˆ ( ) ( ) ( ) , 1, 2, , ,
n n n n n n ni i i i k i k n i k na x a x b x x b x x b x x i m

            

 (49) 

that are seemingly different for each cubic polynomial within the spline, can be set up. If we consider an individual set 
of observations for each segment of the spline, the observation vector can be set up in the same way as in (11) and (12). 
The vector of unknowns simply contains all unknown parameters from the last set of observation equations 

 
T

0 1 2 3 2 3
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ j na a a a b b b b   X   . (50) 

The stochastic model is derived from (21) and (22). Since the problem is linear the design matrix contains the 
coefficients of the unknowns from the observation equations. Thus we obtain 

 

1 1 1

1 1 1

1 1 1

2 2 2 2 1

2 2 2 2 1

2 2 2 2 1

1 2 1

2 3
1 1 1

2 3
2 2 2

2 3

2 3 3
1 1 1 1

2 3 3
2 2 2 2

2 3 3

2 3 3 3 3
1 1 1 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

1 ( ) 0 0

1 ( ) 0 0

1 ( ) 0 0

1 ( ) ( ) ( )
n n n n n n n

m m m

k

k

m m m m k

k k k

x x x

x x x

x x x

x x x x x

x x x x x

x x x x x

x x x x x x x x x








  








  

A




       





       


       


1 2 1

1 2 1

2 3 3 3 3
2 2 2 2 2 2

2 3 3 3 3

1 ( ) ( ) ( )

1 ( ) ( ) ( )

n n n n n n n

n n n n n n n

k k k

m m m m k m k m k

x x x x x x x x x

x x x x x x x x x





  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
    



       


. (51) 
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4.3 Least-squares adjustment 
Since the constraints are not given explicitly as equations, but “hidden” in the functional model, we don’t have to 
introduce constraint equations into the minimization. Thus the least-squares solution is obtained from 

 T 1 Tˆ ( )X A PA A PL . (52) 

The residuals and the reference standard deviation are computed from (32) respectively (37). The knots can be selected 
using the strategy described in section 3.4. 

4.4 Discussion 
The spline approximation using truncated polynomials represents an equivalent formulation of the spline approximation 
using ordinary polynomials and explicitly formulated constraints in section 3. This spline function is more convenient 
for handling and, depending on the adjustment problem, it can be interpreted in a form of condition equations or as a 
parametric spline curve. In many publications this approach is used for statistical analysis. However, De Boor and Rice 
[1968] are stating that this approach is ill conditioned and they propose other approaches as numerically more stable. 
An investigation of the numerical stability of the approaches presented in this article will be given in the forthcoming 
Part 3 of a series of three articles. 

5 Spline curve constructed from ordinary cubic polynomials 

In sections 3 and 4 spline functions in the form ( )y f x  are used for which Bronshtein and Semendyayev [2007, p. 

47] give the following definition: “If x and y are two variable quantities, and if there is a rule which assigns a unique 
value of y to a given value of x, then we call y a function of x, and we use the notation ( )y f x .” Consequently, all 

other relations that do not have this property cannot be considered as functions. In order to be able to display arbitrary 
curves, a parametric representation in the form 1( )x f t  and 2 ( )y f t  is now applied in this section. In contrast to a 

spline function of the form ( )y f x , x and y are now considered independently of each other which enables the 

representation of arbitrary curves. 

In this article the term “curve” refers to a graph of a spline curve that is represented as a set of parametric equations, 
and is not regarded as a function. The spline curve approximation is quite useful for a dataset that “moves” in every 
possible direction, in a two, three or multidimensional space. This section considers curves in 2D. Examples are open 
but self-intersecting curves, see Figure 5, closed curves with irregular shape, or as the simplest form, a circle. 
In sections 3 and 4 the values yi are introduced as observations and the corresponding xi as fixed values. Now, using a 
spline curve, we introduce both yi and xi as two sequences of observed values that can be expressed as functions of 
some error-free parameter t. In practice this form can be used for an approximation of a one-dimensional substructure 
or superstructure (pipelines, railways, roller coasters etc.) in two or three-dimensional space. 

In the literature most of the approaches, regarding the spline approximation, are actually using spline curves; mainly 
because most of the literature is from the field of computer graphics, see e.g. the textbook by Piegl and Tiller [2012]. In 
those publications B-spline curves are used as a functional model, see e.g. the articles by Wang et al. [2006], Zheng et 
al. [2012] and the textbook by Piegl and Tiller [2012, pp. 410-419]. The spline curve approximation is quite handy. 
However, the interpretation of the residuals is not intuitive, because yi and xi are introduced as two separate sequences 
of observations and hence the residuals vy and vx vary independently from each other. 

The approach that is proposed here is very similar to the one in section 3. The difference is that both yi and xi are 
represented as functions of t. Having this property, the further implication is that these two functions x(t) and y(t) do not 
have a common unknown which implies that these two functions are treated in two separate systems of equations. 
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Figure 5: Spline curve approximation 

5.1 Definition of the problem 
Let: 
 1 2, , , ,

j j j ji mx x x x   and 1 2, , , , ,
j j j ji my y y y   be two sequences of observed values within an interval j, with mj 

being the number of observations 
jix  respectively 

jiy within the interval j, 

 2
0LL LLΣ Q  be the variance-covariance matrix of all observations ,

j ji ix y , 

 1 2j j j ji mt t t t      be a non-decreasing sequence of error-free values referring to the observations within an 

interval j that is usually interpreted as time. These values can be freely chosen. However, for interpretable results they 
should be proportional to the distances between the observations. In this case the Euclidean distances between the 
observed points are chosen to represent these values, 

 
1 2 1j nk k k kt t t t


      be a non-decreasing sequence of user-defined values for the knots, which are regarded as 

error-free. Again, character k stands for “knot” and is not an index; hence 
jkt  means “t-value of the knot j”. As for the 

spline function in section 3, the first knot 
0kt  and the last knot 

nkt  are not taken into account, see Figure 5. 

To determine: 

• a set of parameters 
1 1 1 10 1 2 3 0 1 2 3 0 1 2 3( , , , ), , ( , , , ), , ( , , , )

j j j j n n n n
a a a a a a a a a a a a   of the cubic polynomials ( )

jxS t  that has 

to be estimated for all intervals 
1

[ , )
j jk kt t


. 

• a different set of parameters 
1 1 1 10 1 2 3 0 1 2 3 0 1 2 3( , , , ), , ( , , , ), , ( , , , )

j j j j n n n n
b b b b b b b b b b b b   of the cubic polynomials ( )

jyS t  

that has to be estimated for all intervals same as for ( )
jxS t . 

The functional model is similar to (6), just with t as parameter, yielding in the considered case two separate functional 
models 

 2 3
0 1 2 3( )

j j j j j j j j j ji x i i i ix S t a a t a t a t     , (53) 

 2 3
0 1 2 3( )

j j j j j j j j j ji y i i i iy S t b b t b t b t     , (54) 

with j = 1, 2, …, n as index for an interval 
1

[ , )
j jk kt t


. Furthermore, i = 1, 2, …, mj represents an index for all pairs of 

observed and fixed values within an interval. 
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Since we consider an overdetermined system of equations, a spline approximation is performed without imposing any 
extra conditions on the first and the last knot of the spline. The dataset is subdivided in intervals w.r.t. the parameter t. 
For each interval 

1
[ , )

j jk kt t


 there exists a set of minimum two ( , )
j ji ix t  pairs of values for the x-axis, and two ( , )

j ji iy t  

pairs of values for the y-axis. For constructing a spline curve, the following conditions, according to (7) - (9), are 
imposed at the knots: 

for x 

 
1

( ) ( ) , 1, , 1
j j j jx k x kS t S t j n


   , (55) 

 
1

( ) ( ) , 1, , 1
j j j jx k x kS t S t j n


    , (56) 

 
1

( ) ( ) , 1, , 1
j j j jx k x kS t S t j n


    , (57) 

for y 
 

1
( ) ( ) , 1, , 1

j j j jy k y kS t S t j n


   , (58) 

 
1

( ) ( ) , 1, , 1
j j j jy k y kS t S t j n


    , (59) 

 
1

( ) ( ) , 1, , 1
j j j jy k y kS t S t j n


    . (60) 

Introduced knots 
jkt  are freely specified or predefined by some knot placement strategy. 

Having defined all these quantities, we can create a spline approximation from an overdetermined configuration using 
the Gauss-Markov model with additional constraints for the unknowns. 

5.2 Formulation of the adjustment problem 
The observation equations are similar to those in section 3.2. Here they refer to the parameter t for both coordinates. 
Their structuring depends on the interval 

1
[ , )

j jk kt t


 which the observations belong to with j = 1, 2, …, n. Based on the 

functional model (53) considering xi as observations and ti as error-free values the observation equations 

 

1 1 1 1 1 1 1 11

2 3
0 1 2 3 1

2 3
0 1 2 3

2 3
0 1 2 3

ˆ ˆ ˆ ˆ 1, 2, , ,

ˆ ˆ ˆ ˆ 1, 2, , ,

ˆ ˆ ˆ ˆ 1, 2, ,

i

j i j j j j j j jj

n i n n n n n n nn

i x i i i

i x i i i j

i x i i i n

x v a a t a t a t i m

x v a a t a t a t i m

x v a a t a t a t i m

     

     

     









 (61) 

can be set up. Based on (54) with yi as observations and ti as error-free values we obtain 

 

1 1 1 1 1 1 1 11

2 3
0 1 2 3 1

2 3
0 1 2 3

2 3
0 1 2 3

ˆ ˆ ˆ ˆ 1, 2, , ,

ˆ ˆ ˆ ˆ 1, 2, , ,

ˆ ˆ ˆ ˆ 1,2, , .

i

j i j j j j j j jj

n i n n n n n n nn

i y i i i

i y i i i j

i y i i i n

y v b b t b t b t i m

y v b b t b t b t i m

y v b b t b t b t i m

     

     

     











 (62) 

To construct the observation vectors, first all vectors for the x-observations for each segment of the spline are 
introduced as 

 

1 1 1 1 1

T

1 2 3

T

1 2 3

T

1 2 3

,

,

,

j j j j j

n n n n n

x m

x m

x m

x x x x

x x x x

x x x x

   

   

   

L

L

L











 (63) 
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afterwards, the vectors for the y-observations 

 

1 1 1 1 1

T

1 2 3

T

1 2 3

T

1 2 3

,

,
j j j j j

n n n n n

y m

y m

y m

y y y y

y y y y

y y y y

   

   

   

L

L

L











 (64) 

are set up. Finally, these vectors are concatenated in two observation vectors 

 
1

T
T T T

j nx x x x
   L L L L  , (65) 

 
1

T
T T T

j ny y y y
   L L L L  . (66) 

The constraint equations are similar to those in section 3.2. The difference is that here they refer to each sequence of 
observations xi respectively yi separately. Hence, for continuity at the knots we set up the following equations: 

for x 

 

1 1 1 1 1 1 1 2 2 1 2 1 2 1

2 2 2 2 2 2 2 3 3 2 3 2 3 2

1 1 1 1 1 1 1 1 1

2 3 2 3
0 1 2 3 0 1 2 3

2 3 2 3
0 1 2 3 0 1 2 3

2 3 2
0 1 2 3 0 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
n n n n n n n n n n n n n

k k k k k k

k k k k k k

k k k k k

a a t a t a t a a t a t a t

a a t a t a t a a t a t a t

a a t a t a t a a t a t a
        

      

      

      



1

3 ,
nkt 

 (67) 

for y 

 

1 1 1 1 1 1 1 2 2 1 2 1 2 1

2 2 2 2 2 2 2 3 3 2 3 2 3 2

1 1 1 1 1 1 1 1 1

2 3 2 3
0 1 2 3 0 1 2 3

2 3 2 3
0 1 2 3 0 1 2 3

2 3 2
0 1 2 3 0 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
n n n n n n n n n n n n n

k k k k k k

k k k k k k

k k k k k

b b t b t b t b b t b t b t

b b t b t b t b b t b t b t

b b t b t b t b b t b t b
        

      

      

      



1

3 .
nkt 

 (68) 

For preservation of smoothness at the knots we set: 

for x 

 

1 1 1 1 1 2 2 1 2 1

2 2 2 2 2 3 3 2 3 2

1 1 1 1 1 1 1

2 2
1 2 3 1 2 3

2 2
1 2 3 1 2 3

2 2
1 2 3 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ2 3 2 3 ,

ˆ ˆ ˆ ˆ ˆ ˆ2 3 2 3 ,

ˆ ˆ ˆ ˆ ˆ ˆ2 3 2 3 ,
n n n n n n n n n n

k k k k

k k k k

k k k k

a a t a t a a t a t

a a t a t a a t a t

a a t a t a a t a t
      

    

    

    


 (69) 

for y 

 

1 1 1 1 1 2 2 1 2 1

2 2 2 2 2 3 3 2 3 2

1 1 1 1 1 1 1

2 2
1 2 3 1 2 3

2 2
1 2 3 1 2 3

2 2
1 2 3 1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ2 3 2 3 ,

ˆ ˆ ˆ ˆ ˆ ˆ2 3 2 3 ,

ˆ ˆ ˆ ˆ ˆ ˆ2 3 2 3 .
n n n n n n n n n n

k k k k

k k k k

k k k k

b b t b t b b t b t

b b t b t b b t b t

b b t b t b b t b t
      

    

    

    


 (70) 

The last set of equations is used to enforce continuity of the second derivative at the knots: 

for x 
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1 1 1 2 2 1

2 2 2 3 3 2

1 1 1 1

2 3 2 3

2 3 2 3

2 3 2 3

ˆ ˆ ˆ ˆ2 6 2 6 ,

ˆ ˆ ˆ ˆ2 6 2 6 ,

ˆ ˆ ˆ ˆ2 6 2 6 ,
n n n n n n

k k

k k

k k

a a t a a t

a a t a a t

a a t a a t
   

  

  

  


 (71) 

for y 

 

1 1 1 2 2 1

2 2 2 3 3 2

1 1 1 1

2 3 2 3

2 3 2 3

2 3 2 3

ˆ ˆ ˆ ˆ2 6 2 6 ,

ˆ ˆ ˆ ˆ2 6 2 6 ,

ˆ ˆ ˆ ˆ2 6 2 6 .
n n n n n n

k k

k k

k k

b b t b b t

b b t b b t

b b t b b t
   

  

  

  


 (72) 

There are two groups of unknowns. One group is related to the observations w.r.t. the x-axis (a0, a1, a2, a3), and the 
other to the y-axis (b0, b1, b2, b3). Therefore, the formulation of vector of unknowns follows the previous pattern: 

for x 

 

1 1 1 1

T

1 0 1 2 3

T

0 1 2 3

T

0 1 2 3

ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ,

j j j j

n n n n

j

n

a a a a

a a a a

a a a a

   

   

   

a

a

a





 (73) 

for y 

 

1 1 1 1

T

1 0 1 2 3

T

0 1 2 3

T

0 1 2 3

ˆ ˆ ˆ ˆˆ ,

ˆ ˆ ˆ ˆˆ ,

ˆ ˆ ˆ ˆˆ .

j j j j

n n n n

j

n

b b b b

b b b b

b b b b

   

   

   

b

b

b





 (74) 

Finally, the vectors of unknowns are constructed as 

 
TT T T

1
ˆ ˆ ˆ ˆ

x j n   X a a a  , (75) 

 
T

T T T
1

ˆ ˆ ˆ ˆ
y j n

   X b b b  . (76) 

From (21) and (22) we can compute the weight matrix P of the observations xi, yi. Since the observation equations are 
linear, the design matrix is constructed by combining the observation equations for each axis separately, similarly as in 
section 3.2. Therefore, for the first interval the matrix 

 

1 1 1

1 1 1

1 1 1

2 3
1 1 1

2 3
2 2 2

1 1 1

2 3

1

1

1

x y

m m m

t t t

t t t

t t t

 
 
     
 
  

A A A
   

 (77) 

is constructed and for the second interval the matrix 
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2 2 2

2 2 2

2 2 2

2 3
1 1 1

2 3
2 2 2

2 2 2

2 3

1

1

1

x y

m m m

t t t

t t t

t t t

 
 
     
 
  

A A A
   

. (78) 

By following the pattern for 1A  and 2A  all matrices jA  are constructed in the same way until the end of the last 

interval. Thus for Ax and Ay we obtain 

  1x y ndiag A A A A . (79) 

The formulation of the matrices of constraints is similar to section 3.2. The only difference is that two sets of matrices, 

xqC  related to the x-axis and 
yqC  related to the y-axis, are introduced, where q = 1, 2, 3. The matrices 1x

C  and 1y
C  

refer to the equations of constraints that enforce the continuity of the curve: 

 

1 1 1 1 1 1

2 2 2 2 2 2

1

2 3 2 3

2 3 2 3

1 1 1

3

1 1 0 0 0 0 0

0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0

x y

n

k k k k k k

k k k k k k

k

t t t t t t

t t t t t t

t


    
 

        
 
  

C C C




   



. (80) 

The matrices 2x
C  and 2y

C  enforce the smoothness of the spline: 

 

1 1 1 1

2 2 2 2

1

2 2

2 2

2 2 2

2

0 1 2 3 0 1 2 3 0 0 0 0 0

0 0 0 0 0 1 2 3 0 1 2 3 0

0 0 0 0 0 0 0 0 0 0 0 0 3

x y

n

k k k k

k k k k

k

t t t t

t t t t

t


   
 

       
 
  

C C C




   


. (81) 

The matrices 3x
C  and 3y

C  contain the coefficients from the equation of constraints that preserve the curvature at the 

knots: 

 

1 1

2 2

1

3 3 3

0 0 2 6 0 0 2 6 0 0 0 0 0

0 0 0 0 0 0 2 6 0 0 2 6 0

0 0 0 0 0 0 0 0 0 0 0 0 6

x y

n

k k

k k

k

t t

t t

t


  
 

      
 
  

C C C




   


. (82) 

Now we can set up Cx and Cy as 

  T1 2 3x y C C C C C . (83) 

5.3 Least-squares adjustment 
The solution of the adjustment problem with constraints is obtained as already described in section 3.3 by introduction 
of Lagrange multipliers. In this case the vectors 

 
T

1 2 3x x xx      λ , (84) 

 
T

1 2 3y y yy      λ  (85) 

and finally 

 
T

x y   λ λ λ  (86) 

are introduced. With 
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T

x y   L L L , (87) 

 
Tˆ ˆ ˆ

x y
   X X X , (88) 

 x ydiag    A A A , (89) 

 
T

x y   C C C  (90) 

we obtain 

 
T T Tˆ    

    
        

A PA C A PAX

C 0 0λ
 (91) 

and the solution for the unknowns can be derived e.g. by using matrix inversion or other techniques as described in 
section 3.3. Remark: If there are no correlations between the sequences of observations xi and yi, the weight matrix is a 
block diagonal matrix 

 
xx

yy

 
  
  

P 0
P

0 P
 (92) 

and hence the observation equations (61) and (62) do not share any common unknowns, the parameter estimation can 
be performed in two individual adjustments with 

 
T T Tˆ
x xx x x x xx xx

x x

    
    

        

A P A C A P AX

C 0 0λ
 (93) 

and 

 
T T Tˆ
y yy y y y yy yy

y y

    
    

        

A P A C A P AX

C 0 0λ
. (94) 

With the solution either from (91) or from (93) and (94) the residual vectors 

 ˆ
x x x x v A X L ,  ˆ

y y y y v A X L  (95) 

can be obtained according to (32). The actual magnitude of the vectors of the residuals is computed by 

 2 2

i ii x yv v v  . (96) 

The direction of the vector for each residual varies throughout the curve. Hence, the magnitude of the residual does not 
resemble neither the perpendicular nor the axial distance from the measured point to the estimated point on the graph of 
the curve. It is possible for the residuals to be perpendicular to the graph of the curve by imposing additional 
constraints. However, the solution of that problem goes beyond the scope of this article. 

With the vector of residuals 

 
T

x y   v v v  (97) 

the reference standard deviation can be computed from (37). This value can be applied in a knot placement strategy as 
described in section 3.4. 

5.4 Discussion 
The spline approximation presented in this section uses both the values yi and the values xi as observations. However, 
instead of introducing them and the corresponding residuals into (6), which would lead to nonlinear condition 
equations, here they are introduced as observations in an adjustment using the Gauss-Markov model. This results in the 
disadvantage of an “irregular” distribution of the residual vector for each point w.r.t. the graph of the curve. This limits 
the informational value of the residuals, e.g. for engineering geodesy tasks such as deformation analysis. Another 
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problem with this approach is that the values of the parameter (in this case t) that refer to the observations, must be 
chosen in advance. An important issue is that the values of t have to be proportional with the distances between the 
observed points. The advantage of using spline curves instead of spline functions is that one-dimensional problems in a 
multidimensional space can be approximated without any restrictions on the direction in which the curve is heading. 
Hence, this approach can be useful for approximation of railways, pipelines or similar structures. The spline curve 
approximation is mainly used in computer graphics for getting a result which satisfies aesthetic requirements. 

6 Conclusions and outlook 
Splines are very applicable for approximation and interpolation of arbitrary shapes. They offer a lot of possibilities in 
many fields including the field of engineering geodesy. In our opinion, in spite of the many textbooks that are written 
about splines, e.g. by De Boor [1978], Farin [1993], Schumaker [2007], Micula and Micula [2012], Piegl and Tiller 
[2012], the notion of spline is not always comprehensively explained. In many of those publications, especially the 
articles and the textbooks on B-splines, the explanations are written in a style that is understandable only to a narrow 
group of experts. 

In this article different approaches for spline approximation were elaborated. The simplest and the most intuitive 
approach for understanding the spline approximation is the approximation using a spline function constructed from 
ordinary cubic polynomials. With the values yi as observations and xi as error-free values the resulting adjustment 
problem can be solved within the Gauss-Markov model with constraints for the unknowns. What makes it intuitive are 
the piecewise polynomials represented in their simplest form, and the clearly stated constraints imposed on each knot. 

The spline approximation using truncated polynomials has an advantage over the previous type of approximation, 
because it does not require explicit constraints. With the values yi as observations and xi as error-free values the 
resulting adjustment problem can be solved within the Gauss-Markov model. It is also possible to use the truncated 
polynomials instead of a spline function to approximate a spline curve. 

The so called spline curve, in this article, refers to a spline that is represented as a set of parametric equations. Both 
values yi and xi are introduced as two separate sequences of observations in an adjustment using the Gauss-Markov 
model with constraints for the unknowns. This approach results in an “irregular” distribution of the residual vector for 
each point w.r.t. the graph of the curve, which limits the interpretation of the residuals, e.g. for engineering geodesy 
tasks. It is possible for the residuals to become perpendicular to the graph of the curve by imposing additional 
constraints. The advantage of spline curves is that a problem can be approximated without any restrictions to the 
direction in which the curve is heading. 

Using cubic polynomials as functional model the basic methodology of spline approximation as an adjustment problem 
from a geodetic point of view is finally available. This enables us now to consider the case that both the values yi and xi 
are introduced as observations in (6) which leads to nonlinear condition equations with additional constraints for the 
unknowns. The fact that yi and xi are introduced as observations makes this approach the most important one for 
applications in engineering geodesy, e.g. for approximation of profiles measured with terrestrial laser scanners. If the 
observations are equally weighted the residuals are perpendicular to the graph of the spline function and hence can be 
utilized for deformation monitoring purposes. In Neitzel et al. [2017] a solution for the resulting adjustment problem 
will be presented. 

Due to the fact that in many publications B-splines are used, the question arises whether it is possible to elaborate a 
clear and comprehensive explanation from a geodetic point of view also for the B-spline approach. This question is 
dealt with in the forthcoming Part 2 of a series of three articles. In Part 3 the numerical stability of the considered 
approaches for spline approximation as well as the utilization of splines for deformation detection will be investigated 
using numerical examples. 
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