

Electrical conductivity of oceanic mantle

GFZ Helmholtz Centre

ETH zürich

Electrical conductivity of oceanic mantle

Figure 10 Scripps sea-floor EM recorder being deployed.

S. Constable, Geophys. Prosp., 2013

H. Utada, Proc. Jpn. Acad. B, 2015

Electrical conductivity of oceanic mantle

Electrical conductivity of oceanic mantle

GFZ Helmholtz Centre

ETH zürich

Electrical conductivity of oceanic mantle

INTERMAGNET Observatory Network

GFZ Helmholtz Centre

ETH zürich

INTERMAGNET Observatory Network

GFZ Helmholtz Centre Potspam

ETH zürich

Forward modeling setup

- Conductivity of seawater needs to be accounted for: Bathymetry model
- Bathymetry and topography from GEBCO database $(30^{\circ} \approx 1 \text{ km})$
- Higher resolution ASTER data (1[°]) for topography of TDC

Forward modeling setup

Tristan da Cunha (TDC)

Adaptive FEM code (Grayver and Kolev, 2015)

• Mesh is refined at seabottom, coastline, and observatory

Forward modelling with half-space model and ocean effect:

• 3-D response due to ocean effect

Forward modeling result: TDC

Forward modelling with half-space model and ocean effect:

Comparison to observed responses

ETHzürich

Inversion

Inversion: Impedances TDC

Result of inversion (thick lines) in comparison to observed responses (symbols)

Inversion: Phase tensor TDC

Comparison to MT seabottom survey (Baba et al, 2016)

Inversion of GAN data

GAN observatory is located on southest island of Maldives chain

Inversion: Impedances GAN

Result of inversion (thick lines) in comparison to observed responses (symbols)

Inversion: Phase tensor GAN

ETH zürich

INTERMAGNET Observatory Network

GFZ Helmholtz Centre POTSDAM

ETH zürich

Tippers at island observatories: Can we use them to probe electrical conductivity of the Earth's crust and upper mantle?

F. Samrock¹ and A. Kuvshinov¹

GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 824-828, doi:10.1002/grl.50218, 2013

Tippers at TDC

• Observed tippers in Wiese convention point to less conductive island

Summary and Conclusions

- Framework for inverting observatory data affected by the ocean effect
- 1-D electrical conductivity for TDC and GAN
- More observatories can be used by inverting tippers

GFZ

Helmholtz Centre

 Paper in preparation for submission to EPSL

