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Abstract This study refines the method for calibrating a glacio-hydrological model based on Hydrograph
Partitioning Curves (HPCs), and evaluates its value in comparison to multidata set optimization approaches
which use glacier mass balance, satellite snow cover images, and discharge. The HPCs are extracted from
the observed flow hydrograph using catchment precipitation and temperature gradients. They indicate the
periods when the various runoff processes, such as glacier melt or snow melt, dominate the basin hydro-
graph. The annual cumulative curve of the difference between average daily temperature and melt thresh-
old temperature over the basin, as well as the annual cumulative curve of average daily snowfall on the
glacierized areas are used to identify the starting and end dates of snow and glacier ablation periods. Model
parameters characterizing different runoff processes are calibrated on different HPCs in a stepwise and iter-
ative way. Results show that the HPC-based method (1) delivers model-internal consistency comparably to
the tri-data set calibration method; (2) improves the stability of calibrated parameter values across various
calibration periods; and (3) estimates the contributions of runoff components similarly to the tri-data set cal-
ibration method. Our findings indicate the potential of the HPC-based approach as an alternative for hydro-
logical model calibration in glacierized basins where other calibration data sets than discharge are often not
available or very costly to obtain.

1. Introduction

1.1. Calibration of Hydrological Models in Glacierized Basins

It is generally accepted that single-data set calibration solely based on discharge observations is insufficient
to guarantee model-internal consistency (Konz & Seibert, 2010; Le Lay et al., 2008; Madsen, 2000; Seibert &
McDonnell, 2002). Strong intercompensation between runoff generation processes can result in a good sim-
ulation of discharge at the basin outlet (Tarasova et al.,, 2016). Multidata set calibration using discharge and
additional measurements of internal catchment variables are therefore required to improve internal process
identification and model parameter identifiability (Efstratiadis & Koutsoyiannis, 2010; Parajka et al., 2009;
Seibert, 2000).

In glacierized and snow-dominated basins, snow and glacier melt provide important sources for river runoff.
Hence, constraining the glacier and snow melt dynamics in hydrological modeling is essential for prevent-
ing internal process compensation. For example, multiple snow cover area (SCA) images from MODIS and
AVHRR sensors were used by Parajka and Bloschl (2008a) and Duethmann et al. (2014), respectively, in addi-
tion to streamflow to improve the model performance for both simulations of SCA and discharge. Konz and
Seibert (2010) highlighted the value of annual glacier mass balance (GMB) data for identifying model
parameters. The particular importance of seasonal GMB for constraining melt parameters and achieving
high model-internal consistency was pointed out by Schaefli and Huss (2011) and Mayr et al. (2013).

In spite of the fact that hydrological model performance is typically improved when including additional
observations, the practical application of multidata set calibration is often restricted by the lack of observa-
tional data, especially in glacierized basins. GMB measurements are extremely laborious and are carried out
usually on a few glaciers only within vast mountain regions. Although various methods for regionalization
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of point measurements of glacier mass balances have been developed (e.g., Huss, 2012), the spatial variabil-
ity of mass balances and related uncertainty remain high (Farinotti et al., 2015). Modeled GMB data based
on differencing of multi-temporal digital elevation models (e.g., Aizen et al., 2007; Shangguan et al., 2015)
or laser altimetry (Kaab et al., 2012) can provide spatially resolved assessments; however, they are severely
limited in temporal resolution delivering the integral mass change over long time spans, typically over years
and decades.

Although processed satellite SCA products become increasingly available in mountain regions for past peri-
ods (Peters et al., 2015; Zhou et al., 2013), their applicability is heavily impacted by cloud cover. Some cloud
removal algorithms have been developed for the processing of operational satellite data (e.g., Gafurov
et al., 2016; Parajka & Bloschl, 2008b), but it is typically time consuming to run the cloud removal algorithms
to obtain daily time series of SCA data for model calibration. Moreover, hydrological models typically repro-
duce the snow water equivalent (SWE) in the basin. Observed SWE data are rather rare in high mountain
basins (Hamlet et al., 2005), and thus transforming approaches from simulated SWE to simulated SCA are
often required for the calibration against satellite SCA (Duethmann et al., 2014; Parajka & Bloschl, 2008a).
These transforming approaches however result in an additional uncertainty in the model evaluation.

In contrast, sophisticated calibration approaches making use of additional information extracted from only
discharge data bear a potential to improve model-internal consistency and reduce parameter uncertainty.
Discharge observations represent integrated information of all runoff processes in a catchment (Guse et al.,
2016; Nearing & Gupta, 2015; Reusser et al.,, 2009), and are the most commonly available observational con-
straint for parameter calibration in hydrological modeling. Previously proposed hydrograph signatures pro-
vide a perspective to extract hydrological information from a discharge time series (Richter et al., 1996;
Sivapalan et al., 2003). Evaluating model performance against hydrograph signatures offers diagnostic
insights into the catchment behavior (Gupta et al, 2008; Hrachowitz et al,, 2013), and is supposed to
increase model consistency (Fovet et al., 2015). For example, Shafii and Tolson (2015) proposed a framework
based on a scoring method transforming 13 hydrological signatures to a calibration objective function to
improve model consistency. Coxon et al. (2014) improved model performance using diagnostic signatures,
including interannual and intraannual runoff variabilities. Other signatures, including regime curve, base
flow index, and seasonal water balance, were used to indicate how specific system functions have been rep-
resented in the model (Hingray et al., 2010; Jothityangkoon et al., 2001; Liucci et al., 2014; Luo et al., 2012;
Ye et al,, 2012). However, it is still not clear how hydrograph signatures perform in constraining the simula-
tions of multiple internal hydrological variables other than discharge, such as snow and glacier coverage
patterns, in glacierized basins. The extent to which the calibration methods based on extracted information
from discharge can be comparable to multidata set calibration methods has not been examined to the
knowledge of the authors.

1.2. Hydrograph Partitioning Curves

Given the temporal variations of runoff generation processes, different parts of the catchment hydrograph
can be dominated by different hydrological processes (Pfannerstill et al., 2014). Correspondingly, different
hydrograph parts possess varying power for the identification of specific model parameters. This is particu-
larly relevant in glacierized basins exhibiting a distinct hydrological process seasonality (Razavi & Tolson,
2013). For example, summer discharge tends to be less important to identify parameters describing snow
accumulation (Singh & Bardossy, 2012), while winter discharge tends to be irrelevant for parameters charac-
terizing glacier melt rate. Relating different hydrograph features to corresponding sensitive model parame-
ters can help to increase the robustness in parameter values (Nearing & Gupta, 2015).

Several previous studies exploited the temporal variation in parameter sensitivity for model calibration,
including Hingray et al. (2010), who progressively calibrated model parameters on the rising and falling
limbs of the hydrograph, as well as Schaefli et al. (2005), who estimated different parameters from different
hydrograph signatures in a stepwise way. Other studies applied a stepwise calibration for different subsets
of parameters to different subperiods of flow time series, by splitting the flow series into dry/wet periods or
high/low flows (Boyle et al., 2000; Hay et al, 2006; Willems, 2014). However, few of these calibrations
exploited the relation between hydrograph signatures and model parameters using the dominance of run-
off processes. Along this line, He et al. (2014, 2015) used temperature and precipitation time series to parti-
tion the flow hydrograph into several segments corresponding to the dominant runoff processes in

HE ET AL.

2337



@AG U Water Resources Research 10.1002/2017WR021966

different seasons. They proposed the hydrograph partitioning curves (HPC) for model calibration in glacier-
ized basins. In the HPC-based calibration, model parameters were related to individual hydrograph parti-
tions according to their controls on the simulations of runoff processes, and calibrated in a stepwise way
(He et al., 2015). However, their HPC extraction procedure needs to be refined to distinguish summer snow-
melt in glacier-covered areas from glacier melt. The value of HPCs for improving model-internal consistency
and parameter stability in time has not been investigated in relation to the multidata set calibration
approach.

1.3. Objectives of the Paper

Starting from these motivations, we further refine the approach in He et al. (2015) by extracting HPCs using
the annual cumulative curve of the difference between average daily temperature and melt threshold tem-
perature (ADT) over the basin, as well the annual cumulative curve of average daily snowfall (ASF) on the
glacierized areas to identify the starting and end dates of snow and glacier ablation periods. The objective
of this paper is to investigate the value of the extracted hydrological information represented by HPCs from
discharge observation for constraining the simulations of snow and glacier coverage patterns in glacierized
basins. We contrast the performance of the HPC-based method with multidata set calibration, which uses
different combinations of discharge series, annual GMB data, and SCA images as constraining observations.
Specific research questions are: (1) Can the HPC-based method achieve model-internal consistency compa-
rably to multidata set calibration methods, without using additional calibration data sets besides discharge?
(2) Does the HPC-based method improve the stability of model parameters in time compared to the multi-
data set calibration approaches? (3) Does the HPC-based method compute contributions of runoff compo-
nents to discharge comparably to the multidata set methods? We expect our results to shed light on model
calibration and identification of runoff components in glacierized basins where discharge is the only avail-
able observation for model calibration.

The paper is organized as follows: a brief description of the study area and available data is provided in sec-
tion 2. In section 3, we describe the used hydrological model and the extraction of HPCs. Section 4 presents
the simulation performance of various calibration methods and corresponding parameter uncertainty. The
limitations of the method are discussed in section 5 followed by conclusions.

2, Study Area and Data

The Ala-Archa basin is located in Kyrgyzstan, Central Asia, near the capital city Bishkek (Figure 1). The basin
area is 233 km?, approximately 17% of which is glacierized. Downstream irrigated agriculture and potable
water supply for the capital are heavily dependent on the freshwater availability in the Ala-Archa river. Basin
elevation ranges from 1,560 to 4,864 m above sea level (a.s.l.), with mean elevation of about 3,300 m a.s.l.
The long-term annual mean precipitation and temperature during 1970-2000 measured at the Alplager sta-
tion are 560 mm and 2.6°C, respectively. Precipitation reaches its peak in spring-summer months and
mainly occurs as snowfall in winter (Aizen et al., 2000, 2007). Snow and glacier melt strongly affect river dis-
charge during March-September.

Daily precipitation and temperature as well as humidity and radiation time series are available since the
1970s at Baitik (1,580 m, a.s.l.) and Alplager (2,100 m, a.s.l.) climate stations run by the Kyrgyz Hydromet Ser-
vice (Figure 1). Mean daily streamflow observations starting in the 1960s are available from the Ala-Archa
hydrologic station (close to Baitik climate station) at the basin outlet. The Advanced Very High Resolution
Radiometer (AVHRR) SCA daily image products with a spatial resolution of 1.1 km X 1.1 km processed by
Dietz et al. (2014) were used in this study. Strict quality control procedures have been implemented for the
SCA images, discarding abnormal images, similarly to Duethmann et al. (2014). AVHRR SCA images from the
snowmelt season (March—-August) during 1987-2000 were selected for multidata set model calibration. We
focused on the snow melt season as SCA is most sensitive to the snow degree-day parameterization during
this period. The glacier-covered area in the 1970s delineated from Landsat satellite images was used as the
initial glacier coverage for the glacier evolution modeling. The glacier mass balance of the Golubin glacier
has been measured during 1973-1993 on the annual basis using glaciological method (Figure 1). The GMB
measurements were carried out in the end of the ablation period (usually in the late summer) based on gla-
ciological stake readings, and were reported by Kyrgyz researchers to the World Glacier Monitoring Service
(WGMS) under the standard protocol. The Golubin glacier is of summer accumulation type, where the
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Figure 1. Location of the Ala-Archa basin in Kyrgyzstan (derived from the ESRI World Topographic Map). Black triangles indicate the two climate stations: Baitik
and Alplager. The Ala-Archa streamflow gauging station is located in the proximity of the Baitik climate station. The annual glacier mass balance measurements
were carried out on the Golubin glacier (red polygon).

highest portion of precipitation comes in spring and early summer. The accumulation and ablation take
place nearly in parallel, which would improve the representation of the annual GMB for the glacier dynam-
ics in the study basin.

3. Methodology

3.1. Hydrological Model

The semi-distributed model WASA (Model of Water Availability in Semi-Arid Environments) developed by
Guntner and Bronstert (2004) was adopted in this study. Previously, it has been extended for snow and gla-
cier melt processes and successfully applied in Central Asian mountain basins for the evaluation of various
precipitation data sets (Duethmann et al., 2013), and for the climate change impact assessment on water
resources (Duethmann et al., 2016). The WASA model is based on the discretization of the landscape into
model units according to soil properties, land cover, and elevation band height. The WASA model includes
the following runoff generation components:

Overland Surface Runoff. The rain and melt water infiltration into the soil is simulated using the Green-Ampt
approach (Green & Ampt, 1911). Soil hydraulic conductivities (parameters k_sat_f and kf_corr_f, see Table 1)
control the percolation processes and infiltration excess surface runoff. The generation of saturation excess
surface runoff is characterized by the fraction of saturated area (parameter frac_riparian), and the current
soil moisture state in each model unit (as a function of parameter sat_area_var).
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Table 1

Parameters Used in the WASA Model (Duethmann et al., 2013), Which are Grouped Into Four Categories According to the Runoff Processes They Control

Calibration
Step in
HPC-based Value
Group Parameter Calibrated HPC method Unit range Description
Groundwater frac2gw Qcw 1 - 0-1 Recharge fraction factor from interflow to groundwater
interflow delay factor Qew 1 days 10-100 Outflow delay factor for interflow
groundwater delay factor Qsw 1 days 30-400 Outflow delay factor for groundwater
Snowmelt snowmelt factor Qsw + Qsy 2 mm/°C/d 0-7 Degree-day factor for snowmelt
Glaicer melt glacier melt factor Qcsw + [Qsml+Qsm 3 mm/°C/d 1-10 Degree-day factor for glacier melt
Rainfall frac_riparian Qow + [Qspl+ [Qeml +Qre 4 - 0-0.05 Fraction of saturated area
surface sat_area_var Qsw + [Qsp)+ [Qeml +Qgre 4 - 0-0.3 Spatial variability of saturated areas within a model unit
runoff kf_corr_f Qow + [Qspl+ [Qeml +Qgrre 4 - 0.01-100 Soil hydraulic conductivities correction factor
k_sat_f Qcw + [Qspl+ [Qeml +Qre 4 = 0.01-100 Soil hydraulic conductivities
- precip_f all 5 - 0.0-5.0 Precipitation correction factor

Subsurface Flow. The WASA model simulates interflow and groundwater components. The water release
from these two storages are controlled by two outflow delay factors (interflow delay factor and groundwater
delay factor in Table 1). The percolation from the interflow subsurface reservoir into the groundwater stor-
age is controlled by the fraction factor frac2gw.

Snow and Glacier melt. Snowmelt and glacier melt are calculated using a temperature-index approach
(Hock, 2003), with two different degree-day factors for snow and glacier (Table 1). To differentiate between
rainfall and snowfall, a threshold temperature (T,,,) was used. The threshold temperature (T,) in the degree-
day module was set to the same value as T,,. The SCA within each model spatial unit is characterized by a
snow depletion curve with the parameter sdmax (Liston, 2004), calculating the SCA as a function of the ratio
between the current SWE and the maximum SWE during the accumulation season (Duethmann et al.,
2014). The SCA of the entire basin is estimated by the ratio of the sum of snow cover areas from all model
units to the basin area. The initial glacier ice thickness distribution within each glacierized model unit was
estimated using the Glabtop2 model introduced by Linsbauer et al. (2012) and Frey et al. (2014). GMB is cal-
culated annually by subtracting snowmelt and glacier melt from snowfall on the glacierized areas. The Ah-
approach was implemented in the WASA model to account for mass balance redistribution with glacier ele-
vation range and account for glacier depth and area changes (Huss et al., 2010).

Considering the insufficient representation of spatial precipitation derived from sparse ground gauge in high
mountain areas, a precipitation correction factor (precip_f) was introduced in the model to correct the precipi-
tation input. Precipitation forcing was derived by multiplying the observed precipitation with the correction
factor (Duethmann et al,, 2013). In total, 10 model parameters controlling the four main runoff generation pro-
cesses were calibrated in the various calibration methods (Table 1). To facilitate the comparison of calibration
methods, the value of T,,, was optimized based on the simulation of the entire discharge series prior to the
comparison, and the parameter sdmax was only optimized in the calibration methods which use the SCA. The
WASA model was set up for the Ala-Archa basin using the climate data series from two available climate sta-
tions (Figure 1). Monthly lapse rates of precipitation and temperature were derived from observed data series
and used to estimate daily precipitation and temperature in each model unit based on elevation.

3.2. Extracting Hydrograph Partitioning Curves

To identify the snow and glacier ablation periods, we introduced two cumulative curves: the annual cumulative
curve of average daily snowfall on the glacierized area (ASF) and the annual cumulative curve of the difference
between average daily temperature and T,,, of the entire basin (ADT). ASF is used to identify the starting and
end dates of snow accumulation across the glacier-covered model units, and ADT presents the period
when the average temperature over the entire basin exceeds T,,. Figure 2 shows an example for the
extraction of HPCs in the year 1987. The minimum (P1) of the ADT curve indicates the assumed starting
date of the snowmelt period, and the maximum (P2) indicates the assumed end date of the glacier melt.
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Figure 2. (a) Cumulative curve of average daily snowfall on glacier (ASF) and (b) cumulative curve of the difference
between average daily temperature and melt threshold temperature over the basin (ADT) in 1987 used to extract

(c) hydrograph partitioning curves (HPCs). Qg represents the groundwater dominated hydrograph part, Qg + Qsy
refers to the groundwater and snowmelt dominated hydrograph part, Qs + [Qspl + Qg stands for the groundwater
and meltwater (glacier melt and possible snowmelt) dominated hydrograph part, and Qg + [Qspl + [Qsum] + Qgr refers to
the hydrograph part controlled by groundwater and rainfall, as well as possible meltwater.

The turning point on the ASF curve followed by the longest nonsnowy period indicates the end of snow
accumulation on the glacierized areas. A period after this point indicated by the Pt value is adopted to
represent the persistence of snow accumulation on glaciers after the last snowfall event. We predefined
the Pt value based on our knowledge of the catchment conditions. Five Pt values were adopted to indi-
cate the assumed starting date of glacier melt, ranging from 1 to 5 weeks. Figure 2 shows the extraction
of HPCs using a Pt value of 4 weeks in the year 1987. The refined method identifies the snowmelt and
glacier melt contribution periods more appropriately compared to that in He et al. (2015), which used a
specific elevation threshold to identify the ablation period. Their method did not consider the snow
cover on glacierized areas and was not able to distinguish summer snowmelt from glacier melt.

Subsequently, three runoff component indices S;, G; and R;, are defined as step functions between 0 and 1
indicating the dominant sources of river runoff for each day using the ASF and ADT curves (equations (1-3)):

1, for mean(T}) > T, &i € [P1,P3]
5= j=1—=nn , (1)
0, otherwise

1, for mean(T}) > T, & i € [P3,P2]
G= k=t ; )
0, otherwise
1, for max (T'=Ty,)-P))>0

Ri: j=1—nn J J , (3)

0, otherwise

where S;, G;, and R; are the indices indicating the dominance of snowmelt, glacier melt, and rainfall
surface runoff on day i, respectively. The index value of 1 indicates the presence of the respective
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contribution to streamflow on that day, while 0 indicates its absence. T/’f is the daily temperature on
model unit j; nn indicates the total number of model units in the basin; T} is the daily temperature on
the glacierized model unit k; n is the total number of glacierized units; and ij is the daily precipitation
on model unit j.

According to the daily values of the runoff component indices, the observed hydrograph at the basin outlet
can be stratified into four HPCs by equation (4). Each HPC indicates the dominant period of a specific com-
bination of runoff components:

Qew, for S;+R;+G;=0
Qaw +Qsp, for Si—Ri—G;=1

Q= 4)
Qow+ [Qsm]+Qam, for Gi—R;=1

Qow+ [Qsm]+ [Qom]+Qge, for Ri=1

where Qg stands for the groundwater dominant period, i.e., days when both melt water and rainfall run-
off do not occur (S;=R;= G; = 0). This partition is used for the calibration of groundwater parameters.
Qgw + Qs represents the groundwater and snowmelt dominant period, i.e., days when both rainfall and
glacier melt do not occur (S;=1, R;= G;= 0). This partition is used for the calibration of the snowmelt
parameter. Qgw + [Qsy] + Qe refers to the groundwater and melt water (glacier melt and possible
remaining snowmelt on nonglacierized areas) dominant period on nonrainy days (G; = 1, R; = 0). This parti-
tion is used for the calibration of the glacier melt parameter. Qg + [Qsyl + [Qsml + Qgr indicates rainy
days (R; = 1) with groundwater, rainfall, and possible melt water. This partition is used for the calibration of
rainfall surface runoff parameters. The “[]” notation indicates the possible but not necessary presence of
melt runoff. We assume that inflow is transformed into discharge at the gauge site entirely within the
same day. The subsurface storage effects on the HPC process are considered by separating outflow into
groundwater runoff and surface runoff, and that any delays due to surface and network storage could be a
relatively minor effect. The application of the HPC-based method in large catchment will be discussed in
section 4.7.

3.3. HPC-Based and Multidata Set Calibration

The WASA model was calibrated using five different approaches: (1) stepwise and iterative approach based
on HPCs, (2) single-data set calibration based on the discharge time series, (3) bi-data set calibration based
on discharge records and glacier mass balance series (GMB), (4) bi-data set calibration based on discharge
records and remotely sensed snow cover information (SCA), and (5) tri-data set calibration based on dis-
charge, GMB and SCA. We used the average value of Nash-Sutcliffe efficiency (NSE, equation (5)) and loga-
rithmic NSE (logNSE, equation (6)) as the objective function to measure the performance for the simulation
of discharge (hereafter abbreviated as avNSE), the NSE for the simulation of each HPC, the relative SCA error
(SE, equation (7)) for the simulation of SCA, and the volumetric deviation efficiency (VE, equation (8)) to
assess the simulation performance for GMB.

n

Z (Qobs(i) _Qsim(i))z
NSE=1— i:L , for discharge and HPC (5)

Z (Oobs(i)fﬂ)z

i=1

i (Iog Qobs(i) *lOg Qsim (I))Z

logNSE=1— 1 1n , for discharge (6)

(Iog Qobs(i)flc’g Qobs)2

=1
m
Z (SobS(k)_Ssim(k))z
SE=1-\| &= , for SCA 7)
m
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\/ﬁ Z (MobS(t) _Msim(t))2
VE=1—+ =

, for GMB (8)
|M obs |

where Q,ps(i) and Qg (i) are the observed and simulated discharge on day i, respectively; Qqps is the average
observed daily discharge during the calibration period with n days; Seps(k) and Sg,(k) are the remotely
sensed and simulated SCA over the basin on day k, respectively; Mop(t) and Mg;,(t) are the observed and
simulated GMB on the Golubin glacier in year t, respectively; My is the average observed GMB on the Golu-
bin glacier during the N evaluated years.

All five calibration approaches were automatically carried out using the e-NSGAIl algorithm developed by
Deb et al. (2002) and Kollat and Reed (2006). In the multidata set calibration methods, we carried out a mul-
tiobjective e-NSGAII algorithm. The objective functions for the simulation of discharge, SCA and GMB were
weighted equally by using the same Epsilon values. In the HPC-based method, the ten parameters were cal-
ibrated in five steps. In each step, a single-objective e-NSGAIl algorithm was adopted to constrain the corre-
sponding parameters by optimizing the NSE value for an individual HPC. All the calibration approaches
were carried out in two trials to investigate the impacts of the initialization of the e-NSGAII algorithm. In the
first trial, we ran the e-NSGAIl algorithm using initial population size of 8 and maximum generation per run
of 250. In the second trail, the initial population size was 16.

In the HPC-based calibration method, parameters grouped in Table 1 were constrained on different HPCs in
a stepwise and iterative way. The calibration procedure in the first trial is summarized as follows:

1. Each step consists of a e-NSGAIl process, using an initial population size of 8, maximum population size
of 4,000, and maximum generations per run of 250. For each step, a single parameter vector is chosen,
corresponding to the highest performance, and then fixed for the subsequent step.

2. In step 1, parameters frac2gw, interflow delay factor and groundwater delay factor controlling groundwa-
ter outflow were first calibrated on the Qg partitioning curve. In step 2, the snowmelt factor was cali-
brated on the Qgw + Qsy partitioning curve. The glacier melt factor was calibrated on the
Qgw + [Qspl + Qg partitioning curve in the third step. In step 4, parameters determining surface runoff
(k_sat_f, kf_corr_f, frac_riparian and sat_area_var) were calibrated on the Qg + [Qspl + [Qaml + Qg par-
titioning curve. Finally, the precipitation correction factor (precip_f) was calibrated on all four HPCs. The
NSE value was used as the objective function in the first four steps, while the Euclidean distance of the
NSE values for four HPCs was used as the objective function in the last step.

3. The entire five-step process was repeated 8 times in total to consider the parameter interaction. This iter-
ative procedure, using parameters calibrated in previous steps, considers the effects of the parameter ini-
tialization on the simulation of each HPC. All parameters were updated in each iteration when five
calibration steps were finished. The impact of the parameter initialization could be reduced after several
iterative procedures.

4. The final calibrated parameter set is based on the composite parameter vector optimized during the last
iteration. The parameters that produced the highest objective-function value in each step in the last iter-
ation were selected for the combination. To simulate the entire discharge, the annual GMB on the Golu-
bin glacier and SCA over the entire basin, we re-ran the model using the composite parameter vector.

For comparison with the multidata set calibration, the model calibration and validation procedure was
implemented in three scenarios: a baseline scenario including five methods, i.e., single-data set, bi-data set
using discharge and GMB (hereafter abbreviated as QM-based bi-data set), bi-data set using discharge and
SCA (hereafter abbreviated as QS-based bi-data set), tri-data set, and HPC-based; and two scenarios to
investigate parameter stability. In the latter two scenarios, three calibration methods (single-data set, QM-
based bi-data set or QS-based bi-data set, and HPC-based) were applied due to the limited data availability.

Baseline Scenario (S1). Five calibration methods were implemented in the baseline calibration period 1987-
1993. The calibrated parameters were validated in three periods (1973-1979, 1980-1986, and 1994-2000).
Since SCA data are available after 1986, and GMB data are not available during 1994-2000, we investigated
the performance for the simulations of discharge and GMB during 1973-1979 and 1980-1986, and the per-
formance for the simulations of discharge and SCA during 1994-2000. The parameter sdmax was optimized
by the tri-data set method in this scenario.
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Scenario 2 (52). The model was calibrated for 1973-1979 and validated in the periods 1980-1986, 1987-
1993, and 1994-2000. The QM-based bi-data set calibration method was carried out in this scenario.

Scenario 3 (53). The model was calibrated for 1994-2000 and validated in the periods 1973-1979, 1980-
1986, and 1987-1993. The QS-based bi-data set calibration method was carried out in this scenario. The
parameter sdmax was optimized by the bi-data set method.

3.4. Calibration Using Other Hydrograph Signatures

We also adopted other hydrograph signatures for the model calibration to contrast the ability of HPCs in
constraining multiple runoff processes. The chosen signatures include the intraannual runoff variability and
the flow duration curve (FDC). These signatures were selected for comparison due to their foci on runoff
seasonality, which was similarly emphasized by the HPC. The objective function to quantify the reproduc-
tion of the intraannual runoff variability is defined in equation (9), similar to Duethmann et al. (2015). Fol-
lowing Shafii and Tolson (2015), we divided the FDC into three segments to examine the simulation of the
overall FDC. The corresponding objective functions are given in equations (10-12). A three-objective calibra-
tion procedure based on these signatures was conducted in the £-NSGAIl algorithm. The first objective-
function f; was the aviNSE for the overall discharge series, the latter two objective functions were f, and f;
derived from equations (9) and (13).

9

] (NSED,F+NSE}52 . NSEwau+NSEySy | NSEua+NSES NSESON+NSE';;,9N>
4 2 2 2 2

where NSEpr (NSEpans, NSE 4, NSEson) and NSE'ngF are the NSE and logarithmic NSE calculated from daily
observed and simulated discharge in winter (spring, summer, and autumn). The perfect value of objective-
function f, is 1.

nl nl
g1 :Z[Qobs(l)—osfm(l)}/z Qobs(1), for FDC high-segment volume (10)
= =

where [ is the flow index within the high-flow segment, which contains high flows with exceedance proba-
bility lower than 0.2. n7 is the total number of daily discharge falling into the high segment.

— [IOQ Qobs(rr"I ) _IOQ Qobs(mz)} - [IOg Qsim (m1 )_|09 Qsim (mZ)}
92 |09 Qobs(nﬂ ) _IOQ Qobs(mz)

, for FDC midsegment slope  (11)

where m1 and m2 are the lowest and highest flow exceedance probabilities within the midsegment of FDC.
Here we used 0.2 and 0.7 as thresholds, respectively:

nk nk
2“09 Qobs(2) —log Qops (M)] _2“09 Qsim(2) —log Qsim (M)]
gy=2" — z=1 , for FDC low-segment volume  (12)

Z [log Qobs(z) —log Qops(M)]

z=1

where z is the flow index in the low-flow segment (with exceedance probability larger than 0.7). M is the
index of the minimum flow, nk is the total number of daily discharge falling into the low segment. The per-
fect value of objective-function f5 is also 1.

_ abs(gq)+abs(gz)+abs(gs)

f3:1 3 (13)

4, Results

4.1. Hydrograph Partitioning Curves

Figure 2 illustrates the extracted HPCs assuming Pt of 4 weeks for the year 1987. The starting date of the
ablation period (P1) was estimated on 10 May, the end date (P2) on 4 October, and the starting date of gla-
cier melt (P3) was estimated on 20 July. HPCs for other years were constructed analogously. The effect of
the Pt value on the HPC-based calibration method will be discussed in section 4.8.
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Figure 3. Variability of parameter values during the stepwise-iterative calibration procedure in the HPC-based method.

Observed daily streamflow values were assigned to the HPCs representing the dominant runoff components
identified by equation (4). For example, the Qg partitioning curve in Figure 2c shows the dominance of
groundwater in winter months when both meltwater and rainfall rarely occur. The Qg +Qsy partitioning
curve indicates that snowmelt plays a crucial role in the total streamflow during May, June, and July. The dom-
inant periods of the different runoff components identified by the HPCs are consistent with the prior knowl-
edge about the seasonal dominance of different water sources in the Ala-Archa basin (Aizen et al., 1996). In
the entire calibration period 1987-1993, the number of days contained in the Qg and the Qg + Qs partition-
ing curves are 1417 and 225, respectively. Two hundred and fifty six days are included in the Qg + [Qsp] + Qg
partitioning curve and the remaining 659 days constitute the Qg + [Qsyl + [Qgul + Qge partitioning curve.

4.2, Comparison with Multidata Set Calibration Approaches

Figure 3 illustrates the variability of the 10 parameters during the iterations using the HPC-based stepwise-
iterative calibration procedure during 1987-1993. Eight iterations were finished to test the variability of
parameter values. Parameter values in the first two iterations tend to be significantly different from those in
the later iterations. The variance of parameter values in the last four iterations tends to be small.

Table 2 summarizes the performance for the simulations of discharge, GMB and SCA in calibration scenario
S1, driven by individual behavioral parameter sets in two trials. For the single-data set calibration method,
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Table 2
Summary of the Performance for Discharge(avNSE), GMB(VE), and SCA(SE) Simulations by Various Calibration Methods
in Two Trails During the Calibration Period 19871993

Trial 1 Trial 2
avNSE SE VE avNSE SE VE
Sing. 0.8781 0.8020 0.6012 0.8790 0.8002 0.5862
Bi-QM. 0.8735 0.8314 0.6425 0.8718 0.8327 0.6433
Bi-QS. 0.8653 0.8597 0.6118 0.8654 0.8597 0.6147
Trip. 0.8623 0.8604 0.6407 0.8626 0.8604 0.6406
HPC. 0.8620 0.8608 0.6388 0.8619 0.8607 0.6391
Ex-HPC. 0.8628 0.8605 0.6392 0.8629 0.8606 0.6393

Note. “Sing.” stands for performance produced by the single-data set calibration method, “Bi-QM.” and “Bi-QS.”
refer to the bi-data set calibration methods using discharge/GMB and discharge/SCA, respectively. “Trip.” indicates the
tri-data set method, “HPC." represents the HPC-based method, “Ex-HPC.” presents the extended HPC-based method in
large catchments.

the behavioral parameter set was defined as the parameter set that produced the highest avNSE value for
discharge. For the bi-data set and tri-data set calibration methods, the behavioral parameter sets were
selected from the Pareto-optimal front by taking the smallest Euclidean distance from the perfect point. For
the HPC-based method, the behavioral parameter set was derived from the combination of the calibrated
parameters in five individual steps. The parameters that produced the highest objective-function value in
each step during the last iteration were selected for the combination.

Figures 4-6 compare the performance of five calibration methods in the calibration period 1987-1993,
driven by the individual behavioral parameter sets of trial 1. The single-data set calibration produced the
highest NSE and logNSE values for the simulation of discharge (Figure 4a). The QM-based bi-data set per-
formed similarly to the single-data set method, while the QS-based bi-data set, as well as the HPC-based
and tri-data set methods obtained lower NSE and logNSE values. Figure 4b shows the agreement between
the simulated and observed FDCs. All calibration approaches overestimated moderate flows, while signifi-
cantly underestimating high flows. Figures 4c and 4d present simulated bias values for various discharge
ranges. We ranked the daily streamflow using seven quantiles (5%, 10%, 25%, 50%, 75%, 90%, and 95% in
Figure 4c). Compared to the single-data set method, the HPC-based method achieved lower bias values for
low flow (lower than 1.66 m?/s), but larger values for flow ranging from 1.66 to 7.1 m>/s. Figure 4d shows
the simulated bias values for five flow quantiles from the FDC. The HPC-based method outperformed other
methods on the 25% and 75% quantiles, but produced larger overestimation on the median flow.

As expected, the single-data set calibration yielded the lowest VE value for GMB, followed by the QS-based
bi-data set calibration (Table 2 and Figure 5a). Bias values for the simulated GMB over the entire GMB series
indicate significantly lower performance of the single-data set and QS-based bi-data set methods (Figure
5b). Observed GMB has not been used as constraining observation in these two calibration methods. Thus,
a stronger internal compensation between glacier melt and other runoff components occurred compared
to the other methods. The HPC-based method performed similarly well as the tri-data set and QM-based
bi-data set methods in terms of VE values, and achieved the lowest bias value for the entire GMB series
(Figure 5b). Figure 6 shows that the single-data set method performed worst with respect to the simulation
of SCA in snowmelt seasons, closely followed by the QM-based bi-data set method, due to the absence of
SCA data as constraining observation. The HPC-based method performed similarly to the tri-data set and
QS-based bi-data set methods (see SE values in Table 2). Both the HPC-based and tri-data set methods obvi-
ously outperformed the single-data set and QM-based bi-data set methods on the simulation of low snow
fraction events (lower bias values shown in Figure 6b).

In general, the HPC-based method achieved comparable performance to the tri-data set method, despite
solely using hydrograph partitions as constraining observation. The HPC-based method even produced
lower bias values for GMB and SCA than all the other four methods. The results of the second trial (summa-
rized in Table 2) also support these findings. For the sake of brevity, all further results discussed hereafter
are from the first trial and they are similar to those produced in the second trial.
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Figure 4. (a) Simulations of daily discharge in the calibration period 1987-1993 achieved with various calibration methods. “Sing.” stands for the single-data set
calibration, “Bi-QM.” (“Bi-QS.") refers to the bi-data set calibration using discharge and GMB (discharge and SCA), “Trip.” indicates the tri-data set calibration, and
“"HPC." represents the HPC-based calibration. (b) Simulation of the Flow Duration Curve (FDC). (c) Simulated bias values for various observed discharge ranges. (d)
Simulated bias values for flow quantiles from the FDC.

Figure 7 shows the pairwise trade-off between two simulation data sets (discharge versus SCA and discharge
versus GMB) for the calibration and validation periods in three calibration scenarios (51-3, section 3.3). The
performance criteria values were produced by the behavioral parameter sets of various calibration methods.
The Euclidean distance to the perfect point (1, 1) was used to evaluate the performance in each subplot. In
calibration scenario S2, the HPC-based method performed similarly to the QM-based bi-data set method in
the calibration period 1973-1979 (i.e., similar Euclidean distance to the perfect point, Figure 7a), and outper-
formed the bi-data set and single-data set methods in all three validation periods (Figures 7b-7e). In scenario
S1, the HPC-based method performed similarly well to the tri-data set method, and outperformed the single-
data set method in the calibration period 1987-1993 (Figures 7h and 7i). As expected, the QM-based (QS-
based) bi-data set method shows lower performance than the tri-data set method in Figure 7h (7i). In the
three validation periods (Figures 7f, 7g, and 7j), both the HPC-based and tri-data set methods tended to out-
perform the other methods. In scenario S3, the HPC-based method performed similarly to the QS-based
method in the calibration period 1994-2000 (Figure 70), and outperformed the bi-data set and single-data set
methods in the validation periods (Figures 7k-7m). In all the three calibration scenarios, the single-data set
method performed poorly in capturing the dynamics in snow and glacier observations. The HPC-based
method performed comparably to the multidata set calibration methods for the reproducing of SCA and
GMB, in spite of that SCA and GMB observations were not included in this calibration procedure.

4.3. Parameter Stability and Identifiability

Figure 8 compares the behavioral parameter values obtained by different calibration methods across the
three calibration scenarios. For all 10 parameters, the HPC-based method tended to achieve more stable
parameter values across different calibration periods, compared to the single-data set and bi-data set
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Figure 5. (a) Simulations of annual glacier mass balance (GMB) in the calibration period 1987-1993 by various calibration
methods. (b) Error (simulation minus observation) between the simulated and observed GMB in each year, and the bias
values for the entire annual GMB series.

methods. The single-data set method yielded the largest variation in many parameter values. For example,
the value of glacier melt factor ranges from 3.41 to 9.99 when calibrated by the single-data set method (Fig-
ure 8e), while this value ranges from 4.45 to 4.54 in the HPC-based method, from 4.59 to 5.45 in the QM-
based bi-data set method, and from 5.03 to 5.17 in the QS-based bi-data set method. Figures 7 and 8 show
that the behavioral parameter sets produced by the HPC-based method achieved stable values and high
performance for the model cross validation, suggesting a better parameter identifiability with reduced
parameter uncertainty.

To investigate whether the improvement in parameter stability stems from the information provided by the
HPCs or from the stepwise-iterative procedure adherent to the HPC-based calibration, we ran two additional
calibration scenarios: a stepwise-iterative calibration procedure using discharge and SCA/GMB data sets,
and a four-objective calibration based on four HPCs. In the stepwise-iterative calibration scenario, we con-
ducted four calibration steps. In the first step, we calibrated the parameters belonging to the groundwater
and surface runoff groups on the whole discharge series (see Table 1 for parameter groups). In the second
step, we calibrated the snowmelt factor on SCA, and in the third step, the glacier melt factor was calibrated
on GMB. Finally, we calibrated the precipitation correction factor to minimize the Euclidean distance of the
avNSE values for discharge and SE (VE) for SCA (GMB). In periods when only discharge and SCA were avail-
able, the glacier melt factor was calibrated in the first step, and when only discharge and GMB were
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available, both snow and glacier melt factors were calibrated on the GMB data set. The behavioral parame-
ter set for this scenario was derived from the combination of the calibrated parameters in individual steps.
In the four-objective scenario, the Pareto-optimal parameter set that achieved the smallest Euclidean dis-
tance for the NSE values of the four HPCs was defined as the behavioral parameter.

Figure 9 compares the behavioral parameter values obtained by the two calibration scenarios in three cali-
bration periods. The stepwise-iterative procedure using discharge and GMB produced stable values for the gla-
cier melt factor and frac_riparian across the periods 1973-1979 and 1987-1993 (Si-QM in Figures 9e and 9h).
The stepwise-iterative procedure using discharge and SCA delivered considerably stable values for groundwa-
ter parameters, the glacier melt factor, frac_riparian and sat_area_var across the periods 1987-1993 and
1994-2000 (Si-QS in Figures 9a-9¢, 9e, 9h, and 9i). However, the stepwise-iterative procedures using sepa-
rated discharge and SCA/GMB data sets tend to show only minor (or negative) improvement in parameter
stability, compared to the standard bi-data set calibration in Figure 8. The four-HPC method improved the
stability in groundwater parameters and the snowmelt factor (Figures 9a-9d), compared to the standard
QM-based bi-data set calibration, and yielded comparable parameter stability to the standard QS-based
bi-data set calibration. The four-HPC method shows ability to deliver stable values for most parameters
(F-HPC in Figures 9a, 9c-9f, and 9h), while the standard HPC-based method further improved the parameter
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Figure 7. Pairwise trade-off between the performances for multiple data sets (Q versus SCA or Q versus GMB) in the calibration and validation periods in three cali-
bration scenarios (S1-3) yielded by the behavioral parameter sets of five calibration methods. The performance is evaluated by the Euclidean distance to the per-
fect point (1, 1). The abbreviations for the five calibration methods are the same to those in Figure 4.

stability using the stepwise-iterative procedure (HPC. in Figure 9). For example, the HPC-based method
reduced the variations of the parameters kf_corr_f and sat_area_var across the calibration periods, com-
pared to the four-HPC method (Figures 9g and 9i). The values for the parameter k_sat_f produced by the
HPC-based method are significantly different from those produced by the four-HPC method (Figure 9f).
These could be attributed to the different parameter optimization procedures in the four-HPC and HPC-
based methods. In the four-HPC method, model parameters were optimized by the simultaneous simulation
of the four HPCs, while the HPC-based method optimized the parameter values by the separated simulation
of each HPC in each step. Therefore, there is a stronger chance for compensation between model parame-
ters in the four-HPC method, enhancing the equifinality in parameter values. The stepwise-iterative optimi-
zation procedure in the HPC-based method separately calibrated parameters on the corresponding
sensitive HPCs to reduce the internal compensation of runoff processes, and thus helped to reduce the
parameter equifinality.

4.4, Contributions of Runoff Components

We ran the model for the period 1973-2000 using behavioral parameter sets obtained in scenario S1 to esti-
mate the contributions of runoff components to the river discharge. Table 3 summarizes the annual contri-
butions of runoff components simulated by the different calibration methods in three representative years.
From the annual precipitation series during 1973-2000, the wettest year 1979 (annual precipitation
602 mm), the median wet year 1983 (annual precipitation 549 mm), and the driest year 1997 (annual precip-
itation 392 mm) were selected. There is a strong interannual variability in runoff components in the study
basin. As expected, the contributions of groundwater, snowmelt, and rainfall decrease with decreasing
annual precipitation. In contrast, the contribution of glacier melt increases with decreasing annual precipita-
tion due to lower snow accumulation on glacierized areas and potentially longer ablation period. The five
calibration methods mainly differed in the estimation of the glacier melt contribution. For example, in the
median wet year 1983, the HPC-based and tri-data set methods computed the glacier melt contribution as
17-18%, the QS-based and QM-based bi-data set methods estimated the glacier melt contributions to
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Figure 8. Behavioral parameter values calibrated by various methods in three calibration scenarios. “/M” indicates the bi-data set calibration using discharge and
GMB; “/S" indicates bi-data set calibration using discharge and SCA; S1: parameter values calibrated during 1987-1993; S2: calibrated during 1973-1979; S3: cali-

brated during 1994-2000.

15% and 13%, and the single-data set method obtained a glacier melt contribution of 10%. Both the
HPC-based and tri-data set methods tended to compute the lowest contributions of groundwater, rain-
fall, and snowmelt, but the highest contribution of glacier melt. The opposite holds true for the single-
data set method. The HPCs based approach delivered similar contributions to the well-constrained tri-
data set approaches despite being informed only by discharge observation (additionally temperature
and precipitation). As the tri-data set method was constrained by all three calibration data sets, we
assumed the contributions of runoff components to discharge estimated by this method to be the
most reliable (similar to Finger et al., 2015 and Tarasova et al., 2016) and used this approach as a
benchmark.

Figure 10 shows the contributions of runoff components at the seasonal scale. The contributions simulated
by the five calibration methods show visible differences in the melt water in summer and autumn. For
example, in the median wet year 1983, the single-data set method obtained 10% lower contribution of gla-
cier melt in summer and 8% lower in autumn (Figures 10g and 10k) compared to the HPC-based and
tri-data set methods. The QM-based bi-data set method computed 8% lower contribution of glacier melt in
summer in the driest year, and the QS-based bi-data set method computed 4% lower contribution of glacier
melt in autumn in the median wet year, compared to the HPC-based and tri-data set methods. The lower
contributions of glacier melt estimated by the single-data set and bi-data set methods are compensated by
the higher contributions of snowmelt and rainfall.
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Figure 9. Behavioral parameter values calibrated by the multiple data sets based method using a stepwise-iterative approach and the four-objective method using
four HPCs. Si-QM and Si-QS refer to the stepwise-iterative approach using discharge + GMB and discharge + SCA; Si-QMS: refers to the stepwise-iterative approach
using discharge + GMB + SCA; F-HPC: refers to the four-objective method using four HPCs; HPC.: standard stepwise-iterative method using four HPCs.

4.5. Uncertainty Analysis

As the aim of our study is to compare the performance of various calibration methods for estimating model
parameters and achieving reasonable performance criteria, the parameter uncertainty analysis is of main
concern. Previous studies on hydrological modeling in glacierized basins have emphasized the importance
of the calibration approach (Finger et al.,, 2015; Tarasova et al.,, 2016), and demonstrated that increasing
model structure complexity does not necessarily help to increase the model performance. The uncertainty
in precipitation input has been implicitly considered in all calibration procedures by adjusting the precipita-
tion correction factor (precip_f) (Duethmann et al., 2013; Immerzeel et al., 2015). Considering that all the cali-
bration methods were tested using the same model structure and driven by the same input climate data
sets, the analysis of structural uncertainty and input data uncertainty has not been performed here. This
would go beyond the scope of the presented work.

To quantify the parameter uncertainty, we added three trials for each calibration method with the initial
population sizes for the e-NSGAIl algorithm of 24, 32, and 40, respectively. To estimate the posterior distri-
butions of parameter values calibrated by the various methods in each trial, we selected the 100 best
parameter sets from the Pareto-optimal fronts produced by the e-NSGAIl algorithm. For the single-data set
calibration method, the parameter sets that produced the 100 highest avNSE values for discharge were
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Table 3
Annual Contributions (%) of Runoff Components to River Discharge Simulated by Five Calibration Methods

in Three Representative Years

Year Runoff components Sing. Bi-QM. Bi-QS. Trip. HPC.

1979 (wettest year) GW 43 42 41 41 41
SM 34 34 33 33 33
GM 3 4 7 7 7
RF 20 20 19 19 19

1983 (median wet year) GW 37 36 35 34 34
SM 33 32 31 30 30
GM 10 13 15 17 18
RF 20 19 19 19 18

1997 (driest year) GW 31 30 28 28 29
SM 30 27 25 24 24
GM 21 25 29 30 29
RF 18 18 18 18 18

Note. GW: groundwater; SM: snowmelt; GM: glacier melt; RF: rainfall.

selected. For the bi-data set and tri-data set calibration methods, the parameter sets that produced the 100
smallest Euclidean distances from the perfect point were selected. For the HPC-based method, the 100 best
parameter sets were derived from the combination of the calibrated parameters in five individual steps. The
e-NSGAIl algorithm optimized the parameter values from more than 20,000 samples in each calibration
method. For example, in the trial with initial population size of 8, the QM-based bi-data set method opti-
mized parameter values from 3,108 * 8 = 24,864 samples. In the absence of Monte Carlo analysis method,
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Figure 10. Seasonal contributions of runoff components computed by various calibration methods in three representative years.
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Figure 11. Posterior distributions of the 100 best parameter sets calibrated by various calibration methods in scenario S1 in five trials.

we assumed the selected 100 best parameter sets from the e-NSGAIl algorithm test samples could ade-
quately represent parameter uncertainty, similar to Soulsby et al. (2015).

Figure 11 shows the posterior distributions of the 100 best parameter sets calibrated by the various meth-
ods in scenario S1 for five trials. To facilitate the presentation, only the posterior distributions of the four
most sensitive parameters, namely the snowmelt and glacier melt factors, the groundwater parameter
frac2gw and the precipitation correction factor precip_f, were included in this figure. The parameters
calibrated by the single-data set method tend to show the largest uncertainty ranges. The bi-data set and
tri-data set methods helped to narrow the ranges for most parameters. The HPC-based method tended to
produce the narrowest uncertainty ranges for all four analyzed parameters. The analysis also indicates that
the HPC-based method produced the most stable median parameter values across all trials. This further cor-
roborates the findings with regards to the superior parameter identifiability in the HPC-based calibration.

The performance of the 100 best parameter sets in Figure 11 for both calibration and validation periods
was compared in Figure 12. Again, we use the Euclidean distance to the perfect point (1, 1) to evaluate the
performance in each subplot. In the calibration period 1987-1993 (Figures 12a-12j), the HPC-based method
performed similarly to the QS-based (QM-based) bi-data set and the tri-data set methods, and outper-
formed the QM-based (QS-based) bi-data set and single-data set methods for the simultaneous simulation
of discharge and SCA (GMB). In the validation period 1973-1979 (Figures 12k-120), the HPC-based method
performed similarly to the tri-data set method, and outperformed the other three methods. In the validation
period 1994-2000 (Figures 12p-12t), the HPC-based method performed similarly to the QS-based bi-data
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Figure 12. Performance for the simulations of discharge, SCA and GMB in both calibration and validation periods produced by the 100 best parameter sets cali-
brated in scenario S1 in five trials.

set and the tri-data set methods, and outperformed the other two methods. We can conclude that even
considering the (fairly small) parameter uncertainty in the HPC-based calibration method, it performed bet-
ter or similarly to the bi-data set and tri-data set methods.

4.6. Comparison With Other Hydrograph Signatures

In order to contrast the calibration power of the HPC-based method with other typical hydrograph signa-
tures, we tested the flow duration curve (FDC) segments and intraannual variability for the model calibra-
tion. Combined with the avNSE for discharge, we carried out a three-objective calibration (abbreviated as
Sgn-based method, see section 3.4). The parameter sets that produced the 100 smallest Euclidean distances
from the perfect point (1, 1, 1) were selected to estimate the posterior parameter distributions in this
method. Figure 13 compares the performance produced by the 100 best parameter sets in 5 trials during
the calibration period 1987-1993. In all the five trials, the Sgn-based method failed to capture the dynamics
in SCA and GMB, in spite of its good performance for discharge. The low performance for SCA and GMB in
Figure 13 is partly caused by the overestimated contribution of precipitation, which results in significant
underestimation in snow and glacier melt runoff. The analysis also indicates a high sensitivity of this
method to the initial population size of the e-NSGAIl algorithm, which is in contrast to the HPC-based
approach. Considering the low performance of the Sgn-based method, this method was not included for
comparison in Figures 11, 12.

4.7. Applicability in Large Catchments

In the current study, the HPC-based method was evaluated in a moderate basin with an area of 233 km? To
extract the HPCs from the observed hydrograph, we adopted the average basin temperature, as well as the
average snowfall in the glacierized areas. This seems reasonable for a moderate basin like Ala-Archa, but
implies larger uncertainty in large basins where precipitation and temperature exhibit stronger spatial
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Figure 13. Performance of the Sgn-based calibration method in calibration period 1987-1993 in five trials.

variability. To test the extension of the HPC approach to large basins, we divided the study basin into four
subbasins in a first step. The daily values of the runoff component indices (i.e., S, G; and D;) were defined
for each subbasin using individual ASF and ADT curves. Considering the cases that one runoff process is
dominant for the river runoff in one subbasin, while others are dominant in other subbasins, we used the
inverse distance weighted subbasin runoff component indices to identify the dominant runoff process for
the hydrograph at the entire basin outlet. The distance here refers to the channel length between the sub-
basin outlet and the entire basin outlet. The identified dominant periods of runoff processes were then
used for the extraction of HPCs at the entire basin outlet.

The performance of the extended HPC-based method in the first two trials is summarized in Table 2 (Ex-
HPC.). As expected, the extended HPC-based method shows higher performance than the lumped HPC-
based method, due to the consideration of spatial variability in dominant runoff components. The results in
Table 2 indicate the potential suitability of the extended HPC-based method in large catchments. To facili-
tate the description of the method, we treated the study basin as one lumped catchment in earlier sections.
We acknowledge that more case studies in other basins are needed to prove the robustness of the HPC-
basin method, however, such comparisons require ground GMB measurements for large basins which are
rather limited.

4.8. Sensitivity of the HPC-Based Calibration Method to the Pt Value

In the HPC-based method, the starting date of glacier melt is determined by the choice of the Pt value indi-
cating the persistence of snow after the end of accumulation. The Pt value defines the Qg + Qs and
Qaw + [Qsml] + Qgu partitioning curves, and potentially influences the calibration results. We analyzed the
sensitivity of the HPC-based method to the choice of the Pt value during the period 1987-1993, and com-
pared it to the results of the tri-data set method (Figure 14). Five Pt values from 1 to 5 weeks were analyzed.
Figures 14a-14d show the calibrated values of the four most sensitive parameters (the same parameters in
Figure 11) using different Pt values. When using larger Pt values, more (fewer) summer peak flows are
included in the Qgw + Qsyr (Qaw + [Qsml + Qau) partitioning curve, resulting in a higher (lower) snow (gla-
cier) melt factor (Figures 14a and 14b). The parameters frac2gw and precip_f tend to decrease with increas-
ing Pt values (Figures 14c and 14d). It is also noted that the parameter values calibrated using Pt as 5 weeks
are obviously different from those calibrated using Pt as 1-4 weeks, partly due to the incorrect division
between snowmelt and glacier melt.

Figures 14e-14h present the performance produced by the corresponding parameter sets in Figures 14a—
14d. For Pt = 5 weeks, the HPC-based method yielded the lowest performance for all three criteria, indicat-
ing the incorrect division between snowmelt and glacier melt, partly due to the fact that glacier melt starts
earlier than 5 weeks after the snow accumulation. Pt = 1 week produced the highest performance for dis-
charge (Figure 14e), but relatively low performance for SCA and GMB. Pt using 4 weeks generally yielded
the highest model performance and matched better with the performance of the tri-data set calibration. Pt
values of 2 and 3 weeks produced similar performance to Pt of 4 weeks (in term of the Euclidean distance
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Figure 14. Effects of the Pt value on the calibrated parameter values and the model performance for the HPC-based
method. Pt = 1 refers to the model results assuming that glacier melt starts to feed river streamflow one week after the
last summer snowfall event in the glacierized areas, analogously for Pt = 2, 3, 4, and 5. “Trip.” refers to the tri-data set
calibration.

to point [1, 1]). In our case study, using Pt values ranging from 2 to 4 weeks should be acceptable for the
implementation of the HPC-based method. In this range, the model performance is relatively insensitive to
the selection of the Pt value. We then suggest to estimate it a priori based on the knowledge of the catch-
ment conditions.

5. Discussion

5.1. The Stepwise-Iterative Procedure for Model Calibration

The stepwise calibration approach has been successfully applied for hydrological modeling in catchments
characterized by various terrain and climate settings (Boyle et al., 2000; Hay et al., 2006; Hingray et al., 2010;
Schaefli et al., 2005; Willems, 2014). They demonstrated that calibrating parameters on corresponding sensi-
tive hydrograph features in a stepwise way can help to increase the robustness in parameter values
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(Nearing & Gupta, 2015). In this study, the stepwise-iterative procedure using information represented in
the HPCs significantly improved the parameter stability and identifiability.

In spite of the interaction of runoff processes, each HPC represents the dominant period of specific runoff
process or of their combinations. The HPCs provide separated observations for the constraining of ground-
water, snow, and glacier melt and rainfall surface runoff parameters. In the stepwise-iterative calibration
procedure, model parameter groups were separately constrained to reduce the internal compensation of
runoff processes. In each calibration step, a small group of model parameters was optimized by the simula-
tion of the sensitive HPC, resulting in the reduction of degrees of freedom in the parameter space. The step-
wise calibration procedure reduced the internal compensation of model parameters and narrowed the
parameter variation ranges, helping to resolve the equifinality issue in model calibration. As shown in Figure
9, the HPC-based method narrowed the parameter variations in different time periods and improved the
parameter identifiability using the stepwise-iterative procedure, compared to the traditional four-HPC cali-
bration method. Hence, the stepwise-iterative procedure allows the information in the HPC to be more
effectively utilized. Given the persistent need in the effective calibration approaches to reduce parameter
uncertainty, the stepwise-iterative procedure shows the potential to be applied for hydrological modeling
in other catchments beyond glacierized regions.

5.2. Limitations

The Pt value should be predefined for the implementation of the HPC-based method, which indicates the
starting date of glacier melt in glacierized areas. We assumed that glacier melt starts several weeks after the
end of snow accumulation on the glacierized area. Five different Pt values have been tested for our study
basin. In the range of Pt values between 2 and 4 weeks the model performance was found relatively insensi-
tive and this range was considered suitable to define the starting date of glacier melt. Theoretically, Pt value
can be included into the calibration procedure, but it would heavily increase the already high computation
burden. For each Pt value a separated HPC-curve pattern would need to be derived. Hence, we suggest that
using a predefined Pt value based on knowledge of the catchment conditions, i.e., how long it approxi-
mately takes from ceased snow accumulation till the start of glacier ablation, is sufficient to identify this
value.

Another limitation of the HPC-based method is the computation cost. We ran the e-NSGAIl algorithm on a
Linux Cluster with 16 nodes. The automatic algorithm stopped before reaching the maximum runs, once
the optimization was finished. In the HPC-based method, the algorithm finished the optimization with fewer
computation runs in each step, since fewer parameters were optimized in each step. In steps 1-3 and 5, the
automatic algorithm finished the optimization with 320 runs (each run contains eight initialization samples
in the first trial) per step, on average. In the fourth step, calibrating four surface runoff parameters, the auto-
matic algorithm required on average 600 runs. In total, 1,880 runs (320 * 4 + 600) were needed per iteration.
The single-data set and tri-data set methods required 7,632 and 7,820 runs, respectively. Runs (3,108 and
5,896) were finalized for the QM-based and QS-based bi-data set methods. To investigate the variability in
parameter values, we ran the HPC-based method for eight iterations, costing 15,040 runs. However, we sug-
gest to run fewer iterations for the application of the HPC-based method. Figure 3 illustrates that the cali-
brated parameter values show small variance during the last four iterations, producing minor difference in
the objective-function values for each calibration step. When running the HPC-based method for four itera-
tions for practical application, its computation cost is then comparable to the multidata set calibration.

The objective of this study is to investigate the performance of the HPC-based method for constraining
snow and glacier dynamics simulations without using additional observations besides discharge for calibra-
tion. Our results demonstrated that the HPC-based method is superior to the single-data set and bi-data set
calibration methods, and is comparable to the tri-data set calibration method, in terms of the simultaneous
simulation of discharge, annual GMB, and SCA. One superiority of the HPC-based method is that it does not
require additional and costly snow cover and glacier mass balance observations. Moreover, the HPC-based
method helps to improve the stability of parameter values calibrated across different periods, and to narrow
the variation ranges in parameter values, delivering higher parameter identifiability. Therefore, the compu-
tation cost is worth to bear, given the increasing computation resources and the need for effective methods
to reduce parameter uncertainty in hydrological modeling.
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6. Conclusions

We further advanced a calibration method which disaggregates discharge time series into Hydrograph Par-
titioning Curves (HPCs) to represent the dominant periods of the different runoff processes. Model parame-
ters were successively estimated by relating specific parameter groups to individual HPCs. The performance
of the HPC-based calibration method for constraining the simulations of snow and glacier dynamics was
investigated in comparison to multidata set methods, which used different combinations of observed dis-
charge, annual glacier mass balance (GMB), and satellite snow cover images (SCA). The main results are
summarized as follows:

1. The HPC-based method performs comparably to the tri-data set methods for the simultaneous simula-
tion of discharge, annual GMB, and SCA. Cross validation in different periods indicates consistently good
model performance in reproducing the dynamics of discharge, GMB, and SCA. The HPC-based method
delivers good model-internal consistency without using additional constraining observations like SCA
and GMB.

2. Parameter values calibrated by the HPC-based method show higher stability across different calibration
periods, compared to the single-data set and bi-data set methods. Model parameters were separately
calibrated on the corresponding HPC which represents the dominant period of a specific runoff process
or of their combinations. The stepwise calibration procedure helps to reduce internal compensation of
runoff processes, and thus to improve the parameter identifiability.

3. The estimation of contributions of runoff components to discharge heavily depends on the calibration
method, especially for the glacier melt in summer. Given that the tri-data set calibration uses information
from discharge and from both SCA and GMB, it is reasonable to assume that this method yields the most
appropriate estimation of runoff components. The HPC-based method produced rather similar contribu-
tions of runoff components to the tri-data set method, without using additional SCA and GMB data for
parameter calibration.

In glacierized basins, reasonable reproduction of snow and glacier dynamics is the highest importance for
the hydrological model to properly quantify the contributions of runoff components. However, the glacier
mass balance data for model calibration are usually not available in many glacierized basins. Discharge is
commonly the most convenient observation for model calibration. Our results demonstrated that extracting
hydrological information from the only available discharge observation in the form of HPCs, and running
single-objective optimization procedure in a stepwise way, could achieve comparable model performance
to a tri-data set calibration approach, which additionally requires SCA and GMB data sets. The HPC-based
method could achieve a fairly low uncertainty in calibrated parameter values. This strongly favors the appli-
cation of the HPC-based method in catchments without in situ monitoring of glacier mass balance and
saves the complex processing of satellite snow cover information.
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