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Resonant bar experiments have revealed that dynamic deformation induces nonlinearity in rocks. These
experiments produce resonance curves that represent the response amplitude as a function of the driving frequency.
We propose a model to reproduce the resonance curves with observed features that include (a) the log-time recovery
of the resonant frequency after the deformation ends (slow dynamics), (b) the asymmetry in the direction of the
driving frequency, (c) the difference between resonance curves with the driving frequency that is swept upward
and downward, and (d) the presence of a “cliff” segment to the left of the resonant peak under the condition of
strong nonlinearity. The model is based on a feedback cycle where the effect of softening (nonlinearity) feeds
back to the deformation. This model provides a unified interpretation of both the nonlinearity and slow dynamics
in resonance experiments. We further show that the asymmetry of the resonance curve is caused by the softening,
which is documented by the decrease of the resonant frequency during the deformation; the cliff segment of the
resonance curve is linked to a bifurcation that involves a steep change of the response amplitude when the driving
frequency is changed. With weak nonlinearity, the difference between the upward- and downward-sweeping
curves depends on slow dynamics; a sufficiently slow frequency sweep eliminates this up-down difference. With
strong nonlinearity, the up-down difference results from both the slow dynamics and bifurcation; however, the
presence of the bifurcation maintains the respective part of the up-down difference, regardless of the sweep rate.

DOI: 10.1103/PhysRevB.97.144301

I. INTRODUCTION

Resonant bar experiments can be used to measure the non-
linear elasticity of natural rocks or concrete and further monitor
small changes of elasticity (velocity) with high accuracy [1–3].
In resonance experiments, a dynamic normal force imposes
cyclic compressions and extensions on a cylindrical rod with a
driving frequency that can be changed, continuously sweeping
towards higher or lower values [4–6]. For each driving fre-
quency, the dynamic deformation of the rod gradually reaches
a state where the oscillation has a stable amplitude; such an
amplitude defines the measured response for the corresponding
driving frequency [6–8]. The dependence of the response am-
plitude on the driving frequency generates a resonance curve
that can be used to characterize the elastic property of rocks [1].

Laboratory measurements produce resonance curves with
the following features [1–3,6–8]. The resonant peak shifts
towards lower frequency for an increasing driving force and
shifts back towards higher frequency in the recovery process
[9]. The resonant frequency recovers with the logarithm of time
after the deformation ends (slow dynamics) [2]. Resonance
curves are asymmetric along the frequency axis around their
peak frequency as soon as the driving force is strong enough
to induce softening [3]. With an increase in the driving force,
the resonance curve steepens to the left of the resonant peak
and flattens to the right of the peak. TenCate and Shankland
[1] show that a difference exists between the upward and
downward resonance curves, produced by sweeping the driving
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frequency upward and downward, respectively. This up-down
difference is most pronounced to the left of the resonance.
TenCate [3] finds that a slow sweep of the driving frequency
can eliminate the up-down difference and produce the same
resonance curves, regardless of the sweep direction. Johnson
et al. [7] show that strong nonlinearity in rocks induces a ver-
tical segment of the resonance curve to the left of the resonant
peak. This vertical segment, which we refer to as the “cliff,”
involves a large abrupt change of the response amplitude when
the driving frequency is increased/decreased. The response am-
plitude changes upward/downward along the cliff as the driving
frequency passes the resonant peak. We present a theory for the
above-mentioned experimental features of resonance curves
using a simple thermodynamics-based model.

In this paper, Sec. II starts from a feedback cycle as the
framework of our thermodynamics-based model; we then
propose the relationship between dynamic deformation and
thermal activations/relaxations of fractures. Taking the feed-
back of the fracture behavior on Young’s modulus into account,
we conduct the simulation of resonance experiments following
the protocol used in the laboratory (Sec. III). Section IV
shows that our model can reproduce resonance curves with
the observed features, including (a) the slow dynamics with
log-time recovery, (b) the asymmetry of resonance curves,
(c) the disappearance of the up-down difference at a slow
sweep rate of the driving frequency, and (d) the presence of
the cliff in the resonance curve when the nonlinearity is strong.
Additionally, our model predicts that the steep cliff with strong
nonlinearity is related to a permanent up-down difference that
does not vanish for a slow sweep rate. This has not been
observed experimentally, yet. Finally, in Sec. V, we propose
a unified interpretation of all these observed features; this
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FIG. 1. Feedback cycle for nonlinear material properties.

interpretation enhances the understanding of both the nonlinear
elasticity and slow dynamics in resonance experiments.

II. MODEL

Different micromodels can simulate resonance experiments
where dynamic deformation leads to a reduction of reso-
nant frequency (Young’s modulus); this reduction reflects
the softening of rocks [7,10–13]. We propose a simple
thermodynamics-based model, following Refs. [14–17] that is
based on (a) bond rupture/healing and (b) an oscillation equa-
tion, to simulate both slow dynamics and resonance curves.
Our model can include the concept of “effective” granular
temperature for the vibration energy [18–20]. However, our
model does not involve a detailed upscaling generalization
from microscale to macroscale and does not rely on a complex
description of physics mechanisms as in earlier work [9,21,22].

A. Feedback cycle

We use a feedback cycle for the material response shown in
Fig. 1 that is akin to a theory for liquefaction [23]. The feedback
cycle is the base of the thermodynamics-based parametrization
in our model. Link 1 in the cycle accounts for the change
of fracture system due to dynamic deformation, while link 2
describes the change in the elasticity (softening) due to the
opening of fractures. The change of the elasticity feeds back
to the deformation amplitude (link 3). We use “fractures” as
a general term for cracks, contacts, bonds, and microcontacts.
A solid sample contains fractures with scales ranging from
microscopic dislocation defects in crystals to mesoscopic
granular contacts and to macroscopically visible cracks.

B. Thermodynamics-based parametrization

We consider a bistable model where a fracture can be in one
of two configurations: open or closed, with associated energy
levels Eo and Ec, respectively, as shown in Fig. 2. We assume
that an energy barrier Eb needs to be overcome for the fracture
to change the configuration. This bistable model follows earlier
energy models for the fracture contact [9,15,21,24].

We further consider that due to the thermal energy kBT ,
a fracture can spontaneously change its configuration with
characteristic transition times τo to close a fracture and τc to
open a fracture, following Arrhenius’ law [25,26]:

τo = Ae(Eb−Eo)/kBT , τc = Ae(Eb−Ec)/kBT . (1)

FIG. 2. Bistable energy model for a fracture. For a barrier energy
Eb, τc and τo indicate the transition times to open and close the
fracture, respectively.

Eo and Ec are the energies of open and closed fractures,
respectively. Eb is the barrier energy, kB is the Boltzmann
constant, T is the temperature, and A is a time constant. The
bistable dynamic equation for a group of fractures with the
same barrier energy is

dno

dt
= −no

τo

+ 1 − no

τc

, (2)

where no is the fraction of open fractures for a given barrier
energy, and nc = 1 − no is the fraction of closed fractures. In
Eq. (2), the first term on the right-hand side indicates the rate
at which fractures close while the second term indicates the
rate at which fractures open. In equilibrium dno/dt = 0, and
thus the corresponding fraction neq of open fractures is

neq = 1

1 + exp[(Eo − Ec)/kBT ]
, (3)

and hence neq is independent of the barrier energy. For Eo �
Ec, most fractures are closed while with Ec � Eo, most
fractures are open.

We assume that the barrier energies that correspond to frac-
tures with different sizes are distributed uniformly in an interval
[Eb min,Eb max]. The aggregate fracture system that includes
fractures with different barrier energies has an average frac-
tion of open fractures No(t) = ∫ Eb max

Eb min
no(Eb,t)dEb/(Eb max −

Eb min).
The fracture system affects the elasticity of the material

[27,28]; the opening of fractures lowers Young’s modulus.
For the link 2 in Fig. 1, we linearize the relationship between
Young’s modulus Y and the fracture system No using

Y = Y0 − C0(No − Nori). (4)

Nori is the equilibrium fraction of open fractures with zero
strain (ε = 0), C0 is the fracture modulus, and Y0 is the
static Young’s modulus of the unperturbed sample. Link 3 in
Fig. 1 indicates the feedback of the softening (reduction of
Young’s modulus) on the deformation amplitude; the feedback
is introduced as a dependence of the energies Ec and Eo on the
externally applied stain.
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FIG. 3. Energy levels of open and closed fractures as a function
of the dynamic normal strain. Positive strain corresponds to extension
and negative strain corresponds to compression.

We propose a dependency of the energies of open and closed
fractures as shown in Fig. 3; this dependency is parameterized
by the sigmoid functions:

Eo(ε) = B0 − A1

1 + exp[−(ε − μ)/σ ]
(5)

and

Ec(ε) = A0 + A1

1 + exp[−(ε − μ)/σ ]
, (6)

where A0, A1, B0, μ, and σ are constants, and ε is dynamic
strain. This relationship is based on the premise that the
deformation strain is the main factor affecting the nonlinear
elasticity of rocks [29]. The nonlinearity of rocks becomes
significant when the strain is of the order of a microstrain (10−6)
[10,29,30]. Thus, we prescribe a fracture energy that changes
significantly once the strain is above 10−6. For the strain range
shown in Fig. 3, the fracture energy implies (a) that extension
opens fractures (softening) while compression closes fractures
(hardening), and (b) that the response to deformation is not
symmetric for the positive and negative strain. The asymmetry
reflects that the elastic response is more sensitive to extension
(positive strain) than to compression (negative strain) [31,32].
However, the choice of the sigmoid function is quite arbitrary;
it provides a smooth transition from a region that favors closed
fractures to a region that favors open fractures. Figure 3 and
the bistable model in Fig. 2 act as the link 1 in Fig. 1. We
summarize the parameters used and their numerical values in
Table I.

For a temperature T = 300 K, the thermal energy is kBT =
0.026 eV. The energy difference between open and closed
fracture in Fig. 3, together with Eq. (3), implies that for
large positive strain (ε � 7 × 10−6) the system favors open
fractures, while for compression and small positive strain
(ε � 10−6) the system favors closed fractures. This description
of fracture behavior is not necessarily accurate in its details and
so should be seen as a plausible parametrization of fracture
behavior. For some aspects of nonlinear material properties,
the model may need to be extended to include the strain rate ε̇

as well as shear deformation [33,34].

TABLE I. Numerical values of the parameters used.

Definition value

A Time constant 1.0 s
T Temperature 300.0 K
Eb min Minimum barrier energy 0.223 eV
Eb max Maximum barrier energy 0.401 eV
A0 Constant 0.038 eV
A1 Constant 0.080 eV
B0 Constant 0.112 eV
μ Constant 3.5 ×10−6

σ Constant 2.0 ×10−6

L0 Length of sample 0.3 m
ρ Density of sample 2200 kg/m3

Y0 Static Young’s modulus 12.05 GPa
C0 Fracture modulus 1.853 GPa
f0 Static resonant frequency 3900 Hz
γ Damping factor 90.0 rad/s
t0 Numerical time step 5 μs
τmax Maximum relaxation time 500 ms
�t Sweep time interval 5 ms
�f Sweep frequency interval 1 Hz

III. RESONANCE SIMULATION

We describe the deformation in the resonant bar experiment
by

∂2RA

∂t2
+ 2γ

∂RA

∂t
+ 
2RA = Are

−iωt , (7)

where RA is the dimensionless strain amplitude [i.e., ε in
Eqs. (5) and (6)] in response to the driving field Ar sin(ωt), γ

is the damping factor, ω is the driving angular frequency, and

 is the resonant angular frequency. The driving amplitude Ar

is related to the driving force Fr using Ar = Fr/ML0, where
M is the mass and L0 is the length of the sample. In Eq. (7), the
resonant angular frequency incorporates the softening because
it depends on Young’s modulus 
 = π

√
Y/ρ/L0, where ρ is

density [7]. To first order, the resonant angular frequency shift
relates to the reduction of Young’s modulus by �
/
0 =
�Y/2Y0, where 
0 corresponds to the static Young’s modulus
Y0 since �
 and �Y are small compared to 
0 and Y0. Solving
Eq. (7) for a solution RAe−iωt yields for the absolute value of
the response

|RA| = |Ar |√
(ω2 − 
2)2 + 4γ 2ω2

. (8)

We numerically simulate the measurement protocol (see
Appendix A) used in the experiments (e.g., [6,7]). The
recorded quantity for the response is the acceleration amplitude
ω2RAL0.

IV. NUMERICAL SIMULATIONS

We show in this section with our thermodynamics-based
model that we can simulate important features (mentioned in
Sec. I) of resonance curves produced in the laboratory [1–3,7].
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FIG. 4. Recovery of the resonant frequency after dynamic defor-
mations with different strain amplitudes, where t0 = 5 μs is time step
in the numerical model. The vertical dashed line denotes τmax.

A. Recovery of resonant frequency

We simulate slow dynamics after the dynamic deformation
ends. Figure 4 shows the recovery of the resonant frequency
after long-time deformation (106 time steps or 5 ms) as a
function of the logarithm of time. We use different amplitudes
at the same driving frequency 3900 Hz. The log-time recovery
produced by our model is (almost) identical to the laboratory
measurements in Fig. 5 of TenCate et al. [2] that show the
observed logarithmic recovery of the resonant frequency.

To illustrate the effect of the superimposed time scales, we
can also apply the model without integrating over the barrier
energy and show an example for a single barrier energy, Eb =
0.38 eV, in Fig. 5. In this case, the recovery does not vary
with the logarithm of time. This highlights the importance of
the summation of multiscale relaxation processes for the log-
time recovery. Snieder et al. [35] propose τmax, a metric to
characterize the maximum relaxation time among multiscale

FIG. 5. Recovery of the resonant frequency for a single barrier
energy.

FIG. 6. Resonance curves for the upward (solid lines) and down-
ward (dashed lines) sweeps with different driving amplitudes Ar =
8.8,13.2,17.6/s2.

relaxation processes:

1

τmax
=

(
1

τo

+ 1

τc

)
Eb=Eb max

, (9)

where τo and τc are given in Eq. (1). We denote τmax in Fig. 4
with a dashed line, which agrees well with the time needed for
the relaxation.

B. Asymmetric resonance curves

We show the response amplitude against the driving fre-
quency in Fig. 6 for both the upward and downward sweeps
and different driving amplitudes. We record the response as
the acceleration given by ω2RAL0 and change the driving
frequency by �f = 1 Hz after a time interval �t = 5 ms
(0.01τmax); the frequency sweep covers the resonant frequency
f0 = 3900 Hz of the unperturbed sample. Here we define �t

as the sweep time interval, which reflects the sweep rate of
the driving frequency. One can regard �t as the time duration
between two consecutive driving frequencies. The total sweep
time of the driving frequency results from the multiplication
of �t and the number of sampled driving frequencies.

Figure 6 shows that with increasing driving amplitude
Ar , the peak value of the resonance curve increases and
the resonant frequency decreases. An increase in the driving
amplitude Ar gives an increase in the response amplitude [see
Eq. (8)] and creates more open fractures than a low driving
amplitude; the associated softening reduces the resonant fre-
quency. The difference between the upward and downward
resonance curves is reproduced by the model in all details and
is most pronounced to the left of the resonant peak. Figure 6
can be qualitatively compared to the laboratory measurements
in TenCate and Shankland [1], especially for the asymmetric
resonance curves when the driving amplitude is large.

The asymmetry in the direction of the driving frequency
can be explained as follows. Suppose one sweeps downward
in frequency. When the frequency is higher than the resonant
frequency (ω > 
) and one approaches the resonant peak, the
deformation increases and the sample softens. This reduces
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FIG. 7. Resonance curves as in Fig. 6, but for a single barrier
energy.

the resonant frequency 
, hence the resonant peak “moves
away” from the current driving frequency ω, and as a result
the response curve flattens to the right of the peak. But when
the driving frequency is reduced further, the driving frequency
ω is less than the resonant frequency 
. Now the deformation
decreases as the driving frequency is reduced further, which
makes the sample stiffer. This increases the resonant frequency

, which moves the response peak towards higher frequency,
away from the current frequency, which further decreases the
deformation. Thus, this increasing resonant frequency leads
to a steepening of the resonance curve to the left of the
peak. A similar reasoning applies when one increases the
driving frequency ω starting at values less than the resonant
frequency 
. Approaching the resonant peak from the left, the
peak of the curve comes closer when the amplitude increases;
consequently, it steepens on the left and it flattens on the right.
The asymmetry of the resonance curve thus follows from the
nonlinearity that causes the sample to soften as the deformation
increases. In our model, the nonlinearity is implicit in the used
parametrization of the fracture behavior and its imprint on
Young’s modulus, but a nonlinear model based on anharmonic-
ities gives the same shape of resonance curves [13]. In other
words, softening (nonlinearity) steepens the left part of the
resonance curve and flattens the right part, which is equivalent
to the mechanism that the feedback of the nonlinearity on
deformation causes the shift of the resonant frequency.

We can apply the model without integrating over the barrier
energy and show an example for a single barrier energy
Eb = 0.30 eV. Figure 7 shows the resonance curves for this
case. The resonance curves in Fig. 7 have (almost) the same
shapes as those in Fig. 6. We have shown that the multiscale
relaxation mechanism is essential to the log-time recovery in
Sec. IV A. However, comparing Figs. 6 and 7, we conclude
that the multiscale relaxation mechanism is not essential for
the shape of resonance curves.

C. Up-down difference and slow dynamics

TenCate and Shankland [1] speculate that for a slow sweep
rate, i.e., large �t of the driving frequency, the up-down
difference disappears. For a slow sweep rate, the activation

FIG. 8. Sweep-rate dependence of the up-down difference of the
resonance curves at the left side of the resonant peak. Solid lines
denote the upward sweep, while dashed lines denote the downward
sweep. The sweep time interval between sampled driving frequencies
is (a) 5 ms (0.01τmax), (b) 500 ms (τmax), and (c) 5 s (10τmax).

is effectively stationary in time, and one would expect that
the sample reaches an equilibrium that is the same, regardless
of whether one sweeps up or down. TenCate [3] confirms the
speculation that the up-down difference can vanish at a slow
sweep rate in the laboratory measurements.

Figure 8 shows the up-down difference at different sweep
rates with a driving amplitude Ar = 17.6/s2 corresponding
to the uppermost pairs of the resonance curves in Fig. 6.
The simulation in this figure confirms the speculation in [1]
and echoes the laboratory measurements [3] in which a slow
sweep rate eliminates the up-down difference [see Fig. 8(c)].
We compare the sweep rate (sweep time interval �t) to the
maximum relaxation time τmax in our model. For the used
sweep frequency interval �f = 1 Hz, we refer the fast sweep
to the case �t � τmax while the slow sweep means �t � τmax.
We attribute the up-down difference to slow dynamics when
the sweep is fast [e.g., Fig. 8(a)]. That a driving frequency gives
different response amplitudes for different sweep directions re-
flects that the fracture system memorizes the past deformation
(slow dynamics). However, as the sweep rate decreases, this
“memory effect” disappears and the driving force conditions
the sample to the same response amplitude regardless of the
sweep direction.

D. Cliff in resonance curves

We further increase the nonlinearity in the simulation by
increasing the value of the fracture modulus C0. Figure 9
shows the dependence of the up-down difference on the sweep
rate. Comparison of Figs. 8 and 9 indicates that nonlinearity
enhances the up-down difference. Strong nonlinearity and a
slow sweep rate can produce a “cliff” (vertical segment) in
resonance curves [e.g., Fig. 9(c)]. The cliff represents a large
abrupt change of the response amplitude when the driving
frequency is changed. The up-down difference right at the
cliff does not disappear for slow sweep rates, even though
it vanishes away from the cliff [Fig. 9(c)]. This appears very

144301-5



LI, SENS-SCHÖNFELDER, AND SNIEDER PHYSICAL REVIEW B 97, 144301 (2018)

FIG. 9. Sweep-rate dependence of the up-down difference. The
fracture modulus is C0 = 3.088 GPa, with stronger nonlinearity than
that in Fig. 8. The sweep time interval between sampled driving
frequencies is (a) 5 ms (0.01τmax), (b) 500 ms (τmax), and (c) 5 s

(10τmax), following Fig. 8.

similar to the measurements by Johnson et al. [7], who show
resonance measurements in Lavoux sandstone that exhibit
a cliff with a pronounced difference between upward and
downward sweeps.

To explain the up-down difference that is most pronounced
in Fig. 9(c) at the cliff even when the sweep rate is slow, we
refer to the bifurcation that originates from the solution of the
Duffing equation for nonlinear systems [36–38]. We consider
the steady-state solution of our model without incorporating
the temporal evolution of the fracture system, i.e., the fraction
of open fractures No in stable equilibrium where No represents
the damage of the sample. We then solve for the damage No

from different initial damage Noi at each fixed frequency (for
more details, see Appendix B). Figures 10(a) and 10(b) show
the stable equilibrium damage state for every frequency (i.e.,
dashed black and solid green curves) for two different driving
amplitudes; the colors indicate that for each frequency and
initial value Noi the final fraction of open fractures No to which

the system converges (see Appendix B). Figure 10(a) shows
the situation for moderate nonlinearity caused by a driving
amplitude of 0.6/s2. In this case the stable equilibrium damage
state No is determined only by frequency. Independently of the
initial damage state, the system converges to the same stable
equilibrium indicated by the overlapping lines. The situation
is different for stronger nonlinearity, as shown in Fig. 10(b),
where there is a range of frequencies in which the stable
equilibrium damage state to which the system converges also
depends on the initial damage state. Figure 10(b) shows a
bifurcation of the stable equilibrium solution No; for a range
of driving frequencies around the cliff of the resonance curve,
there are two possible solutions of No for the same driving
frequency. When one reduces the driving frequency ω at point
d in Fig. 10(b), the system can only jump to point a. This
leads to the vertical slope of the dashed line in Fig. 9(c). A
similar reasoning applies to sweeping upward in frequency.
When sweeping upward, one arrives at point b of the resonance
curve. When sweeping further upward in frequency, the system
jumps to point c on the resonance curve, and this jump results in
a vertical segment of the resonance curve at a higher frequency.

The steady-state solution can be indicative of the simulated
resonance experiment. We argued above that the nonlinear
material response causes the response curve to steepen to the
left of the resonant peak. The feedback of the deformation on
the response can be so strong that the resonance curve folds
over on itself, as shown in Fig. 10(b); this folding happens
when the nonlinearity caused by a large driving force is
sufficiently strong. When the nonlinearity is further increased,
a bifurcation occurs [Fig. 10(b)]. Thus, this phenomenon
of vertical jumps in the resonance curves corresponds to
a bifurcation caused by the nonlinearity in the underlying
equations with time evolution. A prototype of this bifurcation
is described for the Duffing equation [36], which can be
solved using the harmonic balance method [37]. The stable
equilibrium solution is a simplified solution corresponding to
the approximation that one can omit the details of the averaged
fracture system during an oscillation cycle. Note that along
segment db in Fig. 10(b), there is an abrupt change in color. For
initial values just above the segment the damage will increase

FIG. 10. Steady-state solution of our model with (a) Ar = 0.6/s2 and (b) Ar = 1.0/s2. The color scale indicates for each frequency and
original value Noi the equilibrium fraction No to which the solution converges.

144301-6



NONLINEAR ELASTICITY IN RESONANCE EXPERIMENTS PHYSICAL REVIEW B 97, 144301 (2018)

and the system converges to a higher equilibrium value along
segment cd , while for initial values below segment db the
system relaxes to a lower equilibrium value along segment
ab. This means that just as with the Duffing equation [36],
segment db corresponds to unstable equilibrium values.

The stable equilibrium solution further indicates that the key
factor for the system to lock in to a solution depends on the
current value of No when the driving frequency is changed.
Changing the sweep direction results in a different initial
damage with which a certain frequency is approached, and
in the case of strong nonlinearity, a different sweep direction
might lead to a different stable equilibrium to which the
system converges. However, the bifurcation is only present
when the nonlinearity is sufficiently strong to cause a vertical
cliff. The nonlinearity (bifurcation) can originate from both (a)
large driving amplitudes and (b) material properties (e.g., the
opening and closing of fractures with strain, and the influence
of fractures on the modulus).

Since different nonlinear models to lowest order reduce to
a cubic term (Duffing equation) in the equation of motion,
this catastrophic behavior (vertical cliff with strong response
to tiny change in frequency) is displayed by different models
for nonlinear rock physics [7,13,39]. However, these models
do not explicitly explain the cliff in the resonance curve by
the bifurcation. In contrast to earlier work [14,17], our model
is significantly simpler and is based on a relation between the
(micro)fracture energy and strain; this relation is another form
of thermodynamics-based parametrization. Vakhnenko et al.
[14] relate the up-down difference to the end-point memory
(slow dynamics) but do not show this catastrophic behavior
(cliff) in resonance curves. Regarding slow dynamics, Fig. 4
gives a better straight-line region than Fig. 11 in Vakhnenko
et al. [14]. Lyakhovsky et al. [17] show the cliff in the simulated
resonance curve but do not relate the cliff with the bifurcation.
Our theory qualitatively reproduces both the slow dynamics
and bifurcation observed in laboratory experiments [1,7].

V. DISCUSSION

The resonance curves in Fig. 6 show two conspicuous
features: they are asymmetric, and they are different depending
on whether one sweeps upward or downward in frequency
(up-down difference). We explain the asymmetry of resonance
curves by softening (nonlinearity) and the up-down difference
by both the slow dynamics and bifurcation. It is the nonlinearity
that produces the bifurcation. The bifurcation occurs only when
the nonlinearity is sufficiently strong. The bifurcation causes
a cliff in resonance curves [37]; otherwise, in the absence of a
bifurcation (for weaker nonlinearity) slow dynamics dominates
the up-down difference, and this difference disappears for slow
sweep rates. The reports of the coincidence of the resonance
curves, e.g., [1,3], are for cases where slow dynamics domi-
nates the up-down difference. The nonlinearity of rocks in these
experiments [1,3] is not strong enough to cause a bifurcation.
Johnson et al. [7] show the experimental resonance curves with
cliff segments that result from the strong nonlinearity in rocks.
Our model also reproduces this cliff behavior (Fig. 9) when the
nonlinearity is significantly strong. Even stronger nonlinearity
causes the system to display chaotic behavior [40] where the
response amplitude jumps up and down.

In summary, up-down resonance curves can be coincident at
a slow sweep rate, but only if the nonlinearity is weak. When the
cliff is observed in resonance curves, our model predicts that no
matter how slowly one sweeps the driving frequency, the up-
down resonance curves cannot be coincident because of the
presence of a bifurcation. Figure 9 confirms our conclusion that
the up-down difference for slow sweep rates does not vanish
when the system is bifurcated.

Slow dynamics is caused by the nonlinear rock properties.
Such nonlinearity can be caused by (a) classical anharmonicity
from Landau’s theory [31] or (b) nonclassical anharmonicity
from Hertz-Mindlin contacts [9]. In addition, slow dynamics
depends on a dependence of the nonlinearity on past deforma-
tion. When the sweep rate is not slow compared to the minimum
relaxation time [Fig. 9(a)], the current response depends on the
past deformation. This effectively smears out the cliff in the
resonance curve.

VI. CONCLUSION

A simple thermodynamics-based model can explain ob-
served resonance curves. But this model does not provide a
unique description of the microscopic behavior of fractures
as in studies for a physical origin of rate and state friction
[41,42]. The theory can be treated as a phenomenological
parametrization of the imprint of damage on crack properties.
We prescribe the fracture energy in Fig. 3 in a heuristic fashion
for compressive waves. In real rocks, shear motion occurs
near fractures, even when the sample is under a compressive
uniaxial load. In addition, the fracture behavior likely depends
on the strain rate ε̇ as well [33,34]. Fractures have a range of
orientations with respect to the principal stress components,
and the fracture behavior depends on a range of physical
and chemical processes that are influenced by the presence
of fluids (notably, water). Our model should be seen as a
thermodynamics-based parametrization of nonlinear fracture
behavior. But this simplified model can reproduce the experi-
mental features of the observed resonance curves.

Our model offers a unified interpretation of both the non-
linearity and slow dynamics in resonance experiments. When
the nonlinearity of the vibration system is weak, the up-down
difference is indicative of slow dynamics. Thus, the up-down
difference can be used to study the slow dynamics. When the
nonlinearity is strong, the up-down difference depends on both
the bifurcation and slow dynamics. In this case the up-down
difference does not vanish around the cliff, no matter how
slowly one sweeps the driving frequency in the resonance
experiments. We suggest that one test the presence of the
bifurcation in an experiment that is performed at a constant
frequency within the relevant frequency range. When starting
with a fully relaxed sample, the resulting stable equilibrium
will be on the lower branch of the bifurcation. When starting
with a sample that has been damaged by a sustained large
driving amplitude, the sample will reach a stable equilibrium
at the upper branch of the bifurcation.
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APPENDIX A: MEASUREMENT PROTOCOL

We numerically simulate the measurement protocol used in
the laboratory experiments, e.g., [6,7]:

(1) At a time t = t1, we apply a dynamic force field to
the sample with driving frequency fd = ω/2π and driving
amplitude Ar that is kept fixed. We calculate the oscillation
(response) strain amplitude RA(t1) using Eq. (8), where the
softening of the material (�
/
 = �Y/2Y ) at t = t1 is taken
into account.

(2) For a duration �t = 5 ms (0.01τmax) the driving fre-
quency is kept fixed, as the sample oscillates with the dynamic
strain ε(t) = RA(t) sin[ω(t − t1)] until the time t = t1 + �t .
Following the fracture energy in Fig. 3, we convert the dynamic
strain ε to energy variations Eo(t) and Ec(t). Equation (1)
then provides time-dependent transition times τo(t) and τc(t),
which we use to integrate the right-hand side in Eq. (2) and
solve the fraction of open fractures no(Eb,t) for a given barrier
energyEb. We averageno(Eb,t) over the barrier energy interval
[Eb min,Eb max] and obtain the temporal variation of No(t)
during the oscillation. No is the fraction of open fractures in
the sample averaged over barrier energies. No(t) leads to the
softening �Y = Y − Y0 through Eq. (4). We average No(t)
over the past cycle of strain oscillation (with time duration
1/fd ); from this averaged value, we calculate the dynamic
Young’s modulus Y using Eq. (4). We further calculate the
resonant angular frequency 
 using �
/
0 = �Y/2Y0. With
the calculation of the resonant angular frequency shift�
 from
dynamic strain, we update the strain amplitude RA for the next
cycle of the strain oscillation; we update RA whenever the
phase ω(t − t1) = 0 (link 3 in Fig. 1).

(3) We average No(t) over the last cycle of the strain
oscillation (with time duration 1/fd ) during the sweep interval
time �t ; from this averaged value, we calculate the resonant
angular frequency 
 using the method mentioned in step 2.

(4) At time t = t1 + �t , we increase/decrease the driving
frequency fd by �f . We calculate the oscillation strain
amplitude RA(t1 + �t) using Eq. (8) for the driving frequency
fd ± �f at t = t1 + �t ; the recorded quantity for the response
is the acceleration amplitude ω2RAL0.

(5) We repeat steps 1, 2, 3, and 4 for each sampled driving
frequency in the sweep and record the corresponding response.
Figure 11 shows the time line of recursive steps 1, 2, 3, and 4
in the frequency sweep.

For a known dynamic strain, we solve Eq. (2) using the
transition times τo and τc from Eq. (1) with energies Eo and
Ec from the relationship in Fig. 3. We integrate the solution
of Eq. (2) over barrier energy and obtain the softening �Y

from Eq. (4). The softening updates the response amplitude
using Eq. (8) and the above-mentioned protocol.

APPENDIX B: STEADY-STATE SOLUTION

We can solve the equations listed for our model without
considering the temporal evolution of the damage state No.

FIG. 11. Time line of the measurement protocol.

Instead, we solve for the stable equilibrium value of No from
the following set of equations:

|RA| = |Ar |√
(ω2 − 
2)2 + 4γ 2ω2

(B1)

and

No = 1

1 + exp[(Eo − Ec)/kBT ]
. (B2)

Equation (B1) is same as Eq. (8), and Eq. (B2) follows from the
stable equilibrium solution in Eq. (3). The equilibrium fraction
of open fractures neq is independent of the barrier energy, and
hence No is equal to neq. The relations among other parameters
are

Eo = B0 − A1

1 + exp[−(|RA| − μ)/σ ]
(B3)

and

Ec = A0 + A1

1 + exp[−(|RA| − μ)/σ ]
, (B4)

where the same sigmoid functions for the fracture energies are
used (see Table I for used values of A0, A1, B0, μ, and σ ), and

Y = Y0 − C0(No − Nori) (B5)

and


 = π
√

Y/ρ/L0, (B6)

where the feedback from damage No to the resonant frequency
is taken into account. Equation (B5) is the same as Eq. (4), and
Eq. (B6) is the equation used to convert Young’s modulus Y

into the resonant frequency.
Since |RA| influencesEo andEc through Eqs. (B3) and (B4),

and No feeds back to 
 through Eqs. (B5) and (B6), one can
jointly solve Eqs. (B1) and (B2) together using an iterative
adaption method [43], given the driving amplitude Ar and
driving angular frequency ω = 2πfd . With an initial damage
Noi , one can solve for the stable equilibrium damage No. Since
there is no dynamics in this approach, the solution corresponds
to a stable equilibrium solution to which the nonlinear model
will converge. There may be unstable equilibrium solutions,
but the lack of stability precludes these solutions to be reached
in the iterative process.
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