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ABSTRACT 1 

Flood risk analyses are often estimated assuming the same flood intensity along the river 2 

reach under study, i.e. discharges are calculated for a number of return periods T, e.g. 10 or 3 

100 years, at several streamflow gauges. T-year discharges are regionalised and then 4 

transferred into T-year water levels, inundated areas and impacts. This approach assumes that 5 

(1) flood scenarios are homogeneous throughout a river basin, and (2) the T-year damage 6 

corresponds to the T-year discharge. Using a reach at the river Rhine, this homogeneous 7 

approach is compared to an approach that is based on four flood types with different spatial 8 

discharge patterns. For each type, a regression model was created and used in a Monte-Carlo 9 

framework to derive heterogeneous scenarios. Per scenario, four cumulative impact indicators 10 

were calculated: 1) the total inundated area, 2) the exposed settlement and industrial areas, 3) 11 

the exposed population, and 4) the potential building loss. Their frequency curves were used 12 

to establish a ranking of eight past flood events according to their severity. The investigation 13 

revealed that the two assumptions of the homogeneous approach do not hold. It tends to 14 

overestimate event probabilities in large areas. Therefore, the generation of heterogeneous 15 

scenarios should receive more attention. 16 

KEYWORDS: flood risk analysis, frequency analysis, discharge pattern, exposure, damage 17 

estimation, population density, land-use, Rhine, Germany 18 
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1. INTRODUCTION 1 

Flood risk analyses are an essential element of an integrated flood risk management approach 2 

and the basis for effective risk mitigation decisions. Since risk is understood as a product of 3 

damage and probability, a typical scenario set for a flood risk analysis should contain 4 

scenarios that cover the whole range of possible flood discharges and associated probabilities 5 

as well as estimates on potential consequences in the region under study (Kaplan and Garrick 6 

1981; Merz et al. 2009). Following this concept, a flood hazard event which describes the 7 

discharges and inundations along a river reach is distinguished in this paper from a flood loss 8 

event that sums up the cumulative flood impacts in the affected area.  9 

In small catchment areas, a set of flood hazard events is basically produced by two steps: (1) 10 

estimating the T-year discharge along the watercourse (where T quantifies the return period of 11 

the discharge), and (2) transferring the flood discharges into water levels and inundated areas 12 

which serve as input for a consecutive flood impact analysis. In such an approach, the T-year 13 

scenario is composed of all inundated areas along the river reach, which result from the T-14 

year discharge at that location. In most studies, these scenarios are the result of a flood 15 

frequency analysis, i.e. the application of extreme value statistics to a record of observed 16 

flood discharges at the gauges of interest (e.g. Stedinger et al. 1992). In many cases, (local) 17 

on-site frequency analysis is complemented by regional flood frequency analysis, using data 18 

from gauging stations that are supposed to have similar flood behaviour (e.g. Hosking and 19 

Wallis 1997). In the second step, different hydraulic modelling techniques have been used, 20 

such as 1D hydrodynamic simulation for compact and coherent river reaches (e.g. Büchele et 21 

al. 2006). For river sections with dikes, which may fail as consequence of extreme discharges, 22 

more complex simulation approaches may be chosen, such as coupled 1D-2D hydraulic 23 

models (e.g. Vorogushyn et al. 2010). 24 
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Combining the inundated area with a loss model delivers a quantification of potential impacts 1 

leading to a quantitative description of a flood loss event. For example, the Rhine-Atlas 2 

provides an overview of the flood situation and direct tangible damages along the river for the 3 

10-year, the 100-year and an extreme scenario at a scale of 1 : 100 000 (ICPR 2001). Similar 4 

examples are presented by te Linde et al. (2011) or in hazard and risk maps that become more 5 

and more widespread due to the requirements of the European Flood Directive (EC/2007/60). 6 

These maps show homogeneous flood situations with equal return periods which are, 7 

however, rarely found in reality, particularly in large areas.  8 

An analysis of flood hazard events along the river Rhine and in the whole of Germany 9 

revealed that there is considerable variation in the return periods of discharges that occur 10 

during an event within a river basin (Lammersen et al. 2002; Merz et al. 2005; Uhlemann et 11 

al. 2010). Merz et al. (2005) demonstrated that the coefficient of variation of return periods 12 

from different gauges increased for a particular event with an increasing mean return period 13 

of that event. The spatial variation of discharges in a catchment and their associated return 14 

periods depend on the space-time patterns of meteorological, hydrological and hydraulic 15 

processes. These are influenced by various characteristics: whereas some are constant 16 

between events (e.g. geomorphology of sub-catchments, river training and retention 17 

measures), others vary from event to event (e.g. spatial soil moisture distribution at the 18 

beginning of the flood). For example, the return period downstream of the confluence of two 19 

rivers depends on the temporal superposition of the two flood waves. If the peaks of the flood 20 

waves of the two rivers arrive at the same time, the return period downstream of the 21 

confluence will be higher than in case of temporarily shifted flood waves. In the Rhine 22 

catchment, this effect was observed after the construction of four weirs between 23 

Marckolsheim and Iffezheim at the Upper Rhine between 1955 and 1977. Prior to 1955, the 24 

flood wave of the tributary river Neckar normally preceded the flood wave coming from the 25 

Upper Rhine. The river training measures, however, accelerated flood wave propagation in 26 
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the Upper Rhine and further resulted in an increased probability that a flood peak of the 1 

Upper Rhine coincides with the flood peak of the tributary river Neckar, ultimately leading to 2 

an increased flood hazard and risk downstream of confluence of Rhine and Neckar 3 

(Lammersen et al. 2002).  4 

In large catchments the use of an equal return period throughout the whole catchment must 5 

thus be questioned and restricts the use of scenarios that were derived by the on-site approach 6 

described above (further referred to as homogeneous scenarios) to applications where local 7 

information is needed (Table 1). However, for some applications flood hazard scenarios are 8 

needed which are based on realistic large-scale spatial patterns of flood discharges and their 9 

return periods. Particularly reinsurers and national disaster managers demand for such flood 10 

scenarios, their extent, impacts and probabilities. Worst-case scenarios or probable maximum 11 

losses (PML) are needed to design and assess risk transfer systems, e.g. in order to assess and 12 

ensure solvency of (flood) insurers and (re-)insurers or to negotiate about a mandatory flood 13 

insurance as happened in Germany after the severe flood event in 2002 (Schwarze and 14 

Wagner 2004).  15 

Table 1: Some areas of use of scenarios and the required information  16 
Use/Application of scenarios Required information 
Building insurance, 
homeowners and companies 

Building-specific statements about the flood hazard (e.g. 
hazard zones of the 10 to 200-year floods) 

Local disaster management Local scenarios including extraordinary situations 
Flood design (dams) Site-specific statements on extreme discharges 

(e.g. 10 000-year flood), including risk of dam failure 
Federal disaster management Large-scale, extraordinary scenarios that cannot be 

handled by regional agencies 
Re-insurance Probable maximum flood (large events) and potentially 

resulting losses from the insurance portfolios  

 17 

1.1 Objectives of this paper 18 

The scientific literature on methodologies how to create realistic heterogeneous flood 19 

scenarios and to assess their probability is not well developed (see section 1.2 for a brief 20 
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review). Therefore, the main aim of this paper is to introduce a methodology that allows 1 

estimating the probability of flood loss events in large areas. For this purpose, a probabilistic 2 

approach for the generation of realistic flood hazard scenarios is presented and combined with 3 

a flood impact analysis, in which four indicators for flood impacts are considered. Their 4 

frequency distributions were finally used to estimate probabilities of flood (loss) events.  5 

For the investigation, a reach along the river Rhine was chosen (see Fig, 1), where an area of 6 

14 600 km² is at risk of being flooded assuming an extreme scenario with 200 to 500-year 7 

flood discharges along the whole reach (ICPR 2001). This area covers total property and 8 

infrastructure assets of Euro 750 000 million based on depreciated values and market prices as 9 

at 2001. Direct economic losses were estimated to be Euro 165 000 million for the extreme 10 

scenario along the whole river Rhine. According to ICPR (2001), 83% of the estimated losses 11 

were assigned to settlement areas that only accounted for 11% of the area modelled to be 12 

affected by the extreme scenario. However, it will be shown below that past flood events only 13 

affected certain reaches of the river Rhine. The estimates of ICPR (2001) as well as of te 14 

Linde et al. (2011) are based on homogeneous scenarios. Therefore, a second aim of this 15 

paper is to compare the probabilities of real (heterogeneous) flood scenarios with 16 

homogeneous scenarios that assume constant return periods of discharges along the whole 17 

river reach.  18 

 19 

1.2 Determining the T-year flood event in large areas – a literature review 20 

Analogous to flood frequency analysis, event probabilities could be derived from a 21 

distribution of an indicator that summarises the event hazard magnitude for the whole region 22 

under study. In principle, such a cumulative indicator could be calculated either on the basis 23 

of an aggregated multi-site discharge analysis (addressing the hazard) or by a flood impact 24 

analysis (considering impacts and losses).  25 
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Although there is a huge body of literature on flood frequency analysis, e.g. the suitability of 1 

different distribution functions and data series or parameter estimation methods, methods for 2 

an aggregated multi-site discharge analysis are lacking. Only recently, there have been first 3 

applications of multi-variate distribution functions to describe the joint probability of flood 4 

peaks at multiple sites. For example, Ghizziani et al. (2010, 2012) applied the multi-variate 5 

skew-t-distribution and the Student copula to the Tarano basin, Italy, and the Upper 6 

Mississippi River, respectively. A similar approach was developed by Keef et al. (2009a, 7 

2009b) based on the spatial dependence model of Heffernan and Tawn (2004). It derives the 8 

statistical dependence structure between river gauges using the entire series of daily flow data 9 

under the condition that one gauge exceeds a threshold. It can be used to generate synthetic 10 

scenarios of large-scale flood peaks. Although these multi-variate hazard approaches are 11 

promising, they are taken up only very slowly in flood risk research and practice due to their 12 

complexity.  13 

Another promising approach is the quantification of the event magnitude by an impact 14 

indicator. In fact, a frequency analysis of a time series of annual flood losses in a large area 15 

would enable us to assign a probability to each event of such a series. In practise, however, 16 

time series of losses are hardly available, contain many zero values, i.e. years without or only 17 

low losses that might cause a bias in the risk estimates (Arnell 1989), or data use is limited 18 

due to data inconsistencies. The latter can be caused by temporal changes of land use and 19 

assets in the flood-prone areas, implemented prevention measures as well as altered methods 20 

for damage reporting. In addition, the type of impact indicator and the data source might 21 

influence the result. Poor quality of damage data is frequently reported (e.g. Downton and 22 

Pielke 2005; Gall et al. 2009; Kron et al. 2012) and improvements have constantly been 23 

demanded (e.g. Ramirez et al. 1988; Mileti 1999; Handmer et al. 2005; Greenberg et al. 2007; 24 

Merz et al. 2010; Elmer et al. 2010; Bubeck et al. 2012). Although the lack of reliable, 25 

consistent and comparable data is seen as a major obstacle for risk analyses and effective and 26 
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long-term loss prevention (e.g. Changnon 2003; Downton and Pielke 2005), consistent flood 1 

loss data bases are still missing. 2 

To overcome these data problems, a scenario set of possible flood events could be 3 

synthetically generated and coupled with a flood impact model, e.g. a flood loss estimation 4 

model, in order to derive consistent estimates of the flood impacts. If the scenarios are 5 

generated properly, i.e. their probabilities are estimated on an annual basis, a frequency 6 

analysis of the simulated cumulative impact indicator could be performed in order to derive 7 

event probabilities.  8 

Flood losses result from a chain of processes (see Gouldby et al. 2005), starting with the 9 

triggering rainfall event (source), consecutive runoff processes in the catchments and wave 10 

propagation in the hydraulic network (pathways) leading to inundation of properties 11 

(receptors) and eventually damage (consequences).  12 

In flood risk models either the whole process chain or a reduced chain can be simulated. The 13 

crucial point for the generation of a probabilistic scenario set is where probability is 14 

introduced. Rainfall or discharge data are commonly used for this purpose. For example, van 15 

Dyck and Willems (2013) used the rate and spatial extent of severe precipitation with 16 

information on topography, river networks as well as flooded areas and aggregated losses of 17 

historical flood events to estimate the probabilistic flood risk in large areas; the approach was 18 

demonstrated in Belgium.  19 

Based on ideas of USACE (1999), Apel et al. (2004, 2006) developed a dynamic-probabilistic 20 

model and applied it to the Lower Rhine in Germany. Their approach combined the flood 21 

frequency curve at the Cologne gauge with simplified flood process models for wave 22 

propagation, dike breaches and inundation in a Monte Carlo framework. The simplifications 23 

enabled them to simulate a large number of hazard scenarios and to derive frequency 24 
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distributions downstream (at the Rees gauge) that also accounted for dike breaches and 1 

associated uncertainties.  2 

Rodda (2005) described the development of a flood risk model for main rivers in the Czech 3 

Republic and its application for (re-)insurance purposes. The model included the generation of 4 

30 synthetic (discharge) events, the conversion of discharges into water levels and inundation 5 

areas as well as a calculation of insured losses. The flood hazard events were generated 6 

directly from discharge data. Spatial distributions of the ratio between the peak flood 7 

discharge and the median annual flood (Q/Q2) were used to identify three distinct patterns 8 

that served as a basis to generate 30 events. Initial flood magnitudes were further modified by 9 

random factors. Since no stochastic approach was used to generate scenarios, a probabilistic 10 

analysis of the resulting losses was, however, not possible (Rodda 2005). In an earlier work, 11 

Rodda and Berger (2002) introduced a stochastic approach for the generation of flood hazard 12 

events in the UK. Here, a stochastic event set of more than 2000 flood-inducing rainfall 13 

events was coupled dynamically with a runoff model and a hydraulic model was used to 14 

determine maximum flood extent and depth. Flood risk was finally given in terms of insured 15 

building loss over the full range of possible return periods. A similar approach was used by 16 

te Linde et al. (2010) to investigate impacts of climate change and management strategies on 17 

flood risk in the Rhine catchment. None of these approaches, however, investigated flood loss 18 

event probabilities, which are addressed in this paper.  19 

2. METHODOLOGY  20 

A probabilistic model was developed in order to generate realistic, heterogeneous flood 21 

hazard scenarios as well as to estimate potential impacts and flood loss event probabilities. 22 

The model development comprised the following steps: 23 

1) Statistical analysis of discharges at gauges on the river reach under study; 24 
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2) Probabilistic generation of discharge pattern for the study area (flood hazard events); 1 

3) Transformation of discharges into water levels and inundation areas; 2 

4) Determination of flood impacts; and 3 

5) Estimation of the flood loss scenario/event probability. 4 

The steps 3 to 5 were also applied to eight past flood events and four homogeneous flood 5 

scenarios. All modules are introduced in the next sections.  6 

2.1 Statistical analysis of flood discharges 7 

Mean daily discharges from 1931 to 1999 were analysed at seven gauges between Maxau, a 8 

gauge located near the city of Karlsruhe, and Rees, located at the German-Dutch border 9 

(Fig. 1). The river reach under study covers parts of the Upper, Middle and the Lower Rhine. 10 

At first, a series of annual maximum discharges (AMS) was derived for each gauge. 11 

Independency of the events was tested as recommended by DVWK (1999). The frequently 12 

applied, recommended and found to be suitable GEV-distribution (see e.g. Vogel et al. 1993, 13 

Vogel and Wilson 1996, Castellarin et al. 2012) was fitted to each AMS using L-moments as 14 

given in Hosking and Wallis (1997).   15 
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 1 

Fig. 1: Rhine Catchment and the locations of discharge gauges. 2 

The AMS of the seven gauges served as a starting point for the generation of a flood hazard 3 

event set: For each flood event that was included in an AMS of at least one gauge, the 4 

maximum discharge that could be attributed to this event was determined at all other gauges. 5 

In this way, a data set with 120 events was generated. Each event contained the maximum 6 

discharges that were observed at the seven gauges.  7 

In order to be consistent with the length of the observation period, only the 69 largest events 8 

were selected. For this, a cumulative discharge indicator was introduced. In a first step, the 9 

discharges of the event set were normalized by dividing them by the median discharge of the 10 

corresponding AMS. Then the normalized discharges of all gauges were summed up for each 11 

event using a weight that reflects the incremental increase in the median discharge at each 12 

gauge (see Table 2). All events were sorted by this indicator in descending order and the first 13 

69 events, i.e. 57.5 % of the initial events, were chosen for further analysis. 14 
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Since past flood events at the river Rhine revealed that the spatial distribution of flood 1 

discharges is heterogeneous and depends on the centre of the flood, i.e. typical floods at the 2 

Upper Rhine can be distinguished from typical floods at the Middle or Lower Rhine (see 3 

Disse and Engel 2001; Lammersen et al. 2002; Merz et al. 2005; and section 3.1), the 4 

correlation between discharges from different gauges tends to decrease with increasing spatial 5 

distance. It was assumed that the correlations of discharges are higher if the event set is 6 

divided into more homogeneous subclasses. Therefore, all flood events were classified into 7 

four types. Besides Upper, Middle and Lower Rhine floods, a mixed flood type was 8 

considered (see data analysis in section 3.1). Subsequently, a regression model was derived 9 

for each flood type, i.e. linear regressions between a master gauge, which represented the 10 

centre of a flood of the respective type, and all other gauges were calculated (see section 3.1). 11 

2.2 Probabilistic generation of discharge scenarios along the whole river reach 12 

The results of the data analysis were used to generate heterogeneous discharge pattern. First, a 13 

flood type was randomly chosen. Then a discharge at the respective master gauge of the 14 

chosen flood type was sampled from its GEV distribution. Finally, the discharges at all other 15 

gauges were estimated by linear regressions.  16 

Since regression functions do not reflect the total data variability, randomness was introduced 17 

to limit data smoothing that is inherent in regression: A normal distribution was assumed, in 18 

which the mean was taken from the linear regression between the master gauge and another 19 

gauge and the standard deviation reads as follows (after Cullen and Frey 1999; Apel et al. 20 

2004):  21 

2
( ) ,1σ σ ρ= −i AMS i i m  22 

where: σi: Standard deviation of residuals at gauge i 23 
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 σAMS(i): Standard deviation of the annual maximum series at gauge i 1 

 ρi,m: Correlation coefficient between gauge i and the master gauge m for the 2 

underlying flood type  3 

For each scenario a random number between 0 and 1 was sampled from a uniform distribution 4 

and converted to σi using the equation above with, however, using the mean daily discharge 5 

of the whole time series 1931-1999 as lower limit to avoid negative values and systematic 6 

biases at the same time. Also, only one random number was sampled per scenario in order to 7 

prevent inexplicable discharge pattern. With this approach 100 discharge scenarios were 8 

generated, from which the 58 most severe scenarios measured by the cumulative discharge 9 

indicator were chosen for the flood impact analysis. This was done in order to generate 10 

scenarios on an annual basis. The share of 58 out of 100 scenarios is consistent with the 120 11 

events in 69 years (see section 2.1). The number of scenarios was kept low in order to limit 12 

computation time for the consecutive inundation modelling.  13 

2.3 Transformation of discharges to water levels and inundation areas  14 

The flood impact analysis started with the conversion of flood discharges to inundated areas 15 

by a hydraulic transformation, i.e. discharges were converted to water levels using valid rating 16 

curves at the respective gauges. Further, water levels between the gauging stations were 17 

interpolated, and the flooded area was obtained by intersecting the interpolated water levels 18 

with a digital elevation model (DEM).  19 

All calculations are based on the official DEM provided by the Federal Agency of 20 

Cartography and Geodesy with a grid cell size of 25 m and a vertical resolution of 0.01 m 21 

with a vertical accuracy of ± 10 cm in flat areas plus 5% of the grid cell size. At the gauge 22 

locations, river cross sections considering the whole flood plain and the dike hinterland were 23 

extracted from the DEM. To improve data quality, the river bed was corrected by additional 24 
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data sources, such as official cross sections, mean water levels and gauge data. Rating curves 1 

were calculated at each gauge location on the basis of river cross sections and the Manning-2 

Strickler-Equation assuming stationary conditions. At each gauge, discharges were then 3 

transformed into water levels, i.e. flood water levels above sea level. These were used in a 4 

linear directional interpolation along the main flow path, whose direction was derived from 5 

the centroids of the river as well as from additional cross sections. The resulting flood water 6 

levels were assigned to the (additional) cross sections and a triangular irregular network (TIN) 7 

was constructed. Finally, inundated areas were derived by a Cut/Fill-algorithm so that only 8 

adjacent grid cells were assigned as flooded. The water depths were calculated as difference 9 

between the DEM and the TIN. The algorithm was implemented in ArcGIS 9.0. It produced a 10 

grid data set containing the water depths as well as a table with the total inundated area and its 11 

volume, although the actual volume of the flood wave was not considered as boundary 12 

condition in the hydraulic transformation.  13 

This method was used to derive inundated areas for 58 probabilistic discharge patterns (see 14 

sections 2.1 and 2.2). However, several small floods had a very similar discharge pattern. To 15 

further reduce computational efforts, the hydraulic transformation was only performed for 16 

scenarios where the 1-year flood discharge was exceeded at at least two of the seven gauges, 17 

as well as for two representative small flood scenarios (in total for 48 scenarios). Moreover, 18 

four homogeneous scenarios were calculated with the 10-, 20-, 50- or 100-year discharge at 19 

each gauge that were taken from the respective flood frequency distributions (AMS 1931-20 

1999, GEV, L-Moments, see section 2.1). Finally, inundated areas were also determined for 21 

eight past flood events. 22 

2.4 Quantification of flood impacts 23 

Four indicators were used to estimate flood impacts: 24 

1. the total inundated area, 25 
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2. the exposed, i.e. inundated, settlement and industrial area, 1 

3. the exposed population, i.e. the number of residents in the inundated area, and 2 

4. the direct monetary damage to residential buildings (building losses). 3 

The size of the total inundated area was directly determined by the hydraulic transformation 4 

implemented in ArcGIS. To determine the inundated settlement and industrial areas, the water 5 

depth grid was intersected with a grid of the CORINE land cover data set as at 2000 6 

(CLC2000; CORINE stands for Coordination of Information on the Environment). In the 7 

CLC2000 data set, settlement areas are represented by the land use codes 111 and 112, 8 

industrial areas and areas for transportation by the codes 121 to 124. 9 

To estimate the flood-exposed number of residents, the inundation scenarios were intersected 10 

with the population map presented by Thieken et al. (2006). In general, census data on 11 

population are only provided for different administrative units, e.g. at the municipal level. 12 

With the help of CLC2000 data and the dasymetric mapping technique of Gallego (2001), 13 

Thieken et al. (2006) further disaggregated population within the municipalities leading to 14 

high-resolution data of population density. This map was further used to distribute municipal 15 

asset values provided by Kleist et al. (2006) resulting in a map with the unit asset value 16 

(in €/m²) for residential buildings (see Thieken et al. 2006).  17 

To estimate the building loss, the asset map was combined with the meso-scale flood loss 18 

estimation model for the residential sector FLEMOps (Thieken et al. 2008). FLEMOps 19 

estimates building damage considering five water depth classes (≤ 20 cm, 21–60 cm, 61–100 20 

cm, 101–150 cm, >150 cm above surface), three building types (i.e. one-family homes, (semi-21 

)detached houses and multi-family homes) and two building qualities (i.e. low /medium and 22 

high quality). For all sub-categories, a mean building loss ratio was derived from empirical 23 

data of 1697 private households affected by the flood in August 2002 (see Büchele et al. 24 

2006). Building losses in the different sub-categories were found to differ significantly on the 25 
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level of p<0.05; this was tested by the Mann-Whitney-U-Test for two independent data 1 

groups and by the Kruskal-Wallis-H-Test for three or more subgroups (Büchele et al. 2006).  2 

 3 

Fig. 2: The meso-scale Flood Loss Estimation Model for residential buildings (FLEMOps; 4 

Thieken et al. 2008). 5 

In FLEMOps, these micro-scale damage functions were combined with a typical composition 6 

of residential building types on the municipal level and their mean building quality as 7 

illustrated in Fig. 2 and described by Thieken et al. (2008). For the loss estimation, each 8 

inundation scenario was first intersected with the map of unit residential asset values. Second, 9 

the financial loss was estimated by FLEMOps for each grid cell using its unit asset value, its 10 

water depth as well as the mean municipal building composition and quality. Finally, all grid 11 

estimates were summed up per scenario. Thieken et al. (2008) also introduced a second model 12 
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stage (FLEMOps+) that accounts for effects of contamination and private precaution. 1 

However, due to lacking input data, this model stage was not applied in this study.  2 

2.5 Estimation of the scenario/event probability  3 

As described in sections 2.1 and 2.2, 58 out of 100 probabilistic discharge pattern scenarios 4 

were selected, but hydraulic transformation (section 2.3) and the flood impact analysis 5 

(section 2.4) were only performed for two representative small flood scenarios as well as for 6 

the 46 most severe scenarios. For the remaining 12 small flood scenarios, the flood impacts 7 

were estimated using exponential regression functions between the cumulative discharge 8 

indicator that was introduced in section 2.1 and each flood impact indicator. The exponential 9 

regressions yielded a R² = 0.9361, R² = 0.9199 and R² = 0.9134 for the estimated building 10 

damages, the exposed population and the affected land use types, respectively. 11 

Furthermore, a GEV distribution was fitted to all 58 scenario estimates for each impact 12 

indicator. In a last step, these frequency distributions were used to estimate the return periods 13 

of eight past flood loss events (Fig. 3) and homogeneous flood scenarios, for which all four 14 

impact indicators were calculated, as well. 15 

3. RESULTS AND DISCUSSION 16 

3.1 Flood statistics and scenario generation 17 

Mean daily discharges from 1931 to 1999 at seven gauges between Maxau and Rees (Fig. 1) 18 

were used to derive annual maximum discharge series (AMS; see Table 2). GEV distributions 19 

were used to estimate return periods of flood discharges for eight events that occurred 20 

between 1931 and 1999 (see Fig. 3). These events also illustrate the different flood types at 21 

the river Rhine. For example, the flood of November 1944 was almost limited to the Upper 22 

Rhine represented by the Maxau gauge, whereas in March 1988 intense flooding occurred 23 
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particularly at the Middle Rhine represented by the Mainz gauge. In contrast, the Lower 1 

Rhine (see Cologne gauge) was severely affected in January 1995. Among the eight floods 2 

shown in Fig. 3, the February 1980 flood had the most homogeneous distribution of return 3 

periods. Remarkably, it was also the smallest of the eight flood events (Merz et al. 2005).  4 

The different flood types are due to differences in the spatial distribution of the triggering 5 

rainfall events, varying antecedent conditions, the possible interplay with snowmelt and the 6 

convolution of flood waves from different tributaries. In general, the flow regime of the 7 

Upper Rhine is dominated by snowmelt and precipitation runoff from the Alps in the summer 8 

months. Further downstream the flow regime is mainly influenced by precipitation runoff 9 

from the uplands, where long lasting precipitation particularly occurs in winter (Disse and 10 

Engel 2001). These regimes result in different flood patterns: Within the AMS at the Maxau 11 

gauge half of the flood events occur during the summer months. This percentage drops to only 12 

8% at the Cologne gauge (Merz et al. 2005). 13 

For the scenario generation, all 69 flood events were assigned to one of four flood types: 1) 14 

Upper-Rhine-Floods (e.g. flooding in November 1994 and January 1955 in Fig. 3); 2) Middle-15 

Rhine-Floods (e.g. flood in March 1988 in Fig. 3); 3) Lower-Rhine-Floods (e.g. flooding in 16 

January 1948, December 1993 and January 1995 in Fig. 3); and 4) a Mixed-Flood-Type (e.g. 17 

flooding in February 1980 and May 1983 in Fig. 3). From the 69 events selected for the 18 

analysis, approximately one third (i.e. 24 events) were classified as “Upper-Rhine-Flood”, 19 

followed by 18 “Lower-Rhine-Flood” events, 15 mixed floods and finally 12 “Middle-Rhine-20 

Flood” events (Table 3).  21 

22 
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Table 2: Statistics of the annual maximum series (AMS) at the discharge gauges at the river 1 

Rhine, discharges are given in m³/s. The weights reflect the incremental increase in the 2 

median discharge at each gauge and were used to calculate a cumulative discharge indicator 3 

(see section 2.1 for further explanation). 4 

Gauge Maxau Worms Mainz Kaub Andernach Cologne Rees 
Time period 1931-

1999 
1937-
1999 

1931-
1999 

1931-
1999 

1931-1999 1931-
1999 

1931-
1999 

Mean 3007 3385 4007 4196 6251 6337 6579 
Standard 
deviation 

724 929 1189 1217 2030 2042 2122 

Skewness 0.01 0.09 0.07 0.16 0.04 0.09 0.13 
Curtosis  2.38 2.43 2.56 2.65 2.41 2.42 2.44 
Minimum 1450 1510 1540 1600 2220 2270 2330 
Maximum 4430 5400 6920 7160 10500 10800 11700 
Median 2930 3440 4040 4240 6271 6340 6500 
Weight 0.4508 0.0785 0.0923 0.0308 0.3125 0.0106 0.0246 

 5 

Fig. 3: Return periods of eight flood events at seven discharge gauges on the river Rhine. 6 

Return periods were estimated with the GEV on the basis of annual maximum 7 

discharge series from 1931 to 1999 (Source: Merz et al. 2005).  8 

9 
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Table 3: Flood types of the river Rhine, their frequency and assigned master gauges. 1 

Flood type Occurrence of flood types in 69 
events (1931-1999) 

Master gauge 

Upper Rhine Flood 35 % (24 events) Maxau 
Lower Rhine Flood 26 % (18 events) Cologne 
Middle Rhine Flood 17 % (12 events) Mainz 
Mixed Flood 22 % (15 events) Mainz 

 2 
 3 

 4 
 5 

 6 

Fig. 4: Mean discharge pattern of the four flood types (A) and difference between the mean 7 

discharge per flood type and the mean discharge of all 69 events (B) as well as mean 8 

discharge pattern of the flood types in the 58 most severe scenarios (C) and their 9 

normalized discharge pattern (D). 10 

In Fig. 4A, mean discharge patterns are shown per flood type. To better understand the 11 

difference between the four flood types, mean discharges per flood type were related to mean 12 

discharges of the whole event set (see Fig. 4B). The figure clearly reflects that the focal points 13 

of the flood types correspond well with the discharges of the respective gauges, i.e. in Upper-14 

Rhine-Floods the discharges at Maxau and Worms are clearly above average, while 15 



 21 

discharges at the downstream gauges are below average. A contrary pattern is visible for 1 

Lower-Rhine-Floods. The pattern of Middle-Rhine-Floods is less clear, but in comparison to 2 

the other flood types the discharges at the gauges Mainz and Kaub are the highest above 3 

average. In the mixed flood type discharges at all seven gauges are below average.  4 

As described in section 2.2, a correlation and regression analysis was performed for each 5 

flood type. Table 4 illustrates that the correlations between the gauge discharges are stronger 6 

for a distinct flood type than in the whole data set. Hence, the flood type classification 7 

improves the applicability of a regression model for the scenario generation. The consecutive 8 

regression analysis is only exemplarily illustrated in Fig. 5 for the gauges Cologne and Kaub. 9 

As outlined in section 2.1 and 2.2, the regression model was used to generate discharge 10 

scenarios. In Fig. 4C and 4D the final set of 58 scenarios is compared to the original data of 11 

69 events. In comparison to Fig. 4A and 4B, Fig. 4C and 4D reveal that the discharge pattern 12 

of generated Upper-Rhine-Floods and Middle-Rhine-Floods are similar to the observed ones, 13 

while the patterns of Lower-Rhine-Floods with a slightly underestimated discharges and the 14 

mixed floods with slightly overestimated could be further improved. This could be due to the 15 

small number of scenarios considered. 16 

17 
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Table 4: Pearson’s correlation coefficients between the flood discharges at seven gauges 1 

on the river Rhine for the whole data set (69 events) as well as for events of each of the four 2 

flood types. Significant correlations on the 0.01-level are highlighted with **, on the 0.05-3 

level with *. 4 

All 69 events Maxau Worms Mainz Kaub Andernach Cologne 
Worms 0.77**      
Mainz 0.47** 0.82**     
Kaub 0.44** 0.81** 0.98**    
Andernach 0.14 0.59** 0.86** 0.88**   
Cologne 0.12 0.57** 0.84** 0.88** 1.00**  
Rees 0.08 0.51** 0.82** 0.85** 0.97** 0.98** 
Upper-Rhine Maxau Worms Mainz Kaub Andernach Cologne 
Worms 0.83**      
Mainz 0.79** 0.93**     
Kaub 0.77** 0.94** 0.99**    
Andernach 0.52* 0.75** 0.82** 0.83**   
Cologne 0.51* 0.75** 0.82** 0.83** 0.99**  
Rees 0.53** 0.72** 0.83** 0.82** 0.97** 0.98** 
Lower-Rhine Maxau Worms Mainz Kaub Andernach Cologne 
Worms 0.77**      
Mainz 0.71** 0.90**     
Kaub 0.74** 0.90** 0.95**    
Andernach 0.70** 0.92** 0.94** 0.96**   
Cologne 0.70** 0.88** 0.90** 0.95** 0.99**  
Rees 0.69** 0.77** 0.89** 0.91** 0.91** 0.92** 
Middle-Rhine Maxau Worms Mainz Kaub Andernach Cologne 
Worms 0.89**      
Mainz 0.86** 0.86**     
Kaub 0.87** 0.89** 0.99**    
Andernach 0.89** 0.86** 0.93** 0.93**   
Cologne 0.90** 0.90** 0.94** 0.94** 0.99**  
Rees 0.85** 0.89** 0.93** 0.94** 0.97** 0.98** 
Mixed Flood Maxau Worms Mainz Kaub Andernach Cologne 
Worms 0.95**      
Mainz 0.87** 0.90**     
Kaub 0.86** 0.91** 0.99**    
Andernach 0.77** 0.85** 0.92** 0.94**   
Cologne 0.78** 0.84** 0.93** 0.94** 0.99**  
Rees 0.73** 0.77** 0.91** 0.92** 0.96** 0.98** 
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Fig. 5: Scatterplot of the discharges at the gauges Kaub and Cologne. A linear regression 2 

was calculated for events of the type “Lower Rhine Flood”. 3 

3.2 Flood impact analysis  4 

In the flood impact analysis, four indicators were calculated on the basis of inundation 5 

scenarios (see section 2.4). As an example, the inundated area of the flood event in December 6 

1993 is shown in Fig. 6. Since no maps of the actual inundation extent in 1993 were available, 7 

the quality of the results is difficult to assess. However, owing to drawbacks of the hydraulic 8 

transformation as well as coarseness and errors of the DEM, the inundated areas tend to be 9 

overestimated. Particularly at the Lower Rhine the heights of embankments are not (well) 10 

represented in the DEM. Therefore, overtopping of embankments occurred at relatively low 11 

water levels resulting in huge inundated areas. Moreover, in flat lowland areas hydraulic 12 

transformation might result in unrealistic inundation extents, because the water volume of the 13 

inundated area is not limited by the volume of the flood wave. The presented scenarios have 14 

thus to be interpreted as worst-case scenarios.  15 

Despite its drawbacks, this simple GIS-based hydraulic transformation was also used by 16 

Rodda (2005) and te Linde et al. (2011) for similar purposes. Apel et al. (2009) found that it 17 
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can provide a good approximation of the inundated areas. Romanowicz and Beven (2003) 1 

emphasised that consistent and reliable information on floodplain geometry and infrastructure 2 

of the terrain is of utmost importance. Therefore, the analysis could be considerably improved 3 

by using better elevation data, particularly with regard to flood defence structures. 4 

At the reach of the Lower Rhine in North-Rhine Westphalia a comparison of inundated areas 5 

with and without embankments was performed for a (homogeneous) 100-year, 200-year and 6 

500-year flood by MURL (2000). The calculations were also based on a hydraulic 7 

transformation using, however, a 50 m DEM (with and without dikes) as input data. It was 8 

found that the total inundated area at the Lower Rhine was reduced to 22% to 28% when 9 

dikes were properly considered. The mean damage ratio, however, did not alter (MURL 10 

2000). Therefore, it is assumed that the conclusions drawn from our modelling exercise are 11 

still valid even if the absolute impact estimates will change with better elevation data.  12 

  13 

Fig. 6: Flood inundation scenario of the flood event in December 1993. Inundated areas are 14 

shown in blue, settlement areas in light red and industrial areas in grey.  15 

Fig. 7 shows the frequency distributions of the four cumulative impact indicators. Except for 16 

the total inundated area, the course of the frequency distribution is very similar for all 17 
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indicators. These frequency distributions were further used to estimate the return periods of 1 

the eight past flood events shown in Fig. 3. The results are summarised in Table 5. Besides 2 

the estimates based on the impacts the ranges of the return periods from on-site estimations of 3 

discharge using GEV are given in the last column of Table 5.  4 

Although the return periods for each event differed depending on the impact indicator, the 5 

relative severity of the floods, i.e. their ranking, did not differ. According to this analysis, the 6 

flood in January 1995 was the most severe event with return periods between 115 and more 7 

than 200 years. It was followed by floods in December 1993, March 1988, May 1983, January 8 

1955 and 1948 and February 1980. The lowest return period was assigned to the flood in 9 

November 1944, which was assessed as a 6- to 8-year event (Table 5). Table 5 reveals that the 10 

variation between the estimates increases with the severity of the event. Furthermore, the 11 

analysis demonstrates that – except for the three lowest events in January 1948, February 12 

1980 and November 1944 – the range of estimated return periods based on the flood impacts 13 

was higher than the range of return periods based on on-site discharge frequency analyses 14 

(Table 5).  15 

  16 
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  1 

Fig. 7: Frequency distributions of the inundated area (A), exposed settlement and industrial 2 

area (B), exposed population (C) and potential damage to residential buildings (D). 3 

It should be emphasized that this study did not aim to reanalyse the actual impacts of past 4 

flood events. Since data about land cover, population and residential asset values refer to the 5 

years 2000 or 2001, all results refer to these years. In fact, it was observed in many 6 

municipalities in the Rhine as well as in the adjacent Meuse catchment that the flood in 7 

January 1995 caused considerably lower damage than the event in 1993 despite higher 8 

discharges in many places (Wind et al. 1999; Grothmann and Reusswig 2006; Bubeck et al. 9 

2012). This has commonly been attributed to better early warning and improved preparedness 10 

of affected people in 1995 (Wind et al. 1999). Bubeck et al. (2012) showed that private 11 

households considerably invested in mitigation measures after the 1993 flood and that this 12 

effect significantly reduced losses in 1995. In principle, the damage model FLEMOps is able 13 

to account for changes in private precaution, and validations showed that FLEMOps+ 14 

outperformed other stage-damage functions (Apel et al. 2009; Wünsch et al. 2009; Thieken 15 

2011). Since the reanalysis of real losses was not the purpose of this paper, and due to lacking 16 

data, effects of precaution were, however, neglected in damage estimation. Still, it should be 17 

noticed that the approach helps to assess and compare the severity of different flood loss 18 

events by a consistent estimation of flood impacts.  19 
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Moreover, the return periods of four homogeneous flood hazard scenarios were estimated. In 1 

these scenarios the same return periods of the discharge were assumed along the whole river 2 

reach. The event probability of each scenario was again estimated by the frequency curves 3 

shown in Fig. 7. The results illustrate that the flood loss event return periods that were based 4 

on the cumulative impacts by far exceed the (constant) return period of the discharges 5 

(Table 6). The return period of the flood loss event was at least three times as high as the 6 

return period of the discharge, representing the flood hazard. The impact analysis reveals that 7 

a lower cumulative probability can be assigned to homogeneous hazard events, i.e. in our 8 

case, a return period of almost more than 100 years can be assumed for an event with constant 9 

20-year flood discharges (Table 6). 10 

In general, it has to be kept in mind that risk analyses are approximations to an unknown risk. 11 

Usually, risk statements on extreme events and their consequences cannot – or only partially – 12 

be validated in the traditional sense by comparing observed and simulated data, since such 13 

events have not been observed so far (Hall and Anderson 2002; Apel et al. 2008). Ideally, 14 

formal uncertainty analyses should be undertaken in order to better understand the system 15 

under study (Merz and Thieken 2009). Since input data and model choices influence the 16 

results, e.g. a large source of uncertainty of flood frequency analysis arises due to the choice 17 

of the distribution function (e.g. Merz and Thieken 2005), an uncertainty analysis of the 18 

presented modelling approach should be a next step. 19 

Table 5: Return periods of the past eight flood events shown in Fig. 3 (single site and multi-20 

site assessment). 21 

Flood Event 
(ranked 
according to 
severity) 

Event Return Period  Range of return 
periods of the 

discharges at all 
gauges (single site 
assessment; GEV) 

[years] 

Inundated 
area 

[years] 

Exposed 
settlement 

and industrial 
area 

(CLC2000) 
[years] 

Exposed 
population 

[years] 

Potential 
building loss  
(FLEMOps) 

[years] 

January 1995 716 2025 1762 1522  7 … 123 
December 1993 372 1091 1024 878 1 … 64 
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March 1988 291 298 366 399  9 … 262 
May 1983 142 190 246 266 15 … 39 
January 1955 100 92 117 125 11 … 67 
January 1948 34 41 57 50  2 … 23 
February 1980 18 14 17 17  7 … 9 
November 1944 8 6 6 6  4 … 27 

Table 6: Multi-site assessment of four homogeneous flood events (i.e. constant return periods 1 

along the river reach under study). 2 

Scenario Flood Loss Event Return Period Return periods of the 
discharges at all gauges 
(single site assessment; 

GEV) [years] 

Inundated 
area 

[years] 

Exposed 
settlement 

and industrial 
area 

(CLC2000) 
[years] 

Exposed 
population 

[years] 

Potential 
building loss  
(FLEMOps) 

[years] 

HQ10 35 36 45 45 10 
HQ20 168 241 322 334 20 
HQ50 1554 4134 2973 2824 50 
HQ100 4450 NaN 7143 6306 100 

4. CONCLUSIONS 3 

Data analysis showed that the return periods of flood discharges considerably vary on the 4 

investigated reach of the river Rhine. Therefore, the conclusion that the return period of a 5 

flood discharge at a gauge is equal to the return period of the respective flood loss event is not 6 

always valid. Some applications in the (re-)insurance industry or on the national level need, 7 

however, to assess flood loss event probabilities even in large catchments. For such 8 

applications, heterogeneous flood hazard scenarios are needed. It was shown that 9 

heterogeneous flood hazard scenarios can be generated by combining flood type 10 

classification, flood frequency, correlation and regression analyses and hydraulic 11 

transformation. Loss event probabilities can be assessed by estimating cumulative flood 12 

impacts for the whole range of possible hazard scenarios. Suitable flood impact indicators are 13 

the total inundated (residential and/or industrial) area, the number of exposed residents or the 14 

potential building loss. In fact, only little difference was observed between the four indicators 15 

used in this study.  16 
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In our study area, the variation of return periods of cumulative flood impact indicators of real 1 

flood events is in most of the cases higher than the variation of return periods of the flood 2 

discharges at different gauges. In other study areas and timeframes this might be different. 3 

The approach enabled us to establish a ranking of real flood events according to their severity 4 

based on a consistent assessment of potential impacts. Since effects of flood protection and 5 

private precaution were not considered in the models, the ranking differs from the observed 6 

actual impacts of the events. For a reanalysis of past flood events, currently used data and 7 

models have to be further improved, in particular with regard to elevation data, and validated. 8 

For this, procedures for consistent event documentation have to be developed and 9 

implemented.  10 

The analysis further shows that homogeneous discharge/hazard scenarios lead to an 11 

overestimation of the flood loss probability in large catchments. Large-scale risk management 12 

problems should therefore be approached by using heterogeneous flood hazard scenarios that 13 

better represent real flood situations. It is acknowledged that reinsurers are well aware of this 14 

finding. Still, more scientifically based methods need to be developed, tested and applied to 15 

derive real flood situations in large catchments or along large river reaches. To assess whether 16 

homogeneous hazard scenarios might still be used to assess real flood situations in a given 17 

area, correlations between discharge gauging stations should be calculated, and it should be 18 

investigated whether distinct flood pattern can be distinguished in the area under study. 19 

Availability of (long) discharge records might, however, restrict such investigations. 20 

 21 
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