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Abstract Understanding the enigmatic intraplate volcanism in the Tristan da Cunha region requires
knowledge of the temperature of the lithosphere and asthenosphere beneath it. We measured phase-
velocity curves of Rayleigh waves using cross-correlation of teleseismic seismograms from an array of
ocean-bottom seismometers around Tristan, constrained a region-average, shear-velocity structure, and
inferred the temperature of the lithosphere and asthenosphere beneath the hotspot. The ocean-bottom
data set presented some challenges, which required data-processing and measurement approaches different
from those tuned for land-based arrays of stations. Having derived a robust, phase-velocity curve for the
Tristan area, we inverted it for a shear wave velocity profile using a probabilistic (Markov chain Monte Carlo)
approach. The model shows a pronounced low-velocity anomaly from 70 to at least 120 km depth. VS in the
low velocity zone is 4.1–4.2 km/s, not as low as reported for Hawaii (�4.0 km/s), which probably indicates a
less pronounced thermal anomaly and, possibly, less partial melting. Petrological modeling shows that the
seismic and bathymetry data are consistent with a moderately hot mantle (mantle potential temperature of
1,410–1,4308C, an excess of about 50–1208C compared to the global average) and a melt fraction smaller than
1%. Both purely seismic inversions and petrological modeling indicate a lithospheric thickness of 65–70 km,
consistent with recent estimates from receiver functions. The presence of warmer-than-average astheno-
sphere beneath Tristan is consistent with a hot upwelling (plume) from the deep mantle. However, the excess
temperature we determine is smaller than that reported for some other major hotspots, in particular Hawaii.

Plain Language Summary The chains of volcanic ocean islands such as Hawaii are created when
oceanic tectonic plates move over anomalously hot regions (hotspots) in the underlying mantle. The origin
of hotspots has been attributed to mantle plumes, spectacular hot upwellings from the Earth’s core-mantle
boundary (2,800 km depth). The existence of the plumes and their occurrence beneath particular locations
of volcanism are a matter of a heated debate. One way to find out whether a hot upwelling may be present
is to determine the temperature in the mantle at depths just beneath the tectonic plate in the location of a
hotspot. These depths are around 100 km, however, and temperature there cannot be measured directly. In
this study, we used new seismic data from an array of ocean-bottom seismometers deployed around
Tristan da Cunha, a prominent hotspot in the South Atlantic Ocean, and determined seismic velocities
beneath it. Seismic velocities depend on the temperature of the mantle rock. We were able to use this
dependence to infer the temperature within and below the tectonic plate around Tristan. The temperature
is anomalously high. This is consistent with a hot mantle plume reaching Tristan from below and causing
the unusual, long-lived volcanism at this location.

1. Introduction

Tristan da Cunha (TdC) is a hotspot in the South Atlantic Ocean, located�450 km east of the Mid-Atlantic Ridge
(MAR) (Figure 1a). The intraplate volcanoes and seamounts that form the TdC archipelago are connected to the
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Cretaceous (�132 Ma) Etendeka continental flood basalt province in Namibia via the aseismic Walvis Ridge.
The ridge is built-up by seamounts and submarine volcanic plateaus that show a clear age progression and
extend from the Namibian continental margin (northeast) to the volcanic islands of TdC and Gough (south-
west), surrounded by 10–30 m.y. old lithosphere. Age-progressive distribution of volcanic rock samples col-
lected from the Walvis Ridge and the Rio Grande Rise west of the Mid-Atlantic Ridge provide evidence for the
volcanism at TdC and the formation of the flood basalts in Namibia and Brazil to be due to a common hotspot
source, with the Walvis Ridge and the Rio Grande Rise being the hotspot tracks (e.g., O’Connor & Duncan,
1990).

The origin of the TdC hotspot volcanism is debated, with competing hypothesis suggested. The TdC-Walvis
Ridge system is one of the few examples of a complete hotspot track, and thus the TdC is believed by many
workers to be a surface expression of an underlying mantle plume (e.g., Morgan, 1971, 1997). The hypothe-
sis of a deep mantle plume origin of the hotspot volcanism at the TdC archipelago is supported by anoma-
lous geochemical data and geochronological constraints (REE inversions, 40Ar/39Ar geochronology and
geochemistry of alkaline igneous rocks, chemical zonation, petrological, and geochemical variations along
the hotspot track) (e.g., Gibson et al., 2006; Humphris et al., 1985; Rohde et al., 2013a, 2013b) and global
tomography; Courtillot et al. (2003) define TdC plume as ‘‘primary,’’ French and Romanowicz (2015) classify
TdC as ‘‘clearly resolved’’ plume.

Alternative explanations for the hotspot volcanism at and around TdC include convective processes in the
shallow mantle, possibly a consequence of the South Atlantic opening, and faulting and fracturing of the
oceanic lithosphere (e.g., Anderson, 2005; Fairhead & Wilson, 2005; Foulger & Natland, 2003). Other models
(e.g., O’Connor et al., 2012; O’Connor & Jokat, 2015), while adopting the idea of a deep-sourced mantle
plume, emphasize the relative motion between the African plate and the Tristan-Gough mantle plume since
the opening of the South Atlantic. It has also been suggested that the origin of TdC could be controlled by
the interaction between the African superplume and surrounding depleted mantle (Rohde et al., 2013b), or
by the interaction of a plume with the MAR (e.g., Gassm€oller et al., 2016).

Until recently, the seismic-station coverage of the South Atlantic, including the TdC region, was very sparse.
Regional shear wave velocity (VS) models derived from global observations of surface and shear waves (Fig-
ure 1b) show an anomalous region with low upper mantle velocities close to TdC (e.g., Celli et al., 2016;
Schaeffer & Lebedev, 2013; Zhang & Tanimoto, 1993), generally consistent with the hotspot volcanism there
being due to anomalously hot asthenosphere, brought about by a mantle plume. However, the large-scale
models are characterized by strong lateral averaging in the region and cannot be used to determine the
thermal structure of the lithosphere and asthenosphere beneath TdC and its immediate surroundings.

Figure 1. (a) Topographic map of the South Atlantic region. The seismic stations deployed in the vicinity of the Tristan da
Cunha (TdC) hotspot are shown with red triangles. The TdC hotspot (the yellow star over the triangles) is located
�450 km east of the MAR, at the southwestern extremity of the Walvis Ridge. (b) Shear wave speed anomalies at 110 km
depth beneath the South Atlantic region, according to waveform tomography of Celli et al. (2016). The two stars indicate
the position of the TdC and Gough hotspots. A strong low VS anomaly is located between TdC and the MAR. Topography
and bathymetry are from the GINA (Lindquist et al., 2004) and ETOPO2 (NOAA, 2006) data sets.
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In 2012–2013, an amphibian seismological and electromagnetic experiment was carried out in the vicinity
of the archipelago (section 2.1), with the goal of recording regional data that could provide insights into the
regional-scale structure of the upper mantle beneath the area. The new data have already been used in a
number of studies, including receiver-function analysis (Geissler et al., 2016), petrological analysis (Weit
et al., 2016), magnetotelluric imaging (Baba et al., 2017), P wave tomography (Schl€omer et al., 2017) and
ambient-noise tomography (Ryberg et al., 2017). Intriguingly, the inferences from these studies differed.
Schl€omer et al. (2017) reported evidence for an underlying plume, imaging a low P wave velocity conduit
within the upper mantle, which could be regarded as the top part of a weak mantle plume. Geissler et al.
(2016) measured the thicknesses of the crust, lithosphere, and mantle transition zone using receiver func-
tions and found no clear indications for the presence of a plume. Weit et al. (2016) investigated melt gener-
ation and magma transport and storage beneath TdC, using thermobarometric measurements, and inferred
a mantle potential temperature (TP) of �1,3608C for the TdC hotspot; the models proposed were consistent
with a hot upwelling column with its base at around 90 km and its top at around 60 km. Baba et al. (2017)
investigated the electrical conductivity structure of the upper mantle beneath TdC and did not find evi-
dence of a distinct plume-like conductor beneath the area.

Key outstanding questions thus remain: is the asthenosphere beneath TdC anomalously hot, which it
should be if the intraplate volcanism is caused by a hot upwelling (plume) from the deep mantle? Is the
asthenosphere as hot as beneath recognized major hotspots, such as Hawaii? Are the thermal structure and
thickness of the lithosphere beneath TdC anomalous and how do they compare to those beneath other
major hotspots?

More observational evidence on the structure of the lithosphere-asthenosphere system beneath TdC is
required to answer these questions and, ultimately, establish the origin of the TdC hotspot. In this paper,
we measure phase velocities of Rayleigh surface waves using the data recorded by the ocean-bottom seis-
mometer (OBS) array (section 2.2) and invert them for the VS distribution with depth using a probabilistic
approach (section 3). The VS structure is sensitive to temperature and composition and yields new con-
straints on the thickness of the oceanic lithosphere and temperature within the asthenosphere. To verify
and quantify our results further, we use computational petrological modeling (section 4) and derive esti-
mates of the mantle potential temperature, melt content in the asthenosphere and the thickness of the lith-
osphere beneath TdC.

2. Data and Measurements

Cross-correlation of seismograms from pairs of stations can produce measurements of the fundamental-
mode phase velocities in a very broad period range (e.g., Meier et al., 2004; Roux et al., 2011; Soomro et al.,
2016), sufficient to constrain VS structure in the entire lithosphere-asthenosphere depth range (e.g., Lebe-
dev et al., 2006; Ravenna & Lebedev, 2018). Our ocean-bottom data set, however, presented a number of
challenges: low signal-to-noise ratios, low data redundancy due to the short term of the deployment and its
remoteness from areas of abundant seismicity, and the (nominal) 60 s period limit of the wide-band instru-
ments. This required development of data-processing and measurement approaches different from those
tuned for land-based arrays of stations. Applying these to our data, we assembled a large number of care-
fully selected phase-velocity measurements, and derived a robust phase-velocity curve that averaged across
the TdC area.

2.1. Data/Experiment
Twenty-four OBS from the German DEPAS pool (Deutscher Ger€ate-Pool f€ur Amphibische Seismologie) and
26 ocean-bottom magnetotelluric stations from GEOMAR Kiel and the University of Tokyo were deployed
around the archipelago of TdC (Geissler, 2014) (Figure 2). The 24 OBS were equipped with G€uralp CMG-40T
broadband seismometers (60 s). The network also included two land stations (installed on Nightingale
Island, southwest of the main island), each of which was equipped with a Guralp-3ESP seismometer (60 s).
One of the stations (NIG01, Figure 2b) recorded earthquake data for the entire year, whereas the second sta-
tion failed after a few days due to water damage. Unfortunately, the permanent station TRIS also recorded
very little data from the early 2012 until the end of this experiment. Because the internal clocks of the OBS
work independently for the duration of the experiment, the drifts of the clocks have to be measured by GPS
synchronization before deployment and after recovery of the instruments. In two cases, the second
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synchronization failed. We thus used the noise-correlation approach (Sens-Sch€onfelder, 2008) to estimate
the clock drift for these two instruments. The data were then corrected for the 2012 leap second, quality-
checked and response-corrected to displacement. Tilt and compliance corrections were not performed on
the data, given that, ultimately, we used only vertical-component signal at intermediate periods.

2.2. Measurements
Phase velocities were measured using a powerful recent implementation of the interstation cross-
correlation method (Meier et al., 2004; Soomro et al., 2016). For each pair of stations within the array, phase
velocities of the fundamental Rayleigh mode were calculated by means of cross-correlation of the wave-
forms of teleseismic earthquake recordings.

In this implementation of the two-station method, the cross-correlation function is filtered with a
frequency-dependent Gaussian bandpass filter, and then it is windowed in the time domain with a
frequency-dependent Gaussian window centered on the maximum amplitude of the cross-correlation func-
tion. Parts of the cross-correlation signal likely to be due to noise or correlation between the fundamental
mode and other parts of the waveform (body waves and surface wave coda) are down-weighted (an exam-
ple of phase-velocity measurement is shown in Figure 3). The resulting signal is transformed into the fre-
quency domain and the phase is computed as the arctangent of the ratio of the imaginary to real part of
the Fourier spectrum (Meier et al., 2004).

We performed our measurements using events from the Global Centroid Moment Tensor catalog (Dziewon-
ski et al., 1981; Ekstr€om et al., 2012). We chose the events with back-azimuth within 208 from the station-
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Figure 2. (a) Station locations (triangles) and interstation path coverage (black lines) yielded by our measurements. White
triangles are stations with no data available. (b) Seismic stations and the seafloor age. The highlighted stations NIG01 and
TDC02 are used in the following to illustrate the measurements (Figures 3 and 4). (c) Distribution of the events used to
measure phase-velocity curves with the two-station method for the NIG01-TDC02 station pair; blue dots represent the
events producing accepted measurements, out of all the events considered (blue and black). (d) Distribution of the events
used to measure phase-velocity curves with the two-station method for all the pairs; blue dots represent the events used
for the final set of accepted measurements. Topography and bathymetry are from the GINA (Lindquist et al., 2004) and
ETOPO2 (NOAA, 2006) data sets.
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station great circle path (GCP) and with a moment magnitude greater than 4.9, using a distance-dependent
magnitude threshold as described in Schaeffer and Lebedev (2013). Phase velocities were computed from
the phase of the cross-correlation function and the difference between the distances from the event to
each of the stations (hence, the imperfect alignment of the two stations and the event had no immediate
effect on the measurement accuracy).

The high noise level and the limited amount of usable ocean-bottom data necessitated careful, manual
selection of acceptable phase-velocity measurements for each event. During the interactive measurement
procedure, only smooth portions of phase-velocity curves were accepted. The criteria used for the selection
were based on (1) the smoothness of the dispersion curve, (2) reasonable closeness to the reference model
(exclusion of the outlier measurements), (3) the length of the selected segments (very short segments were
not accepted), (4) the difference between measurements from events at opposite directions from the sta-
tion pair (a systematic inconsistency—not encountered with measurements with this data set—could indi-
cate instrumental errors or strong diffraction effects), and (5) the minimum number of measurements for
each frequency (two measurements at least for each period) (Soomro et al., 2016). An example of the selec-
tion of dispersion curves for a pair of stations is shown in Figure 4.

The phase-velocity estimated from the cross-correlation function has to be compared with a reference
model to eliminate the 2p ambiguity of the arctangent function and remove outlier measurements (Meier
et al., 2004). (Figure 3d shows the array of possible phase-velocity curves estimated from the cross-
correlation function in blue.) Initially, we tried out, as reference models, the Preliminary Reference Earth
Model (PREM) (Dziewonski & Anderson, 1981), AK135 (Kennett et al., 1995), both models recomputed at a
reference period of 50 s, and SL2013sv (Schaeffer & Lebedev, 2013) (as this is a three-dimensional model,
for each pair of stations five points of the model grid along the path are used in the average, the two end
points and three equally spaced points along the GCP). Neither of these turned out to be suitable, however,
and a more accurate regional reference was required.

An accurate, representative reference model is essential in order to resolve the 2p ambiguity, especially at
shorter periods, in the course of interactive phase-velocity measurements. We found a way to extract such
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TDC02 (ocean-bottom) (Figure 2b). (a and b) The recorded seismograms and the time-frequency representations of their
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from the distribution density plot, Figure 5) used as the regional reference model is shown in green.
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an average regional curve from the data quickly. We ran the automated
phase-velocity measurement routine of Soomro et al. (2016) with loose
selection criteria and marked all event-station pair combinations for
which a measurement was successful for any curve segment. (This initial
preselection is necessary to remove random ‘‘measurements’’ from seis-
mograms dominated by noise.) For all the selected signals, we summed
all branches of the entire families of possible phase-velocity curves (with
no attempt to resolve the 2p ambiguity) in the entire 8–250 s period
range. This yielded a density distribution plot (Figure 5) with a stack of
all the measurements in the broad period range. With measurements
from different interstation pairs stacked together, the region-average
dispersion curve emerges clearly, with the curves affected by 2p ambi-
guity canceling out. The stacking strategy for the extraction of a refer-
ence phase-velocity dispersion curve is somewhat similar to that
applied to ambient-noise data by Rawlinson et al. (2014). The maximum
values of the distribution at each period have been used to extract a dis-
persion curve that was inverted using a nonlinear Levenberg-Marquardt
gradient search algorithm (e.g., Agius & Lebedev, 2013, 2014; Erduran

et al., 2008; Lebedev et al., 2006; Meier et al., 2004) for a VS profile. The synthetic phase-velocity curve com-
puted for this profile (green line in Figure 5) represents an accurate regional reference model. The best-
fitting synthetic is very similar to the simple stack but is smoother, as is appropriate for a reference model.
Despite being computed using relatively noisy data, the density plot shown in Figure 5 not only yields a
useful reference for the subsequent case-by-case selection, but also shows that the measurements from the
OBS data set naturally provide mutually consistent information.

We measured interstation phase velocities in a period range from �8 to �250 s, but since the instruments
have a corner period of 60 s, only a small number of measurements (from the largest events) were success-
ful at periods above 60 s. In order to constrain the lithosphere-asthenosphere structure beneath the area,
we selected the most accurate measurements from all station pairs and computed a region-average disper-
sion curve (Figure 6). Generally, all the single-measurement curves show similar features and almost all of
them lie above the global reference curves and show phase velocities close to 4 km/s at periods above 12–
15 s. The region-average curve was computed as a simple average of all the single-event measurements. It
is the most robust and accurate in the period range 13.6–46.5 s. The curve in this range (Figure 6) was
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Figure 5. Density plot for the stack of automated preliminary measurements, normalized to the maximum at each
period. The stack was computed using all branches of possible phase-velocity curves (including those affected by the 2p
ambiguity), for all pairs of stations and for all automatically selected events. The average curve (‘‘Initial average’’)
determined from this distribution is shown in green. This regional reference is substantially different from those given by
the global reference models AK135 (Kennett et al., 1995) and PREM50 (Dziewonski & Anderson, 1981) and from that
extracted from the tomographic model SL2013sv (Schaeffer & Lebedev, 2013).
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inverted for the 1-D VS structure beneath the study area using a Mar-
kov chain Monte Carlo (McMC) algorithm (section 3).

Our average dispersion curve (Figure 6) shows a pronounced low-
velocity anomaly at periods above 20 s. Comparing it to the Atlantic-
average curves for 20–52 Ma lithospheric ages from James et al.
(2014) (their Figure 5a), we observe that the curves show similar veloc-
ity values in the lithospheric range, while Tristan da Cunha average
shows lower velocities at periods above 40 s (asthenospheric range).
This indicates that the asthenosphere beneath Tristan is hotter than
the Atlantic average for the Tristan-region lithospheric age. It is also
useful to compare our phase velocities with those for the Indian
Ocean from Godfrey et al. (2017); although the range of their overlap
is narrow, we can see that the Indian Ocean dispersion curve for 20–
52 Ma (green line in their Figure 3) and our average for Tristan da
Cunha (e.g., Figure 6) are similar. The 20–52 Ma dispersion curve in
Godfrey et al. (2017) is probably representative mostly of the eastern
part of the Indian Ocean, with the spreading along the Southwest

Indian Ridge much slower than that along the Southeast Indian Ridge and, thus, with the area from which
the curves are computed greater in the eastern part of the ocean. The phase-velocity average for the Indian
Ocean thus reflects the rejuvenation of the lithosphere by the Kerguelen hotspot (Godfrey et al., 2017;
Schaeffer & Lebedev, 2015). Our phase velocities at periods over 40 s, sampling the low velocity zone, are
around 4.0 km/s, not as low as the 3.9 km/s reported for the active volcanism part of Hawaii by Laske et al.
(2011) (their Figure 4). By contrast, the Hawaii dispersion curve averaging along a path far from active volca-
nism (blue path in their Figure 4) shows velocities higher than in the Tristan da Cunha area.

We also inverted the interstation measurements from the various station pairs for phase-velocity maps
(Deschamps et al., 2008; Lebedev & van der Hilst, 2008). The inversions showed that seismic-velocity hetero-
geneity in the area is relatively weak, which justified our use of a region-average profile to constrain the
thermal structure of TdC. Because the lateral variations are relatively small and because the errors of the
measurements are larger than in terrestrial studies using the same methods (e.g., Endrun et al., 2011; Pawlak
et al., 2012; Polat et al., 2012), the variance reductions given by the tomographic inversions are relatively
low (supporting information Figure S1). The maps do show interesting lateral variation in phase velocity;
maps for different periods and for stacked period ranges (computed to highlight the dominant anomalies
and reduce artifacts) are shown, for completeness, in supporting information Figures S1 and S2.

3. Probabilistic Inversion for an S-Velocity Profile

We inverted the average Rayleigh-wave, phase-velocity curve for the 1-D crustal and lithospheric VSV (verti-
cally polarized shear wave speed) structure using a Markov chain Monte Carlo (McMC) algorithm (Ravenna
& Lebedev, 2018). The algorithm addresses the model nonuniqueness by directly sampling the parameter
space in a Bayesian framework, providing a quantitative probabilistic measure of the solution space instead
of a unique best-fitting model. The algorithm is also able to address the issue of data noise estimation by
using a Hierarchical Bayesian approach (Bodin et al., 2012, 2016), which allows the variance of data noise to
be treated as an unknown in the inversion (Ravenna & Lebedev, 2018).

Both the crustal and mantle structure were inverted for. The a priori information on the model parameters
was expressed in terms of Gaussian prior probability distributions (characterized by standard deviations of
approximately 400 m/s for the shear-velocity parameters and 2 km for the Moho depth) centered at values
from the reference model. As a reference crustal model, we used a four-layered crustal model of the TdC
region taken from CRUST 2.0 (Bassin et al., 2000), with a 3.4 km thick water layer and a Moho depth of
10.1 km. The reference model for the mantle is a modified version of AK135 (Kennett et al., 1995), character-
ized by constant shear velocities (4.45 km/s) until 220 km depth and linearly increasing shear velocities
below 220 km depth. The sampled models were parameterized with 10 control points in the mantle (until
410 km depth) that represented the knots of piecewise cubic Hermite spline polynomials.
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The posterior distribution of the VS profile and the models sampled in the McMC inversions are shown in
Figures 7a and 7b, respectively. The posterior distribution comprises an ensemble obtained by merging the
models sampled by four chains of iterations running independently. The corresponding synthetic phase
velocities and the relative misfit to the measured data are shown in Figures 7c and 7d, respectively.

Because of the limited period range of the data, we can expect it to constrain VS structure down to some-
where in the shallow asthenosphere only. Figure 7a shows that the model is well constrained down to
about 120 km depth and is uncertain below. The profile displays a clear contrast between the high-velocity
lithosphere, with VS up to 4.6–4.65 m/s, and a low-velocity asthenosphere, with VS down to 4.1–4.2 m/s. The
depth of the lithosphere-asthenosphere boundary can be estimated at around 65–70 km.

4. Petrologically Derived Models

Our inversion of phase velocities yields a probabilistic VS profile and shows a range of models that fit the
surface wave data. Only some of these models would be consistent with other available data, in particular
the bathymetry in the region. We now take an approach alternative to the purely seismic inversion and use
the integrated geophysical-petrological software LitMod (e.g., Afonso et al., 2008; Fullea et al., 2009) to esti-
mate the thermal structure of the lithosphere-asthenosphere system consistent with both the seismic data
and bathymetry. We compute a series of models of the lithosphere and the sublithospheric upper mantle
and use them to estimate the range of values for the lithospheric thickness and the melt fraction and tem-
perature of the asthenosphere beneath TdC.

The lithospheric geotherm is computed under the assumption of steady-state heat transfer in the litho-
spheric mantle, considering a P-T-dependent thermal conductivity in the mantle and prescribed thermal
parameters in the crust. In the convecting sublithospheric mantle, the geotherm is given by an adiabatic

Figure 7. (a) The posterior distribution of the VS profile with depth. (b) The models sampled in the McMC inversions. The posterior distribution comprises an
ensemble obtained by merging the models sampled by four chains of iterations, each running independently. (c) The corresponding synthetic phase velocities.
(d) The relative misfit relative to the measured data. All curves in Figures 7b, 7c, and 7d are colored according to the level of fit to the data. The light-blue line
shows the measured phase velocities used in the inversions. The other curves show phase velocities computed for the petrological models described in section 4.
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temperature gradient. Between the lithosphere and the convecting sublithospheric mantle, we postulate a
transitional buffer layer, characterized by a continuous linear superadiabatic gradient (i.e., heat transfer is
controlled by both conduction and convection, see Fullea et al. (2009) for details). This linear superadiabatic
gradient is controlled by the assumed temperature at the base of the lithosphere and sublithospheric man-
tle potential temperature. Stable mineral assemblages in the mantle are calculated using a Gibbs free
energy minimization as described by Connolly (2005). Anharmonic seismic velocities are computed as a
function of pressure, temperature, and bulk composition in the mantle as described in Fullea et al. (2012).
Melt fractions are computed based on a mantle-peridotitic dry solidus and liquidus (Katz et al., 2003, and
references therein). The effects of melt on VS and VP are computed according to the two experimental mod-
els: Hammond and Humphreys (2000a, 2000b) and Chantel et al. (2016) (‘‘HH’’ and ‘‘Ch,’’ respectively, in the
legend in Figure 8).

Introducing melting into our models leads to discontinuous VS and VP decreases at the onset of even small
fractions of melt (<1%). In line with experimental results suggesting a progressive, VS-decreasing effect of
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attenuation factor. (d) Temperature. (e) A zoom on the geotherms in the depth range comprising the LAB and the transitional layer beneath it. (f) Phase velocities.
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anelasticity below the solidus temperature (e.g., Takei, 2017; Yamauchi & Takei, 2016), we implement a lin-
ear parameterization to smooth the effect of melt on anharmonic seismic velocities over a temperature
range in the vicinity of the solidus. We use a homologous temperature Tm defined as the temperature nor-
malized to the solidus temperature (i.e., Tm 5 1 at the solidus) and define a critical homologous tempera-
ture, Tmc, at which the anelasticity effects are introduced. Within the buffer range Tmc < 5Tm < 1 the melt
fraction varies linearly from zero at Tm5Tmc to a threshold melt fraction at Tm 5 1. (We emphasize that the
gradient so defined does not represent actual melt but serves as a smoothing parameter, reflecting premelt
effects on the rock aggregate anelastic behavior.) Slight further smoothing of the VS profiles is performed
using a sliding boxcar window with a 20 km half width. In all our models, we correct for anelastic attenua-
tion effects as in Fullea et al. (2012) but we also include melt related variations in the seismic quality factor
(Q) based on the laboratory results by Chantel et al. (2016). Surface elevation is modeled according to the
local isostasy at lithospheric scale as described in Fullea et al. (2009). The assumed lithospheric mantle com-
position corresponds to an average oceanic peridotite (Fullea et al., 2015). For an exhaustive technical
description of the geotherm construction and model calculation, we refer the reader to Fullea et al. (2012).

Six selected models with varying degrees of fit to the seismic data are presented in Figure 8, where we
show the profiles of VS, temperature and attenuation, as well as the observed and synthetic phase velocities
and the phase-velocity misfit. Three key parameters of the models (given in the legend in the upper right
corner) characterize the mantle geotherm: the mantle potential temperature TP, the lithosphere-
asthenosphere boundary (LAB) depth, and the temperature at the LAB.

Four of the models (models 3, 4, 5, and 6 in Figure 8), characterized by TP in the 1,410–1,4308C range and
the LAB depth of 65–70 km, fit the seismic data (Figures 8f, 8g and 7c, 7d), while also fitting the observed
bathymetry (in the �3,477–3,521 m range, compared to 3,452 6 448 m the observed average across the
region). The other two models (1 and 2, red and blue lines in Figures 8f and 8g) fit poorly and show that
colder asthenosphere (lower TP) (model 2, blue line) would result in synthetic phase velocities at the longer
periods being much higher than the data; shallower or hotter LAB (model 1, red line) would result in phase
velocities being lower than observed.

The well-fitting models are just four of the infinite number of similar models that would fit the data. The
highly nonlinear effects of partial melting contribute to the nonuniqueness of the model.

The purely seismic and petrologically derived models are, overall, remarkably similar (Figure 8b). In the litho-
sphere, the VS profiles show a very close agreement. In the shallow asthenosphere, the petrological models
that yield VS profiles at the edges of the Monte Carlo-derived distribution do not fit the data, and only the
petrological models with VS profiles within the distribution band do. The close agreement of the results of
the two types of inversion and modeling (seismic and petrological) is important and validates our results.

The main difference between the different models is in the smoothness of the profiles in the upper
asthenosphere. While surface wave data constrain VS tightly in sufficiently broad depth ranges in the litho-
sphere and asthenosphere, they are not sensitive to the sharpness of discontinuities or narrow gradients
(e.g., Bartzsch et al., 2011; Lebedev et al., 2013). Thus, the rough and the smooth models seen in Figure 8b
can fit the data equally well. Even though the fine-scale structure of the VS profile in the models is non-
unique, they do confirm our inferences on the lithospheric thickness from purely seismic inversion and pro-
vide useful estimates of the mantle temperature (lithospheric and sublithospheric), while also
demonstrating that the models are consistent with the observed bathymetry and heat flow.

5. Discussion

5.1. Comparison With Published VS Profiles
In Figure 9, we compare our region-average VS profile derived through McMC inversion with published VS

profiles for Hawaii (Laske et al., 2011), young Pacific lithosphere (Harmon et al., 2009; Nishimura & Forsyth,
1989) and the 10, 20, and 30 Ma profiles for the Pacific and South Atlantic Oceans from global waveform
tomography (Celli et al., 2016).

The profiles of Laske et al. (2011) (Figure 9a) were obtained with similar data and methods to the ones used
here, i.e., two-station dispersion measurements using data from an OBS array, with the interstation spacing
in the two experiments comparable (the Hawaii OBS array, however, included more instruments, and they
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had a broader period range, including periods longer than 60 s). The Hawaii profiles of Laske et al. (2011)
(Figure 9a) show clearly the rejuvenation of the old Pacific lithosphere by the Hawaii hotspot. The measure
of the rejuvenation is the difference between the fastest profile (blue; Pacific lithosphere unaffected by the
hotspot) and the slowest profile (red; Pacific lithosphere affected by the hotspot most recently). In the litho-
spheric depth range, shear wave velocities beneath TdC are remarkably similar to those in the rejuvenated
lithosphere beneath Hawaii (‘‘location 1’’ in Laske et al. (2011), red curve in Figure 9a). Below 80–90 km
depth, however, velocities in the asthenosphere beneath Tristan (4.1–4.2 km/s) are not as low as the lowest
velocities beneath Hawaii (4.0 km/s). This suggests that the asthenosphere beneath Hawaii is considerably
hotter than beneath Tristan (and, possibly, has more partial melt). The similarity of VS (and, by inference,
temperature) in the lithosphere beneath Tristan and Hawaii is consistent with the Hawaiian asthenosphere
being much hotter. Before the rejuvenation by the hotspot, the older Pacific lithosphere must have been
colder and thicker. Thus, it had to be reheated by a substantially greater amount than the younger Atlantic
lithosphere beneath Tristan, for the two to have similar lithospheric geotherms at present.

Our TdC VS profile is similar to the profiles from Nishimura and Forsyth (1989) for young and intermediate-
age (4–20 and 20–52 Ma, respectively) Pacific lithosphere (Figure 9b). In the shallow lithosphere, all the pro-
files, including ours and those from Laske et al. (2011) and Nishimura and Forsyth (1989), agree in that VS

reaches around 4.6 km/s. This similarity is because temperature in the shallow lithosphere, which is close to
the surface and cools quickly after the plate is formed, should be similar for different lithospheric ages, even
though the geotherms for the different ages diverge at greater depths, in the deep lithosphere-
asthenosphere depth range. Because the profiles of Nishimura and Forsyth (1989) are for isotropic-average
VS, obtained from both Love and Rayleigh-wave measurements, whereas our profile is for VSV, obtained
from Rayleigh waves only, we refrain from a quantitative comparison of the entire profiles, as radial anisot-
ropy could bias any inferences. Interestingly, the model of Harmon et al. (2009) for a location around
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Figure 9. Comparison of our probabilistic shear-velocity profile for the TdC region (gray color scale) with VS profiles from published models. (a) Hawaii (‘‘Hawaii 1,’’
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700 km west from the East Pacific Rise (EPR), with the seafloor age of around 8 m.y., shows lower VS in the
uppermost mantle compared to the other profiles (Figure 9b). This suggests slow cooling of the Pacific lith-
osphere at this location. This can be attributed to the proximity of hotspots a little further west, with the
profile located just between the hotspots and the ridge.

In Figures 9c and 9d, we compare our Tristan profile with VS profiles computed as averages for different lith-
ospheric ages within the South Atlantic and Pacific Oceans, using a global tomographic model (Celli et al.,
2016). The global tomography shows that VSV in the asthenosphere beneath the South Atlantic is higher
than beneath the Pacific Ocean, on average. Shear velocity in the asthenosphere beneath the Tristan region,
according to the profile obtained in this study, is lower than the South Atlantic average for the correspond-
ing age range (10–30 m.y.), obtained from the tomography. This confirms that the asthenosphere beneath
Tristan is anomalously warm.

5.2. Estimation of Temperature From VS Profile
An alternative, independent quantitative estimate of the temperature anomaly beneath TdC can be
obtained by using our VS profile and published, petrologically derived VS 2 T relationships (e.g., Goes et al.,
2012). Converting seismic information to temperature is complicated by the large number of variables
involved (temperature, pressure, composition, phase, melt content, water content, attenuation) and by
uncertainties in the available thermodynamic databases. Goes et al. (2012) used three different published
attenuation (Q) models specifically to relate the low velocity anomalies in the mantle below mid-ocean
ridges to temperature anomalies. Taking into account anharmonic and anelastic effects of temperature,
pressure, composition, phase and water content, they computed VS profiles for the different Q models; the
first one a model from Behn et al. (2009) based on the results of Faul and Jackson (2005) and Jackson et al.
(2002), the second one an empirical model from Goes et al. (2000) and van Wijk et al. (2008), and the third
one a model proposed by Yang et al. (2007) (we refer to the models as QF; Qg, and QY, maintaining the
notation from Goes et al. (2012) (e.g., their Figure 4)).

We estimated temperatures using VS 2 T relationships from Goes et al. (2012) (e.g., their Figure 4). Assuming
r and 2r uncertainties on the posterior VS distribution yielded by our probabilistic inversion, we obtained
the ranges of temperature at 50, 75 and 100 km shown in Table 1. The VS 2 T relationships were recom-
puted at a reference period of 50 s (which is the reference period we use in our inversion). In order to obtain
the estimates at 75 km, we interpolated logarithmically between 50 and 100 km. The resulting temperature
values are also shown in Figure 10, where we compare them with our petrological models and other mod-
els. At 50 km, QF produces the highest temperature estimate and QY the lowest; the opposite is true at
100 km. The 2r error bars in Figure 10 differ in width because of the different frequency dependence of the
three models. At 50 km depth, all three estimates are close to temperatures in our petrologically derived
models (green and red lines in Figure 10). At 75 and 100 km, our petrologically derived geotherms are in
agreement with Qg and QY, but not QF. The two attenuation models that are consistent with the petrologi-
cally derived geotherms, Qg and QY, are both empirical, the first one designed to reconcile a wide range of
observations and the second one to fit EPR attenuation (see Goes et al. (2012) for details). QF, in contrast, is

a model based on laboratory results only. (We note that recent experi-
mental updates from Jackson and Faul (2010) (following Faul and
Jackson (2005)) would suggest higher predicted moduli (higher veloc-
ity and less attenuation) at a given temperature.)

5.3. Synthesis: Thickness of the Lithosphere and Temperature
of the Asthenosphere
We summarize the evidence on the seismic and thermal structures of
the lithosphere-asthenosphere system beneath TdC in Figure 10. In
Figure 10a, TdC VS probability distribution is compared to a recent VS

model for the rejuvenated lithosphere beneath Hawaii from Laske
et al. (2011). Our model shows a pronounced low-velocity anomaly
from �70 to at least �120 km depth with S wave velocity in the low-
velocity zone around 4.1–4.2 km/s, higher than beneath Hawaii
(�4.0 km/s). The Pacific lithosphere beneath the eastern extremity of
the Hawaii chain, where volcanism is now active, is 90–100 Ma,

Table 1
Estimation of Temperature Using Our Average VS Model and VS 2 T
Relationships From Goes et al. (2012) at Three Different Depths and for Three
Different Attenuation Models, QF; Qg, and QY

Depth (km) Tr ð�CÞ T2r ð�CÞ

50 QF 1,006 6 41 989 6 93
Qg 958 6 47 946 6 96
QY 866 6 65 852 6 141

75 QF 1,223 6 38 1,213 6 79
Qg 1,239 6 52 1,230 6 109
QY 1,228 6 95 1,231 6 190

100 QF 1,310 6 30 1,304 6 63
Qg 1,391 6 48 1,384 6 96
QY 1,423 6 93 1,419 6 195
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substantially older than the 10–30 My age of the lithosphere beneath the TdC region. The similarity of the
lithospheric VS profiles from the two locations thus indicates that the Hawaii hotspot has warmed and
thinned the Pacific lithosphere by a much greater amount (seen in the comparison of the Hawaii-region
profiles in Figure 9a) than the Tristan hotspot has the South Atlantic lithosphere. This is consistent with the
asthenosphere beneath TdC being not nearly as hot as it is beneath Hawaii, as indicated by the higher VS in
the TdC asthenosphere.

Petrological modeling shows that the seismic and bathymetric data from the TdC region can be fit by mod-
els with a moderately hot mantle, a melt fraction smaller than 1% and a 65–70 km lithospheric thickness (in
agreement with the purely seismic inversions). Figure 10b compares the well-fitting, petrologically derived
geotherms with other estimates for TdC, with the global average and with estimates for Hawaii. The
mantle-adiabatic temperature gradient range used to relate the temperatures in the asthenosphere to
the mantle potential temperature TP is 0.4–0.5 K/km (taken from Katsura et al. (2010)). We also show the
lithospheric thickness inferred from receiver functions (Geissler et al., 2016) and temperature estimates
(section 5.2) from VS profile and VS 2 T relationships (Goes et al., 2012).
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Figure 10. Synthesis of the key evidence on the thermal structure of the upper mantle beneath Tristan da Cunha. (a) The
lithosphere beneath TdC is underlain by a pronounced low-velocity zone, indicative of anomalously warm asthenosphere.
However, VS in the TdC asthenosphere is not as low as beneath Hawaii (Laske et al., 2011), which suggests that the ther-
mal anomaly beneath TdC is not as high as that beneath Hawaii. (b) The petrologically derived models that are consistent
with seismic and bathymetry data (dark/light green and dark/light purple lines—models 5, 6, 4, and 3 according to the
legend at the top right corner in Figure 8) have the LAB at a depth of 65–70 km, in agreement with the LAB depths com-
puted from receiver functions (Geissler et al., 2016) (light green band). These models suggest a mantle potential tempera-
ture TP beneath Tristan of 1,410–1,4308C, higher than the global average (�1,337 6 358C (Katsura et al., 2010)) but lower
than at the Hawaii hotspot (�1,520–1,6008C, according to Herzberg and Asimow (2008)). Our estimated potential temper-
ature for TdC is close to the value computed for Tristan by Herzberg and Asimow (2008) (�1,4358C, blue diamond). The
coldest and hottest petrological models (dark blue and dark red, respectively) are not consistent with seismic data. ‘‘HH’’
and ‘‘Ch’’ indicate if the model has been computed using the parameterization from Hammond and Humphreys (2000a,
2000b) or Chantel et al. (2016), respectively (see also the legend in Figure 8). We also plot the TP recently inferred from
thermobarometry (Weit et al., 2016) (�1,3608C; orange circle and band). The temperature estimates from our VS and the
VS 2 T relationships of Goes et al. (2012) (Table 1) are plotted as circles with error bars. These temperature estimates are
computed for three different attenuation models, all at the depths of 50, 75, and 100 km; they are plotted at slightly dif-
ferent depths (61 km) for clarity. The (conservatively broad) geothermal gradient range used to relate TP and the temper-
ature in the asthenosphere is [0.4, 0.5] K/km (Katsura et al., 2010).
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Our results show that the TdC mantle is warmer than ambient mantle beneath normal ocean ridges: TP of
1,410–1,4308C for Tristan versus 1,280–1,4008C (Anderson, 2000; Chambers et al., 2005; Herzberg et al.,
2007; Katsura et al., 2010; Khan et al., 2013; Kuskov et al., 2014) for the ridges. Our potential temperature
estimates are higher than the values calculated by Dalton et al. (2014) on the MAR for the closest locations
to Tristan da Cunha (1,3498C, 1,3678C, 1,3938C, and 1,3788C at the values of latitude-longitude [240, 216],
[238, 217], [236, 217], and [235, 215], respectively). This thermal anomaly is considerably smaller than
anomalies beneath some of the other major hotspots (Hawaii, 1,520–1,6008C (Herzberg & Asimow, 2008;
Herzberg et al., 2007; Taposeea et al., 2016); Samoa, �1,5258C; St. Helena, �1,5208C (Herzberg & Asimow,
2008)), but it is in the range of estimates reported for other hotspots (Iceland, 1,435–1,4558C; Azores, 1,430–
1,4658C; Canaries, 1,420–1,4808C (Herzberg & Asimow, 2008)). (The overall higher values reported by Putirka
(2005, 2008) and Putirka et al. (2007) also show Hawaii (1,687–1,7228C) to be hotter than Iceland (1,583–
1,6378C).) Our estimated TP for TdC is close to the value estimated for Tristan by Herzberg and Asimow
(2008) (�1,4358C). The temperature beneath Tristan, according to our models, is about 50–1208C higher
than the global average value of 1,337 6 358C (Katsura et al., 2010).

6. Conclusions

Rayleigh-wave dispersion measurements from OBS data in the Tristan da Cunha region reveal a 65–70 km
thick lithosphere and a pronounced low-velocity zone beneath 70 km depth, with VS of 4.1–4.2 km/s within
it. Both the probabilistic seismic inversion of the data and petrological modeling indicate the lithospheric
thickness around 65–70 km, which agrees with independent estimates from receiver functions (Geissler
et al., 2016). The temperature of the asthenosphere is around 50–1208C higher than global average, with a
melt fraction smaller than 1%. The mantle potential temperature TP is estimated at about 1,410–1,4308C.

Our observations are consistent with a hot upwelling from the deep mantle (a mantle plume) beneath the
Tristan region, but the excess temperature we determine is smaller than that reported for some major hot-
spots such as Hawaii (100–1808C), although it is in the range of values reported for Iceland and some other
hotspots. The upwelling beneath TdC may be not as hot as that beneath Hawaii or, alternatively, the pre-
sent structure reflects a weaker upwelling (plume tail) than in the past, when the large igneous provinces
onshore and the prominent hotspot tracks offshore were formed. It is also possible that the largest thermal
anomaly is located at a distance from TdC, closer to the MAR (Figure 1b).

References
Afonso, J. C., Fern�andez, M., Ranalli, G., Griffin, W. L., & Connolly, J. A. D. (2008). Integrated geophysical-petrological modeling of the litho-

sphere and sublithospheric upper mantle: Methodology and applications. Geochemistry, Geophysics, Geosystems, 9, Q05008. https://doi.
org/10.1029/2007GC001834

Agius, M., & Lebedev, S. (2014). Shear-velocity structure, radial anisotropy and dynamics of the Tibetan crust. Geophysical Journal Interna-
tional, 199(3), 1395–1415.

Agius, M. R., & Lebedev, S. (2013). Tibetan and Indian lithospheres in the upper mantle beneath Tibet: Evidence from broadband surface-
wave dispersion. Geochemistry, Geophysics, Geosystems, 14, 4260–4281. https://doi.org/10.1002/ggge.20274

Anderson, D. (2005). Scoring hotspots: The plume and plate paradigms. Geological Society of America Special Papers, 388, 31–54.
Anderson, D. L. (2000). The thermal state of the upper mantle: No role for mantle plumes. Geophysical Research Letters, 27(22), 3623–3626.
Baba, K., Chen, J., Sommer, M., Utada, H., Geissler, W. H., Jokat, W., et al. (2017). Marine magnetotellurics imaged no distinct plume beneath

the Tristan da Cunha hotspot in the southern Atlantic Ocean. Tectonophysics, 716, 52–63.
Bartzsch, S., Lebedev, S., & Meier, T. (2011). Resolving the lithosphere-asthenosphere boundary with seismic Rayleigh waves. Geophysical

Journal International, 186(3), 1152–1164.
Bassin, C., Laske, G., & Masters, G. (2000). The current limits of resolution for surface wave tomography in North America. Eos, Transactions

American Geophysical Union, 81, F897.
Behn, M. D., Hirth, G., & Elsenbeck, G. R. II (2009). Implications of grain size evolution on the seismic structure of the oceanic upper mantle.

Earth and Planetary Science Letters, 282(1–4), 178–189.
Bodin, T., Leiva, J., Romanowicz, B., Maupin, V., & Yuan, H. (2016). Imaging Anisotropic layering with Bayesian inversion of multiple data

types. Geophysical Journal International, 206(1), 605–629. https://doi.org/10.1093/gji/ggw124
Bodin, T., Sambridge, M., Tkalcic, H., Arroucau, P., Gallagher, K., & Rawlinson, N. (2012). Transdimensional inversion of receiver functions

and surface wave dispersion. Journal of Geophysical Research, 117, B02301. https://doi.org/10.1029/2011JB008560
Celli, N. L., Lebedev, S., Schaeffer, A., & Gaina, C. (2016). Waveform tomography of the South Atlantic Region. Fall Meeting Conference

Abstract. Washington, DC: American Geophysical Union.
Chambers, K., Woodhouse, J., & Deuss, A. (2005). Topography of the 410-km discontinuity from PP and SS precursors. Earth and Planetary

Science Letters, 235(3–4), 610–622.
Chantel, J., Manthilake, G., Andrault, D., Novella, D., Yu, T., & Wang, Y. (2016). Experimental evidence supports mantle partial melting in the

asthenosphere. Science Advances, 2(5), e1600246. https://doi.org/10.1126/sciadv.1600246

Acknowledgments
We thank Pierre Arroucau for the
numerous valuable discussions, Saskia
Goes and Nicholas Harmon for sharing
their data, and the Editor, Ulrich Faul,
and an anonymous reviewer for
insightful comments and suggestions
that helped us to improve the
manuscript. We thank Captain Ralf
Schmidt, the crew of R/V Maria S.
Merian and the Scientific Parties of
cruise MSM20/2 and MSM24 as well as
the people on Tristan da Cunha for the
professional and friendly support. This
work was supported by the Science
Foundation Ireland (SFI) (grants 13/
CDA/2192 and 16/ERCD/4303),
European Space Agency (the project
‘‘3D Earth—A Dynamic Living Planet’’
funded through ESA-Support to
Science Element), and the German
Research Foundation (DFG) (grant GE
1783/4-1/2, as part of the Priority
Program SPP1375). Additional support
was provided by the Alfred Wegener
Institute Bremerhaven. Instruments
were provided by ‘‘Deutscher Ger€ate-
Pool f€ur Amphibische Seismologie
(DEPAS)’’ at Alfred Wegener Institute
Bremerhaven and Deutsches
Geoforschungszentrum Potsdam. The
authors wish to acknowledge the DJEI/
DES/SFI/HEA Irish Centre for High-End
Computing (ICHEC) for the provision of
computational facilities and support.
The waveform data used are listed in
the references, tables, and supporting
information. All figures were produced
using Generic Mapping Tools (Wessel
et al., 2013).

Geochemistry, Geophysics, Geosystems 10.1002/2017GC007347

BONADIO ET AL. 1425

https://doi.org/10.1029/2007GC001834
https://doi.org/10.1029/2007GC001834
https://doi.org/10.1002/ggge.20274
https://doi.org/10.1093/gji/ggw124
https://doi.org/10.1029/2011JB008560
https://doi.org/10.1126/sciadv.1600246


Connolly, J. A. D. (2005). Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application
to subduction zone decarbonation. Earth and Planetary Science Letters, 236(1–2), 524–541. https://doi.org/10.1016/j.epsl.2005.04.
033

Courtillot, V., Davaille, A., Besse, J., & Stock, J. (2003). Three distinct types of hotspots in the Earth’s mantle. Earth and Planetary Science Let-
ters, 205(3–4), 295–308. https://doi.org/10.1016/S0012-821X(02)01048-8

Dalton, C. A., Langmuir, C. H., & Gale, A. (2014). Geophysical and geochemical evidence for deep temperature variations beneath mid-
ocean ridges. Science, 344(6179), 80, https://doi.org/10.1126/science.1249466

Deschamps, F., Lebedev, S., Meier, T., & Trampert, J. (2008). Azimuthal anisotropy of Rayleigh-wave phase velocities in the east-central
United States. Geophysical Journal International, 173(3), 827–843.

Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4),
297–356.

Dziewonski, A. M., Chou, T.-A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies
of global and regional seismicity. Journal of Geophysical Research, 86(B4), 2825–2852. https://doi.org/10.1029/JB086iB04p02825

Ekstr€om, G., Nettles, M., & Dziewo�nski, A. M. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13017 earthquakes.
Physics of the Earth and Planetary Interiors, 200–201, 1–9.

Endrun, B., Lebedev, S., Meier, T., Tirel, C., & Friederich, W. (2011). Complex layered deformation within the Aegean crust and mantle
revealed by seismic anisotropy. Nature Geoscience, 4(3), 203–207.

Erduran, M., Endrun, B., & Meier, T. (2008). Continental vs. oceanic lithosphere beneath the eastern Mediterranean Sea—Implications from
Rayleigh wave dispersion measurements. Tectonophysics, 457(1–2), 42–52.

Fairhead, J., & Wilson, M. (2005). Plate tectonic processes in the South Atlantic Ocean: Do we need deep mantle plumes? Geological Society
of America Special Papers, 388, 537–553.

Faul, U. H., & Jackson, I. (2005). The seismological signature of temperature and grain size variations in the upper mantle. Earth and Plane-
tary Science Letters, 234(1–2), 119–134.

Foulger, G., & Natland, J. H. (2003). Is ‘‘hotspot’’ volcanism a consequence of plate tectonics? Science, 300(5621), 921–922.
French, S., & Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525(7567), 95–

99. https://doi.org/10.1038/nature14876
Fullea, J., Afonso, J. C., Connolly, J. A. D., Fernandez, M., Garcia-Castellanos, D., & Zeyen, H. (2009). LitMod3D: An interactive 3-D software to

model the thermal, compositional, density, seismological, and rheological structure of the lithosphere and sublithospheric upper man-
tle. Geochemistry, Geophysics, Geosystems, 10, Q08019. https://doi.org/10.1029/2009GC002391

Fullea, J., Camacho, A. G., Negredo, A. M., & Fern�andez, J. (2015). The Canary Islands hotspot: New insights from 3D coupled geophysical-
petrological modelling of the lithosphere and uppermost mantle. Earth and Planetary Science Letters, 409, 71–88.

Fullea, J., Lebedev, S., Agius, M., Jones, A., & Afonso, J. (2012). Lithospheric structure in the Baikal-central Mongolia region from integrated
geophysical-petrological inversion of surface-wave data and topographic elevation. Geochemistry, Geophysics, Geosystems, 13, Q0AK09.
https://doi.org/10.1029/2012GC004138

Gassm€oller, R., Dannberg, J., Bredow, E., Steinberger, B., & Torsvik, T. H. (2016). Major influence of plume-ridge interaction, lithosphere
thickness variations, and global mantle flow on hotspot volcanism—The example of Tristan. Geochemistry, Geophysics, Geosystems, 17,
1454–1479. https://doi.org/10.1002/2015GC006177

Geissler, W. (2014). Electromagnetic, gravimetric and seismic measurements to investigate the Tristan da Cunha hotspot and its role in the
opening of the South Atlantic Ocean (MARKE)—Cruise No. MSM24—December 27, 2012—January 21, 2013—Walvis Bay (Namibia)—
Cape Town (South Africa), 1–56, MARIA S. MERIAN-Berichte, MSM24. ISSN 2195–8483. https://doi.org/10.2312/cr_msm24

Geissler, W. H., Jokat, W., Jegen, M., & Baba, K. (2016). Thickness of the oceanic crust, the lithosphere, and the mantle transition zone in the
vicinity of the Tristan da Cunha hotspot estimated from ocean-bottom and ocean-island seismometer receiver functions. Tectonophy-
sics, 716, 33–51. https://doi.org/10.1016/j.tecto.2016.12.013

Gibson, S., Thompson, R., & Day, J. (2006). Timescales and mechanisms of plume-lithosphere interactions: 40Ar/39Ar geochronology and
geochemistry of alkaline igneous rocks from the Paran�a-Etendeka large igneous province. Earth and Planetary Science Letters, 251(1–2),
1–17. https://doi.org/10.1016/j.epsl.2006.08.004

Godfrey, K. E., Dalton, C. A., & Ritsema, J. (2017). Seafloor age dependence of Rayleigh wave phase velocities in the Indian Ocean. Geochem-
istry, Geophysics, Geosystems, 18, 1926–1942. https://doi.org/10.1002/2017GC006824

Goes, S., Armitage, J., Harmon, N., Smith, H., & Huismans, R. (2012). Low seismic velocities below mid-ocean ridges: Attenuation versus melt
retention. Journal of Geophysical Research, 117, B12403. https://doi.org/10.1029/2012JB009637

Goes, S., Govers, R., & Vacher, P. (2000). Shallow mantle temperatures under Europe from P and S wave tomography. Journal of Geophysical
Research, 105(B5), 11153–11169. https://doi.org/10.1029/1999JB900300

Hammond, W. C., & Humphrey, E. D. (2000a). Upper mantle seismic wave velocity: Effects of realistic partial melt geometries. Journal of
Geophysical Research, 105(B5), 10,975–10,986.

Hammond, W. C., & Humphrey, E. D. (2000b). Upper mantle seismic wave attenuation: Effects of realistic partial melt distribution. Journal of
Geophysical Research, 105(B5), 10,987–10,999.

Harmon, N., Forsyth, D. W., & Weeraratne, D. S. (2009). Thickening of young Pacific lithosphere from high-resolution Rayleigh wave tomog-
raphy: A test of the conductive cooling model. Earth and Planetary Science Letters, 278(1–2), 96–106.

Herzberg, C., Asimow, P., Arndt, N., Niu, Y., Lesher, C., Fitton, J., et al. (2007). Temperatures in ambient mantle and plumes: Constraints from
basalts, picrites, and komatiites. Geochemistry, Geophysics, Geosystems, 8, Q02006. https://doi.org/10.1029/2006GC001390

Herzberg, C., & Asimow, P. D. (2008). Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geo-
chemistry, Geophysics, Geosystems, 9, Q09001. https://doi.org/10.1029/2008GC002057

Humphris, S. E., Thompson, G., Schilling, J.-G., & Kingsley, R. H. (1985). Petrological and geochemical variations along the Mid-Atlantic Ridge
between 46 s and 32 s: Influence of the Tristan da Cunha mantle plume. Geochimica et Cosmochimica Acta, 49(6), 1445–1464.

Jackson, I., & Faul, U. H. (2010). Grainsize-sensitive viscoelastic relaxation in olivine: Towards a robust laboratory-based model for seismo-
logical application. Physics of the Earth and Planetary Interiors, 183(1–2), 151–163.

Jackson, I., Fitz Gerald, J. D., Faul, U. H., & Tan, B. H. (2002). Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. Journal
of Geophysical Research, 107(B12), 2360. https://doi.org/10.1029/2001JB001225

James, E. K., Dalton, C. A., & Gaherty, J. B. (2014). Rayleigh wave phase velocities in the Atlantic upper mantle. Geochemistry, Geophysics,
Geosystems, 15, 4305–4324. https://doi.org/10.1002/2014GC005518

Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., & Ito, E. (2010). Adiabatic temperature profile in the mantle. Physics of the Earth and Plane-
tary Interiors, 183(1–2), 212–218.

Geochemistry, Geophysics, Geosystems 10.1002/2017GC007347

BONADIO ET AL. 1426

https://doi.org/10.1016/j.epsl.2005.04.033
https://doi.org/10.1016/j.epsl.2005.04.033
https://doi.org/10.1016/S0012-821X(02)01048-8
https://doi.org/10.1126/science.1249466
https://doi.org/10.1029/JB086iB04p02825
https://doi.org/10.1038/nature14876
https://doi.org/10.1029/2009GC002391
https://doi.org/10.1029/2012GC004138
https://doi.org/10.1002/2015GC006177
https://doi.org/10.2312/cr_msm24
https://doi.org/10.1016/j.tecto.2016.12.013
https://doi.org/10.1016/j.epsl.2006.08.004
https://doi.org/10.1002/2017GC006824
https://doi.org/10.1029/2012JB009637
https://doi.org/10.1029/1999JB900300
https://doi.org/10.1029/2006GC001390
https://doi.org/10.1029/2008GC002057
https://doi.org/10.1029/2001JB001225
https://doi.org/10.1002/2014GC005518


Katz, R., Spiegelman, M., & Langmuir, C. H. (2003). A new parameterization of hydrous mantle melting. Geochemistry, Geophysics, Geosys-
tems, 4, 1073. https://doi.org/10.1029/2002GC000433

Kennett, B., Engdahl, E., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal Interna-
tional, 122(1), 108–124.

Khan, A., Zunino, A., & Deschamps, F. (2013). Upper mantle compositional variations and discontinuity topography imaged beneath Austra-
lia from Bayesian inversion of surface-wave phase velocities and thermochemical modeling. Journal of Geophysical Research: Oceans,
118, 5285. https://doi.org/10.1002/jgrb50304

Kuskov, O., Kronrod, V., Prokofyev, A., & Pavlenkova, N. (2014). Thermo-chemical structure of the lithospheric mantle underneath the Sibe-
rian craton inferred from long-range seismic profiles. Tectonophysics, 615–616, 154–166.

Laske, G., Markee, A., Orcutt, J. A., Wolfe, C. J., Collins, J. A., Solomon, S. C., et al. (2011). Asymmetric shallow mantle structure beneath the
Hawaiian Swell—Evidence from Rayleigh waves recorded by the PLUME network. Geophysical Journal International, 187, B12403.
https://doi.org/10.1111/j.1365-246X.2011.05238.x

Lebedev, S., Adam, J. M.-C., & Meier, T. (2013). Mapping the Moho with seismic surface waves: A review, resolution analysis, and recom-
mended inversion strategies. Tectonophysics, 609, 377–394.

Lebedev, S., Meier, T., & van der Hilst, R. D. (2006). Asthenospheric flow and origin of volcanism in the Baikal Rift area. Earth and Planetary
Science Letters, 249(3–4), 415–424.

Lebedev, S., & van der Hilst, R. D. (2008). Global upper-mantle tomography with the automated multimode inversion of surface and S-
wave forms. Geophysical Journal International, 173(2), 505–518.

Lindquist, K. G., Engle, K., Stahlke, D., & Price, E. (2004). Global topography and bathymetry grid improves research efforts. Eos, Transactions
American Geophysical Union, 85(19), 186.

Meier, T., Dietrich, K., Stockhert, B., & Harjes, H. (2004). One-dimensional models of shear wave velocity for the eastern Mediterranean
obtained from the inversion of Rayleigh wave phase velocities and tectonic implications. Geophysical Journal International, 156(1), 45–
58. https://doi.org/10.1111/j.1365-246X.2004.02121.x

Morgan, J. P. (1997). The generation of a compositional lithosphere by mid-ocean ridge melting and its effect on the subsequent off-axis
hotspot upwelling and melting. Earth and Planetary Science Letters, 146, 213–232.

Morgan, W. J. (1971). Convection plumes in the lower mantle. Nature, 230(5288), 42–43.
Nishimura, C. E., & Forsyth, D. W. (1989). The anisotropic structure of the upper mantle in the Pacific. Geophysical Journal, 96(2), 203–229.
NOAA, N. G. D. C. (2006). 2-minute Gridded Global Relief Data (ETOPO2) v2. Silver Spring, MD: National Oceanic and Atmospheric Administra-

tion. https://doi.org/10.7289/V5J1012Q
O’Connor, J. M., & Duncan, R. A. (1990). Evolution of the Walvis Ridge-Rio Grande rise hotspot system: Implications for African and South

American Plate motions over plumes. Journal of Geophysical Research, 95(B11), 17475–17502. https://doi.org/10.1029/JB095iB11p17475
O’Connor, J. M., & Jokat, W. (2015). Tracking the Tristan-Gough mantle plume using discrete chains of intraplate volcanic centers buried in

the Walvis Ridge. Geology, 3(8), 715–718. https://doi.org/10.1130/G36767.1
O’Connor, J. M., Jokat, W., Le Roex, A., Class, C., Wijbrans, J., Keszling, S., et al. (2012). Hotspot trails in the South Atlantic controlled by

plume and plate tectonic processes. Nature Geoscience, 5(10), 735–738.
Pawlak, A., Eaton, D. W., Darbyshire, F., Lebedev, S., & Bastow, I. D. (2012). Crustal anisotropy beneath Hudson Bay from ambient noise tomogra-

phy: Evidence for post-orogenic lower-crustal flow? Journal of Geophysical Research, 117, B08301. https://doi.org/10.1029/2011JB009066
Polat, G., Lebedev, S., Readman, P. W., O’Reilly, B. M., & Hauser, F. (2012). Anisotropic Rayleigh-wave tomography of Ireland’s crust: Implica-

tions for crustal accretion and evolution within the Caledonian Orogen. Geophysical Research Letters, 39, L04302. https://doi.org/
10.1029/2012GL051014

Putirka, K. (2008). Excess temperatures at ocean islands: Implications for mantle layering and convection. Geology, 36(4), 283–286. https://
doi.org/10.1130/G24615A.1

Putirka, K. D. (2005). Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenoc-
rysts: Evidence for thermally driven mantle plumes. Geochemistry, Geophysics, Geosystems, 6, Q05L08. https://doi.org/10.1029/
2005GC000915

Putirka, K. D., Perfit, M., Ryerson, F. J., & Jackson, M. J. (2007). Ambient and excess mantle temperatures, olivine thermometry, and active vs.
passive upwelling. Chemical Geology, 241(3–4), 177–206.

Ravenna, M., & Lebedev, S. (2018). Bayesian inversion of surface-wave data for radial and azimuthal shear-wave anisotropy, with applica-
tions to central Mongolia and west-central Italy. Geophysical Journal International, 213(1), 278–300. https://doi.org/10.1093/gji/ggx497

Rawlinson, N., Arroucau, P., Musgrave, R., Cayley, R., Young, M., & Salmon, M. (2014). Complex continental growth along the proto-Pacific
margin of East Gondwana. Geology, 42(9), 783–786. https://doi.org/10.1130/G35766.1

Rohde, J., Hoernle, K., Hauff, F., Werner, R., O’connor, J., Class, C., et al. (2013). 70 Ma chemical zonation of the Tristan-Gough hotspot track.
Geology, 41(3), 335–338. https://doi.org/10.1130/G33790.1

Rohde, J. K., van den Bogaard, P., Hoernle, K., Hauff, F., & Werner, R. (2013). Evidence for an age progression along the Tristan-Gough volca-
nic track from new 40Ar/39Ar ages on phenocryst phases. Tectonophysics, 604, 60–71. https://doi.org/10.1016/j.tecto.2012.08.026

Roux, E., Moorkamp, M., Jones, A., Bischoff, M., Endrun, B., Lebedev, S., et al. (2011). Joint inversion of long-period magnetotelluric data and
surface-wave dispersion curves for anisotropic structure: Application to data from Central Germany. Geophysical Research Letters, 38,
L05304. https://doi.org/10.1029/2010GL046358

Ryberg, T., Geissler, W., Jokat, W., & Pandey, S. (2017). Uppermost mantle and crustal structure at Tristan da Cunha derived from ambient
seismic noise. Earth and Planetary Science Letters, 471, 117–124.

Schaeffer, A. J., & Lebedev, S. (2013). Global shear speed structure of the upper mantle and transition zone. Geophysical Journal Interna-
tional, 194(1), 417–449.

Schaeffer, A. J., & Lebedev, S. (2015). Global heterogeneity of the lithosphere and underlying mantle: A seismological appraisal based on
multimode surface-wave dispersion analysis, shear-velocity tomography, and tectonic regionalization (Invited Review). In Khan, A. &
Deschamps, F. (Eds.), The Earth’s heterogeneous mantle, Springer Geophysics (pp. 3–46). Berlin, Germany: Springer. https://doi.org/10.
1007/978-3-319-15627-9

Schl€omer, A., Geissler, W. H., Jokat, W., & Jegen, M. (2017). Hunting for the Tristan mantle plume—An upper mantle tomography around
the volcanic island of Tristan da Cunha. Earth and Planetary Science Letters, 462, 122–131.

Sens-Sch€onfelder, C. (2008). Synchronizing seismic networks with ambient noise. Geophysical Journal International, 174(3), 966–970.
Soomro, R., Weidle, C., Cristiano, L., Lebedev, S., & Meier, T. (2016). Phase velocities of Rayleigh and Love waves in central and northern

Europe from automated, broadband, inter-station measurements. Geophysical Journal International, 204(1), 517–534. https://doi.org/10.
1093/gji/ggv462

Geochemistry, Geophysics, Geosystems 10.1002/2017GC007347

BONADIO ET AL. 1427

https://doi.org/10.1029/2002GC000433
https://doi.org/10.1002/jgrb50304
https://doi.org/10.1111/j.1365-246X.2011.05238.x
https://doi.org/10.1111/j.1365-246X.2004.02121.x
https://doi.org/10.7289/V5J1012Q
https://doi.org/10.1029/JB095iB11p17475
https://doi.org/10.1130/G36767.1
https://doi.org/10.1029/2011JB009066
https://doi.org/10.1130/G24615A.1
https://doi.org/10.1130/G24615A.1
https://doi.org/10.1029/2005GC000915
https://doi.org/10.1029/2005GC000915
https://doi.org/10.1093/gji/ggx497
https://doi.org/10.1130/G35766.1
https://doi.org/10.1130/G33790.1
https://doi.org/10.1016/j.tecto.2012.08.026
https://doi.org/10.1029/2010GL046358
https://doi.org/10.1007/978-3-319-15627-9
https://doi.org/10.1007/978-3-319-15627-9
https://doi.org/10.1093/gji/ggv462
https://doi.org/10.1093/gji/ggv462


Takei, Y. (2017). Effects of partial melting on seismic velocity and attenuation: A new insight from experiments. Annual Review of Earth and
Planetary Sciences, 45(1), 447–470. https://doi.org/10.1146/annurev-earth-063016-015820

Taposeea, C. A., Armitage, J. J., & Collier, J. S. (2016). Asthenosphere and lithosphere structure controls on early onset oceanic crust produc-
tion in the southern South Atlantic. Tectonophysics, 716, 4–20. https://doi.org/10.1016/j.tecto.2016.06.026

van Wijk, J., van Hunen, J., & Goes, S. (2008). Small-scale convection during continental rifting: Evidence from the Rio Grande rift. Geology,
36(7), 575–578. https://doi.org/10.1130/G24691A.1

Weit, A., Trumbull, R., Keiding, J., Geissler, W., Gibson, S., & Veksler, I. (2016). The magmatic system beneath the Tristan da Cunha hotspot:
Insights from thermobarometry, melting models and geophysics. Tectonophysics, 716, 64–76. https://doi.org/10.1016/j.tecto.2016.08.
010

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic mapping tools: Improved version released. Eos, Transactions
American Geophysical Union, 94(45), 409–420.

Yamauchi, H., & Takei, Y. (2016). Polycrystal anelasticity at near-solidus temperatures. Journal of Geophysical Research: Solid Earth, 121,
7790–7820. https://doi.org/10.1002/2016JB013316

Yang, Y., Forsyth, D. W., & Weeraratne, D. S. (2007). Seismic attenuation near the East Pacific Rise and the origin of the low-velocity zone.
Earth and Planetary Science Letters, 258(1–2), 260–268.

Zhang, Y.-S., & Tanimoto, T. (1993). High-resolution global upper mantle structure and plate tectonics. Journal of Geophysical Research,
98(B6), 9793–9823. https://doi.org/10.1029/93JB00148

Geochemistry, Geophysics, Geosystems 10.1002/2017GC007347

BONADIO ET AL. 1428

https://doi.org/10.1146/annurev-earth-063016-015820
https://doi.org/10.1016/j.tecto.2016.06.026
https://doi.org/10.1130/G24691A.1
https://doi.org/10.1016/j.tecto.2016.08.010
https://doi.org/10.1016/j.tecto.2016.08.010
https://doi.org/10.1002/2016JB013316
https://doi.org/10.1029/93JB00148

