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Abstract 21 

Extremely high temperatures represent one of the most severe abiotic stresses limiting 22 

crop productivity. However, understanding crop responses to heat stress is still limited 23 

considering the increases in both the frequency and severity of heat wave events under 24 

climate change. This limited understanding is partly due to the lack of studies or tools 25 

for the timely and accurate monitoring of crop responses to extreme heat over broad 26 

spatial scales. In this work, we use novel space-borne data of sun-induced chlorophyll 27 

fluorescence (SIF), which is a new proxy for photosynthetic activity, along with 28 

traditional vegetation indices (Normalized Difference Vegetation Index NDVI & 29 

Enhanced Vegetation Index EVI) to investigate the impacts of heat stress on winter 30 

wheat in northwestern India, one of the world’s major wheat production areas. In 2010, 31 

an abrupt rise in temperature that began in March adversely affected the productivity 32 

of wheat and caused yield losses of 6% compared to previous year. The yield predicted 33 

by satellite observations of SIF decreased by approximately 13.9%, compared to the 34 

1.2% and 0.4% changes in NDVI and EVI respectively. During early stage of this heat 35 

wave event in early March 2010, the SIF observations showed a significant reduction 36 

and earlier response, while NDVI and EVI showed no changes and could not capture 37 

the heat stress until late March. The spatial patterns of SIF anomalies closely tracked 38 

the temporal evolution of the heat stress over the study area. Furthermore, our results 39 

show that SIF can provide large-scale physiology-related wheat stress response as 40 

indicated by the larger reduction in fluorescence yield (SIFyield) than fraction of 41 



Photosynthetically Active Radiation during the grain-filling phase, which may have 42 

eventually led to the reduction in wheat yield in 2010. This study implies that satellite 43 

observations of SIF have great potential to detect heat stress conditions in wheat in a 44 

timely manner and assess their impacts on wheat yields at large scales. 45 

Keywords: Heat stress, Crop yield, Sun-induced chlorophyll fluorescence, Extreme 46 

climatic events, Winter wheat  47 



1. Introduction 48 

Wheat is the third largest crop in the world with production at 735 million metric 49 

tons (MMT) in 2017-18 and plays an essential role in global food security (Bryant-50 

Erdmann 2017). There is extensive evidence that both the mean and variability of 51 

temperature have increased globally over the past several decades, including the major 52 

wheat producing regions (Hennessy et al. 2008); this trend will continue and may be 53 

reinforced (Field 2012). Especially in India, the temperatures are predicted to increase 54 

by 2 to 4 ℃ by 2050 (IPCC 2014; Rohini et al. 2016). When wheat experiences 55 

extremely high temperatures, in particular during the key growing stages such as grain-56 

filling, severe cellular injury and cell death will occur within minutes, which will result 57 

in a decline in the yield (Schöffl et al. 1999). 58 

It is essential to understand the mechanisms of high-temperature impacts on 59 

wheat yields and monitor its influence across space and time. Crop simulation models 60 

are generally used to investigate such influences, because they can simulate several 61 

important crop physiological processes under various climatic variations (Challinor et 62 

al. 2005; Asseng et al. 2013; Koehler et al. 2013). Many models have considered the 63 

effects of temperature on crop development and grain-filling rates. However, these 64 

models may not accurately account for extreme temperatures well (White 2003). For 65 

example, the Agricultural Production Systems Simulator (APSIM) model considers the 66 

impacts of high temperatures greater than 34 ℃ on the acceleration of crop senescence 67 

(Asseng et al. 2011). However, the APSIM model still overestimated length of the 68 



wheat growing season in warming temperatures and resulted in the underestimation of 69 

wheat yield losses due to the 2010 heat stress in the Indo-Gangetic Plains (IGP) of India 70 

(Lobell et al. 2012).  71 

Satellite observations of vegetation status provide a unique opportunity to 72 

quantify the impacts of high temperatures on crops. Traditional vegetation indices 73 

such as the Normalized Difference Vegetation Index (NDVI) and Enhanced 74 

Vegetation Index (EVI) are generally used to evaluate crop conditions (Verhulst et al. 75 

2011), and predict crops yield (Labus et al. 2002; Quarmby et al. 1993). Some 76 

vegetation indices (VIs) such as the photochemical reflectance index (PRI) that 77 

captures the xanthophyll cycle link the status of the epoxidation of xanthophyll 78 

pigments and monitor the changes in plant pigments due to changes in photosynthetic 79 

light use efficiency (Gamon et al. 1990; Gamon et al. 1992; Gamon et al. 80 

1997; Barton et al. 2001; Magney et al. 2016). However, VIs may not be able to detect 81 

the rapid changes in the photosynthetic functioning of vegetation induced by climate 82 

stress such as heat stress. (Dobrowski et al. 2005).  83 

Recent satellite observations of sun-induced chlorophyll fluorescence (SIF) 84 

provide novel measurements to monitor crop growth conditions and stress responses, 85 

which may complement existing VIs. When photosynthetically active radiation (PAR) 86 

is absorbed by a leaf, it can undergo one of three pathways: drive photochemical 87 

reactions, lost through regulated non-photochemical quenching (NPQ) or remitted at 88 

longer wavelengths as fluorescence (Baker 2008). SIF contains information about the 89 



biochemical, physiological and metabolic functions of a plant and the amount of 90 

absorbed PAR (APAR) (Porcar-Castell et al. 2014). Many leaf-level studies have 91 

demonstrated that chlorophyll fluorescence has a direct relationship with the actual 92 

photosynthesis in plants and can respond rapidly when plants are under environmental 93 

stress (Chappelle et al. 1984; Chappelle et al. 1985; Moya et al. 2004). Global SIF 94 

products have been recently retrieved from several space-borne instruments such as 95 

SCIAMACHY (Joiner et al. 2012), GOME-2 (Köhler et al. 2015; Joiner et al. 2013), 96 

GOSAT (Köhler et al. 2015; Guanter et al. 2012; Frankenberg et al. 2011) and OCO-2 97 

(Frankenberg et al. 2014). These satellite SIF products make it possible to study 98 

vegetation photosynthetic activities at large scales. Many studies have demonstrated 99 

that satellite SIF is more sensitive to the photosynthetic rates of plants than other 100 

remotely sensed vegetation parameters (Zhang et al. 2014; Guanter et al. 2014) and it 101 

is highly correlated with the gross primary production (GPP) of crops (Wagle et al. 102 

2015; Verma et al. 2017; Sun et al. 2017). In terms of plant stress responses, space-103 

borne SIF has also been proved to have high sensitivity to water stress, heat stress and 104 

drought monitoring (Lee et al. 2013; Sun et al. 2015; Guan et al. 2016; Yoshida et al. 105 

2015).  106 

We hypothesize that SIF is more sensitive to heat stress events for crops than 107 

traditional VIs because it has a physiological link to photosynthesis. To test this 108 

hypothesis we conduct a study in the wheat growing region in the IGP of India. Our 109 

study area includes the wheat growing regions in Punjab, Haryana and Uttar Pradesh 110 



in the IGP of India. In India, wheat is grown over an area of approximately 30 million 111 

ha, which is primarily concentrated in the Punjab-Haryana belt, thus IGP has been 112 

regarded as the bread basket of India (Swaminathan et al. 2013). In 2010, during the 113 

wheat grain filling and harvesting stages (March and April), an abrupt rise in 114 

temperature in this region caused a significant decline in the wheat yield (Gupta et al. 115 

2010). Thanks to the development of irrigation infrastructure, more than 90% of 116 

wheat was irrigated and received normal precipitation (Duncan et al. 2015). Hence, 117 

water conditions are not the limiting factors for wheat yield (Gupta et al. 118 

2007; Erenstein 2009). The previously described situations make the 2010 heat stress 119 

in the IGP wheat belt as an ideal case to use satellite SIF to study the influence of heat 120 

stress on winter wheat. 121 

In this work, we will explore the potential of utilizing satellite observations of 122 

SIF to assess the impacts of heat stress on winter wheat in the IGP of India, with a 123 

special focus on the 2010 heat wave event. Specifically we aim to address the 124 

following questions: 1) To what extent can SIF capture the heat stress in winter 125 

wheat? 2) Compared with traditional VIs, does SIF show an advantage for heat stress 126 

detection (e.g. earlier detection, or better capture of yield losses) in wheat? 3) Can SIF 127 

serve as an effective indicator to predict winter wheat yields? 128 

2. MATERIALS AND METHODS 129 

2.1 Study area 130 

The study area is located in north-west India in the IGP (Figure 1). The soils of 131 



the study area generally have moderate water-holding capacities, are highly fertile and 132 

are underlain by extensive aquifers that profit from an extensive groundwater network 133 

for irrigation (Chauhan et al. 2012). The rice-wheat (RW) cropping system has 134 

dominated the study area since the Green Revolution. In the IGP, wheat is usually 135 

grown in the dry winter season (November-December to March-April) and rice is 136 

grown in the wet summer season (May-June to October-November) (Pathak et al. 2003). 137 

The entire study region includes three states: Punjab, Haryana and Uttar Pradesh. The 138 

three states together supply approximately 65% of the wheat output of India (TYAGI 139 

et al. 2013).  140 

 141 

Figure 1. The study area of the Indo-Gangetic Plains in north-west India. (a) The three selected 142 

states include Punjab, Haryana and Uttar Pradesh in the study area. (b) The ESA Climate Change 143 

Initiative (CCI) land cover map of the study region in 2010 at 300 m spatial resolution. 144 

2.2 Satellite SIF and vegetation indices 145 

We used satellite retrievals of SIF from the GOME-2 instrument onboard 146 



EUMETSAT’s MetOp-A platform and the Fourier Transform Spectrometer (FTS) 147 

onboard the GOSAT platform. The spectral range of GOME-2 is covered by four 148 

detector channels between 240 and 790 nm, and the fourth channel ranges from 590 to 149 

790 nm with a spectral resolution of 0.5 nm and a signal-to-noise (SNR) of up to 2000. 150 

Based on the previous SIF retrieval algorithms by Guanter et al. (2013) and Joiner et al. 151 

(2013), Köhler et al. (2015) used an improved algorithm to retrieve the SIF at 740 nm 152 

from a spectral range between 720 and 758 nm, which reduced the retrieval noise and 153 

sensitivity of the SIF retrieval to cloud contamination. Specifically, the retrieval method 154 

disentangles the contributions of atmospheric absorption and scattering, surface 155 

reflectance, and fluorescence to the measured top-of-atmosphere radiance spectra; and 156 

more details can be found in (Köhler et al. 2015). The SIF data are quality filtered by 157 

removing pixels with solar zenith angles greater than 70° and cloud fractions up to 30%, 158 

and then the quality controlled SIF data have been gridded to 0.5° spatial resolution and 159 

16-day and monthly temporal resolutions. We also used the SIF data at 770nm from the 160 

Thermal And Near-infrared Sensor for carbon Observation- Fourier Transform 161 

Spectrometer (TANSO-FTS) onboard GOSAT which is retrieved from band 1 that 162 

extends from approximately 758 to 775nm (Guanter et al. 2012). However, due to the 163 

sparse sampling of the GOSAT SIF retrievals, the GOSAT SIF are used as only 164 

complements for the GOME-2 SIF data in this study.  165 

The VIs used in this work include the NDVI from the Advanced Very High 166 

Resolution Radiometer (AVHRR) instruments and the EVI from the Moderate 167 



Resolution Imaging Spectroradiometer (MODIS). We used the Global Inventory 168 

Modelling and Mapping Studies (GIMMS) AVHRR NDVI data (GIMMS 3g v1) with 169 

a 1/12° spatial resolution and biweekly temporal resolution from 2007 to 2014. The 170 

NDVI data included overall preprocessing steps such as channel calibration, reduction 171 

of the effects of the varying solar zenith angle and calibration of the probability 172 

density functions (Pinzon et al. 2014). To reduce the effects of cloud cover and 173 

aerosol contamination, the AVHRR NDVI data were composited using the highest 174 

NDVI value over a two-week composite period. The 16-day MODIS EVI product at 175 

0.05° spatial resolution (MOD13C1 collection 6) was acquired from NASA 176 

(http://reverb.echo.nasa.gov/reverb/). The MOD13C1 is the Terra MODIS level 3 177 

vegetation index product, and contains reliability and QA layers. The MODIS EVI 178 

data were quality filtered by excluding pixels contaminated by clouds or aerosols 179 

using quality flags (Solano et al. 2010). 180 

The fraction of PAR absorbed by vegetation canopies that is derived from the 181 

MODIS product (MOD15A2 fPAR collection 6) was used in this work to reveal the SIF 182 

dynamics. The MOD15A2 fPAR is a standard 1 km spatial resolution product for EOS-183 

MODIS with an 8-day temporal resolution (Myneni et al. 2002). 184 

2.3 Meteorological data 185 

The air temperature (2 m above the land surface) was obtained from the 186 

Climatic Research Unit (CRU) NCEP reanalysis datasets at a daily scale and a 0.5° 187 

spatial resolution from 2007 to 2014 (Version 188 

http://reverb.echo.nasa.gov/reverb/


6; http://dods.extra.cea.fr/data/p529viov/cruncep/readme.htm). The CRU-NCEP 189 

climate data are a combination of two data sets: the ground observation-based CRU 190 

TS 3.2 data and the model-based NCEP-NCAR data at a 6-h temporal resolution. We 191 

rescaled the 6 h data to 16-day and monthly temporal scales corresponding to the SIF 192 

data. 193 

2.4 Wheat area and yield 194 

The annual county-scale wheat yields of the study region were taken from Indiastat 195 

(http://www.indiastat.com/default.aspx). We downloaded both district-level and 196 

province-level data and further cleaned and validated the data to make them consistent 197 

with each other. To identify wheat pixels in the study area, we used the irrigated wheat 198 

maps from the Spatial Production Allocation Model (SPAM, http://mapspam.info) and 199 

the Land Cover Type Climate Modeling Grid (CMG) product (MCD12C1 version 051) 200 

in the International Geosphere-Biosphere Programme (IGBP) land cover type. The 201 

SPAM includes the harvest area, production and yield products for 40 crops and three 202 

management systems: irrigated, high-input rainfed and low-input rainfed. A variety of 203 

inputs and a cross-entropy approach were employed to estimate the crop distribution 204 

with a 5-arc-minute spatial resolution (You et al. 2006; You et al. 2014). The MODIS 205 

land cover data in the IGBP type identifies 17 land cover classes, which include 11 206 

natural vegetation classes, 3 developed and mosaicked land types and 3 non-vegetated 207 

land classes (Friedl et al. 2010). The croplands type was used here to further identify 208 

wheat-only pixels. 209 

http://dods.extra.cea.fr/data/p529viov/cruncep/readme.htm
http://www.indiastat.com/default.aspx


2.5 Analysis 210 

The spatial means of all aforementioned variables were calculated at three 211 

spatial scales: the entire study area, the state level and the county level. At the county 212 

scale, the spatial mean value was calculated by using the India county boundary to 213 

obtain the extents of the counties in the study area. The anomalies were computed as 214 

departures from the multiyear means from 2007 to 2014 for all datasets except GOSAT 215 

SIF. The GOSAT SIF data are available since 2009, so the anomaly was calculated as 216 

the departure from the multiyear mean from 2009 to 2014. The relative changes of all 217 

variables were calculated as the anomalies divided by their multiyear mean value. To 218 

better compare the spatial dynamics of SIF and NDVI, we calculated their normalized 219 

anomalies as follows: 220 

Y(i, j, t)′ =
(𝑌𝑌(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) − 𝑌𝑌(𝑖𝑖, 𝑗𝑗))

𝑠𝑠𝑡𝑡𝑠𝑠(𝑌𝑌(𝑖𝑖, 𝑗𝑗, 𝑡𝑡))
 (1) 

where Y(i, j, t)′ denotes the normalized SIF/NDVI anomalies of pixel (i,j) at 221 

time t; 𝑌𝑌(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) is the original SIF/NDVI/EVI anomaly value of pixel (i,j) at time t; 222 

𝑌𝑌�(𝑖𝑖, 𝑗𝑗) is the mean anomaly value at (i,j) during 2007-2014, and 𝑠𝑠𝑡𝑡𝑠𝑠(𝑌𝑌(𝑖𝑖, 𝑗𝑗, 𝑡𝑡)) is the 223 

standard deviation of the anomalies at (i,j) during 2007-2014.  224 

The inventory-based wheat yield of each county in the study area from 2008 to 225 

2013 was used here as further validation for the SIF, NDVI and EVI. We summed the 226 

county-level yield to obtain the yield of the entire study region. To match the spatial 227 

and temporal resolution of the aforementioned datasets, we resampled all other 228 

variables based on the GOME-2 SIF and then aggregated the SIF and CRUNCEP data 229 



into 16-day means, which are consistent with the AVHRR NDVI and MODIS EVI 230 

products. 231 

To further explore the difference between SIF and VIs, we interpreted SIF with 232 

fPAR and SIFyield. The actual amount of SIF at the top of the canopy can be expressed 233 

as: 234 

SIF = fPAR × PAR × ɛ𝑓𝑓 × Ω𝑐𝑐 (2) 

SIF = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (3) 

where fPAR is the fraction of absorbed PAR, 𝜀𝜀𝑓𝑓 is the actual fluorescence yield 235 

(defined as the intrinsic light-use efficiency for SIF), and 𝛺𝛺𝑐𝑐 is a term accounting for 236 

the fraction of leaf-level SIF photons escaping the canopy. Here, we define 𝑆𝑆𝑆𝑆𝑆𝑆𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 =237 

𝜀𝜀𝑓𝑓 × 𝛺𝛺𝑐𝑐 which is the product of the actual fluorescence yield of the canopy and the 238 

fractional amount of fluorescence that escapes from the top of canopy. Thus, SIFyield is 239 

determined by leaf biochemistry and partly by canopy structure. 𝛺𝛺𝑐𝑐 is usually assumed 240 

to be fairly constant for crops with relatively simple canopy structure and high leaf area 241 

index, especially when canopy structure is not changing (Guanter et al. 2014; Yoshida 242 

et al. 2015). The SIFyield eliminates the effects of APAR on SIF and can be used to 243 

indicate photosynthetic efficiency of plants. Under clear-sky conditions of satellite 244 

overpass, we can simply attribute the variations in 𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 as the spatial and 245 

temporal dynamics of the SIFyield as follows (Sun et al. 2015; Yoshida et al. 2015).  246 

        𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑆𝑆𝑆𝑆𝑆𝑆

cos (𝑆𝑆𝑆𝑆𝐴𝐴) × 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴
 (4) 

where SZA is the solar zenith angle at the satellite overpass time. 𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 can 247 



be considered as apparent fluorescence yield which can also be used to account for the 248 

changes of plant physiological status.  249 

3. Results 250 

3.1 Interannual variations in wheat yield and SIF/NDVI/EVI 251 

We first compare the interannual variations of the wheat yield and the satellite 252 

observations of SIF, NDVI and EVI of the entire region during 2008-2013. We find that 253 

SIF captures the interannual variations of wheat yield better than NDVI and EVI 254 

(Figure 2-a). During 2010, heat stress causes yield losses of approximately 6% 255 

compared to yield in the previous year. The SIF- wheat yield regression models indicate 256 

that SIF can capture the 2010 yield losses with approximately 13.9% decline compared 257 

to that in the year of 2009. However, with nearly 0% changes in the EVI and unexpected 258 

an 1.2% increase in the NDVI compared with that in the previous year, VIs show little 259 

signal of this yield loss. The phenology results calculated by SIF suggest that this heat 260 

stress has significantly shortened the wheat growing season length by approximately 11 261 

days. In contrast, the NDVI data indicate that these results are approximately 2 days 262 

(Figure S1). 263 

The relationship between spaceborne SIF and yield is significant and high (R2=0.8, 264 

P<0.05) at the regional scale (Figure 2-a). This result indicates that satellite 265 

observations of SIF can explain approximately 80% of the interannual and spatial 266 

variations in wheat grain yields. The R2 between NDVI, EVI and yield are 0.78 and 267 

0.72 respectively, which are slightly lower than that between SIF and yield. The 268 



difference between SIF and NDVI/EVI as a proxy for crop yield becomes evident at 269 

the county scale (Figure 2-b, c & d). SIF can explain approximately 65% of the 270 

interannual and spatial variations in wheat yields, whereas this value is 42% for NDVI 271 

and 47% for EVI. NDVI/EVI contain more errors in approximating yield when yield is 272 

greater than 4000 Kg/Hectare or less than 2000 Kg/Hectare, as NDVI/EVI tends to 273 

underestimate (overestimate) the yield for high (low) yield ranges. 274 

 275 

Figure 2. The relationship between yield and the mean SIF, NDVI and EVI during the wheat-276 

growing season. (a) Interannual variations of yield, SIF, NDVI and EVI from 2008 to 2013 in the 277 



IGP area, the values of R2 and P indicate the linear fit between SIF/NDVI/EVI and yield. (b, c & 278 

d) Scatter plots of NPP against the mean SIF, NDVI and EVI during wheat growing season at the 279 

county scale, each dot represents the mean SIF/NDVI/EVI/Yield value during wheat growing 280 

season of one county and one year during 2008-2013. 281 

3.2 Spatiotemporal dynamics of the 2010 heat stress effects 282 

Heat stress is known to have a large impact on wheat growth and the final yield of 283 

the study region. The temperature on day of year (DOY) 65 of 2010 (which corresponds 284 

with the second half of February) shows a large increase (2.1±1.4℃ higher than the 285 

multiyear mean, Figure 3-a & b). The satellite observations of SIF show a quick 286 

response to this temperature increase with a reduction of approximately 4.5% (Figure 287 

3-c & d). However, NDVI and EVI are not able to capture the heat stress effects until 288 

DOY 81, which is half a month later than the SIF response (Figure 3-e & f). Then, on 289 

DOY 97 (which corresponds with the first half of April), the temperature deviations 290 

from climatology are highest, resulting in an increase of 3.1±2.0℃ with respect to the 291 

multiyear mean. During this period, SIF declines approximately 37.9%, which is a 292 

much larger decrease than NDVI (-7.8%) and EVI (-11.9%). The results from the 293 

monthly variations of GOSAT SIF also demonstrate the similar pattern as GOME-2 SIF, 294 

confirming that the satellite observations of SIF are more sensitive to heat stress than 295 

VIs (Figure S2). Therefore, our results indicate that satellite SIF can capture the 296 

temporal dynamics of heat stress on winter wheat and show higher sensitivity in terms 297 

of temporal scale and the magnitude of the response than VIs. 298 



 299 
Figure 3. Seasonal variations from December 2009 to May 2010 of the 16-day mean and multiyear 300 
mean (a) air temperature (Tair) and (b) its anomaly, (c) GOME-2 SIF and (d) SIF change percent, (e) 301 
AVHRR NDVI and (f) NDVI change percent, (g) MODIS EVI and (h) EVI change percent over the 302 



entire study area. The figures in the top-left corner of Figure a, c, e & g show the seasonal cycles of 303 
temperature, SIF and NDVI from 2009 to 2010. 304 

The spatial and temporal distributions of temperature, SIF, NDVI and EVI 305 

provide additional insights into the dynamics of the wheat responses during the 2010 306 

heat stress in the study area. The 2010 heat stress gradually evolves over space and 307 

expands from the northwest to the southeast. From February to April, the extreme 308 

warming moves from Punjab in the northwest to Haryana and Uttar Pradesh in the 309 

southeast, where there is widespread moderate heat stress (Figure 4 and 5). The 310 

positive temperature anomalies are the largest in April, especially in Punjab where the 311 

heat stress is extreme (3.5℃ higher than multiyear-mean value) (Figure 4-a and S3). 312 

As the temperatures increase, the soil moisture (SM) shows a slight decrease (Figure 313 

4-c) with the largest reduction of only approximately -0.05 m3/m3 but with an 314 

uncertainty ~0.1 m3/m3 (Figure S4). This result confirms that water stress is not a 315 

limiting factor for wheat as the IGP is a well-irrigated area. On the other hand, the 316 

vapor pressure deficit (VPD) increases significantly, which is mostly driven by the 317 

higher temperatures and reduced relative humidity over the region (Figure 4-d). 318 

With the development of the heat stress over the region, distinct responses to heat 319 

stress are found between SIF and NDVI/EVI over space and time. In March of 2010, 320 

approximately 88% of the region suffers from moderate stress (air temperature 321 

anomalies>1℃), and approximately 49% of the region area is affected by severe stress 322 

(>2℃) (Figure 4-a & b). Thus, 65% of the wheat in the study area is affected by 323 

moderate (<-0.5σ) losses as indicated by SIF, and 24% for severe losses (<-1σ). The 324 



moderate and severe loss percentages indicated by NDVI are approximately 37% and 325 

14%, and the values for EVI are 12% and 7%, both of which underestimate the losses 326 

by nearly 50% compared to SIF (Figure 5-a & b). As the area influenced by heat stress 327 

expands, approximately 100% of the area suffers from moderate or severe heat stress, 328 

and 42% of the area suffers from extreme heat stress (>3℃) in April. As expected, SIF 329 

shows a much larger area with declines and more consistent declines with heat stress 330 

than NDVI and EVI. Approximately 76% and 36% of the area suffers from moderate 331 

and severe losses indicated by SIF, compared to the 43% and 11% indicated by NDVI. 332 

For extreme losses (<-1.5σ), the area percent revealed by SIF is 10%, while NDVI or 333 

EVI can not capture the losses at this heat stress level. MODIS EVI indicates the areas 334 

that suffer from moderate and severe losses are 56% and 17%, although these 335 

estimations are larger than those from NDVI, they are still much smaller than those 336 

estimated by SIF (Figure 5-b). The spatial distribution results of 2010 yield anomalies 337 

indicate that almost 100% area (except four counties) suffers the yield loss compared 338 

with the multiyear mean yield value during 2008-2013 (Figure 6), which is more 339 

consistent with the spatial distribution results of SIF. Overall, satellite observations of 340 

SIF capture the dynamics process of heat stress development in a timely manner, 341 

especially during March and April of 2010 (Figure 4 and 5). 342 



 343 
Figure 4. Spatial distribution of (a) temperature anomalies, (c) soil moisture anomalies and (d) vapor 344 
pressure deficit (VPD) anomalies from February to May of 2010 in the study area. (b) Monthly time 345 
series of the percentage of the area moderately (>1℃), severely (>2℃) and extremely (>3℃) 346 
influenced by heat stress. 347 



 348 
Figure 5. (a) Spatial distributions of normalized SIF, NDVI and EVI anomalies compared to the multiyear 349 
mean value during 2007-2014. (b) Monthly time series of the percentage of the wheat loss that was 350 
induced by heat stress, as indicated by SIF, NDVI and EVI under moderate (<-0.5σ), severe (<-1σ) and 351 
extreme (<-1.5σ) heat stress, σ indicates the standard deviation of the monthly SIF/NDVI/EVI during 352 
2007-2014.  353 

 354 
Figure 6. Spatial distributions of 2010 yield anomalies compared with the multiyear 355 
mean yield value from 2008-2013 at the county scale. 356 



3.3 Physiological response of wheat to the 2010 heat stress 357 

Since SIF is related to both APAR and fluorescence yield (as a physiological status), 358 

spaceborne retrievals of SIF may provide additional information on the response of 359 

wheat to heat stress. As shown in Figure 7, when the effects of seasonal variations in 360 

APAR are removed from the SIF (as indicated by SIFyield) (equation (4)), the impacts 361 

of the 2010 heat stress on wheat become more distinct. In March, the fPAR shows a 362 

slight decrease, of approximately 2% from its multiyear mean value. At the same time, 363 

NDVI and EVI, which are mainly sensitive to fPAR, also show a slight negative change 364 

percent (-1.6% and -6% separately). The SIFyield, which is sensitive to the fluorescence 365 

yield at the membrane scale and light use efficiency (LUE), shows negative anomalies 366 

(about -6% from its multiyear mean, Figure 7-b & c). The decline of the SIFyield along 367 

with the fPAR ultimately lead to the large and earlier decreases in March 368 

(approximately -11.2%). The spatial distributions also show that the SIFyield has a large 369 

reduction in March across the entire region (Figure 7-d). As indicated by the spatial 370 

distributions of NDVI and EVI in March of 2010, there are smaller changes compared 371 

with their own multiyear-mean results across the entire region (Figure 5-c). 372 

In April, when the heat stress peaks, there is a decrease of only 4% in fPAR, the 373 

reductions of NDVI and EVI is approximately 8% and 7.8% separately, and SIFyield by 374 

13%. The decreases in fPAR and SIFyield together lead to a significant decrease in SIF 375 

of 35%. The slower and smaller magnitude of the reductions in NDVI and fPAR suggest 376 

a slower effect of chlorophyll content and canopy structure in response to heat stress. 377 



In contrast, the large and significantly negative anomalies in SIF along with SIFyield 378 

indicate that the anomalies of SIF are jointly driven by fPAR and LUE reductions. Our 379 

results thus suggest that both fPAR and fluorescence yield are influenced by heat stress, 380 

but with a larger contribution from physiological aspects (SIFyield). 381 

 382 
Figure 7. Temporal variations of (a) the fraction of absorbed photosynthetically active radiation (fPAR), 383 
(b) GOME-2 SIF normalized by absorbed photosynthetically active radiation (SIFyield), (c) the SIFyield 384 
change percent, and (d) the spatial variations of the SIFyield anomalies from December 2009 to May 385 
2010. 386 

4. Discussion 387 

With increasing global mean temperatures, crops are at risk of being exposed to 388 



heat stress that negatively affects crop yield (Lobell et al. 2012; Zhao et al. 389 

2017; Asseng et al. 2011). It is therefore important to improve the monitoring and 390 

assessment of heat stress impacts on crop yields. In this study, we use the newly 391 

available spaceborne SIF measurements to monitor the heat stress on winter wheat in 392 

north-west India, which provides a new approach to understand the impacts of climate 393 

change on crop yields.  394 

4.1 Potential of SIF for heat stress monitoring in wheat 395 

Spaceborne SIF observations capture the interannual variations of wheat yield 396 

better than NDVI and EVI at both the regional and county scales in the IGP (Figure 1). 397 

The advantage is especially more pronounced at the county scale. In 2010, 398 

corresponding to the large yield losses due to heat stress, both NDVI and EVI show an 399 

underestimation of the yield reduction. One possible reason for this underestimation 400 

may be due to the signal noise from background effects such as soil color, shadows or 401 

other non-green landscape components (Filella et al. 2004; Hilker et al. 2010; Bannari 402 

et al. 1995). Another possible reason for this underestimation is the insensitivity of the 403 

VIs to the actual photosynthetic activities of crops. Thus, many previous studies have 404 

focused on using greenness-based VI metrics along with other climatology data to 405 

quantify yield variations and may underestimate the yield loss effects (Prasad et al. 406 

2006; Quarmby et al. 1993; Idso et al. 1977; Lobell et al. 2003; Xie et al. 2017). On the 407 

other hand, compared with VIs, chlorophyll fluorescence originals from the 408 

photosynthetic apparatus, so the background has a smaller impact on the fluorescence 409 



signal (Baker 2008). In this study, we show that using satellite SIF alone, which is more 410 

directly related to the photosynthetic functioning of crops, gives a better estimation of 411 

the final wheat yield than VIs. This study confirms an earlier study by Guan et.al. 412 

(2016), which showed that using spaceborne SIF-based GPP from GOME-2 can 413 

improve the crop yield estimations in the United States compared to standard VIs and 414 

other existing NPP products, and also demonstrated that SIF has a high sensitivity to 415 

environmental stresses (e.g., high temperature) through autotrophic and carbon-use-416 

efficiency (Guan et al. 2016).  417 

Within the study area, the 2010 heat stress period lasts for around two months from 418 

March to April, which corresponds to the wheat grain-filling and harvesting stages. The 419 

grain-filling period will determine the crop’s individual grain size and has a great 420 

influence on the final yield (Guan et al. 2017; Lobell et al. 2012). High temperatures 421 

during this period can result in decreases in grain weight at maturity and has an adverse 422 

effect on wheat productivity (Wardlaw 1994). The linear fit results between yield and 423 

SIF/NDVI/EVI of March and April in our study are consistent with these previous 424 

studies. Especially during April, the SIF/NDVI/EVI have a significant positive 425 

relationship with wheat yield, and the April SIF can explain approximately 77% of the 426 

final yield (Figure S6 & S7). 427 

Due to the sensitivity to canopy structure and pigment content (Garbulsky 2013), 428 

a large number of previous studies have focused on the estimations of plant pigment 429 

concentrations or vegetation productivity using greenness-based VIs (Gitelson et al. 430 



1998; Blackburn 1999; Sims et al. 2002; Gamon et al. 2015; Beck et al. 2011). However, 431 

only a few studies monitored the rapid changes in plant photosynthetic activities 432 

induced by flash environmental stress. In contrast, as a good proxy of the actual 433 

photosynthetic activities in plants (Guanter et al. 2014; Sun et al. 2017), satellite SIF 434 

has been shown to nicely track the impacts of water stress or drought on various 435 

vegetation types (Lee et al. 2013; Sun et al. 2015; Yoshida et al. 2015; Guan et al. 2015). 436 

Extending upon these studies, we find that spaceborne SIF can be used to monitor heat 437 

stress in wheat crops in near real-time at large scales, and SIF can detect earlier and 438 

more pronounced responses to heat stress than NDVI and EVI. This result is consistent 439 

with previous studies, which showed that the vegetation indices appear to lag by half a 440 

month after the changes in temperature and precipitation (Wang et al. 2003). Since the 441 

GIMMS 3g AVHRR NDVI data are not fully atmospherically corrected, a Maximum 442 

Value Composites (MVC) technique is used to minimize the effects of changing 443 

illumination, viewing conditions, aerosols and cloud cover (Marçal et al. 1997). For the 444 

sake of consistency, we applied the same MVC technique to GOME-2 SIF data. The 445 

results from GOME-2 SIFMVC show no significant difference with the original SIF 446 

results (Figures S8 and S9): SIFMVC indicate earlier and more pronounced responses to 447 

heat stress than AVHRR NDVI, and the wheat growing season mean calculated from 448 

SIFMVC can also capture the 2010 yield loss due to heat stress. It should be noted that 449 

the MODIS EVI is derived from atmospherically-corrected reflectance, and then based 450 

on the product quality assurance metrics and constrained view angle approach to 451 



generate the 16-day composite data. Thus, the processing method of MODIS EVI is 452 

similar to the original GOME-2 SIF. Both the original SIF and SIFMVC indicate an 453 

earlier and more pronounced response to high temperatures than MODIS EVI. 454 

4.2 Improved understanding on the responses of crops to heat stress 455 

From the temporal and spatial results of fPAR and SIFyield, we have gained a better 456 

understanding of the mechanisms of the 2010 heat stress, and have also been able to 457 

attribute the SIF responses under heat stress conditions to a certain extent. In the early 458 

stage of this heat stress, the VPD increases, which results in stomatal closure and the 459 

decline of both CO2 uptake and the photosynthetic functioning of wheat in the study 460 

area (Dai et al. 1992) (Figure 4-d & S4). Experimental studies on the ground 461 

documented that when plants were exposed to high temperatures even for a short time, 462 

the photosynthetic rates showed remarkable declines, especially in terms of the PSII 463 

activity (Al-Khatib et al. 1990). At the site scale, vegetation fluorescence was shown to 464 

be effective in detecting the decline in the plants photosynthetic capacity (Sobrino 465 

2002; Louis et al. 2005). In this study, we extend this research to a large scale, and 466 

investigate the relative contribution of fPAR and SIFyield to the SIF reduction under 467 

extremely high temperature conditions. We find that there is a small change of fPAR 468 

along with NDVI, but the real change in SIFyield may suggest that most wheat crops in 469 

the study area remain green while their photosynthetic capacities decrease during the 470 

early stage of this stress. SIF and SIFyield show decreases earlier than NDVI and EVI. 471 

This suggests that SIF can be extended from the site scale to a larger scale to monitor 472 



the changes in the actual photosynthetic activities of crops. Similar results were also 473 

found in the 2010 Russian drought revealed by GOME-2 SIF and MODIS NDVI, in 474 

which Yoshida et al. (2015) found that SIF normalized by PAR decreased rapidly as 475 

compared with the NDVI during the senescence stage across various vegetation types. 476 

It should be noted that wheat canopy structure may also change under high stress levels, 477 

and hence the constant assumption of 𝛺𝛺𝑐𝑐 is not reliable. In this case, the reduction of 478 

SIFyield may also partly attributed to the changes of canopy structure. Thus, SIF 479 

escaping probability due to reabsorption of SIF and canopy structure should also be 480 

considered in future studies when interpreting SIFyield (Joiner et al. 2014). 481 

The larger negative anomalies of SIF compared to NDVI and fPAR during the 2010 482 

heat stress period suggest that there are decreases in both the photosynthesis capacities 483 

and greenness of wheat crops, and the decline of the latter can be reflected by both SIF 484 

and VIs. The combined decreases of wheat photosynthesis and greenness lead to the 485 

more pronounced response of SIF reduction to this heat stress and ultimately the 486 

reductions of wheat crop yields in this region. One specific reason for this reduction in 487 

yield may be the earlier senescence of physiology that is caused by the extreme high 488 

temperatures during the grain-filling stage, which lead to a shortened of the wheat 489 

growing season (Figure S1). This ultimately results in the reduction of the final kernel 490 

weight, a key determinant of the yield (Dias et al. 2009). This finding is consistent with 491 

previous studies. Lobell et al. 2012 found that extremely high temperatures had a strong 492 

effect on the wheat growing season length (GSL) in IGP area and could result in a 493 



shorter GSL (Lobell et al. 2012). Joiner et al. 2014 compared GOME-2 SIF and tower-494 

based GPP, and the results indicated that satellite SIF data achieved similar performance 495 

at detecting the shortened GSL at an agricultural site in Nebraska as the GPP measures 496 

on the ground (Joiner et al. 2014). The shortened GSL of wheat due to high temperatures 497 

indicates that some suitable management strategies, such as altering sowing dates or 498 

harvesting dates to avoid the high temperatures, can reduce the effect of heat stress on 499 

crops (Gourdji et al. 2013).  500 

4.3 Implications for the monitoring and assessment of heat stress impacts on crops 501 

Sustainably producing more food is a global challenge. This task is daunting as less 502 

land is available for agricultural exploitation and the temperatures and frequencies of 503 

droughts are increasing (IPCC 2014; Foley et al. 2011; Tilman et al. 2011). Agricultural 504 

adaptation requires accurate and timely crop monitoring in response to warming, 505 

especially with an increase in global temperature and frequency of extremely high-506 

temperature events (Gourdji et al. 2013). In this paper, we demonstrate that satellite SIF 507 

observations have much better ability to detect and track the 2010 heat stress than the 508 

widely used greenness-based VIs over the intensely managed wheat regions in the IGP, 509 

the food bowl of India. This finding highlights that the new spaceborne measurements 510 

of SIF can be used as early warning tools for stress detection in large agricultural 511 

regions before harvest, particularly during the grain-filling stage when photosynthesis 512 

is sensitive to climate factors. However, considering that the current available 513 

instruments were not primarily designed for SIF retrievals and the associated 514 



uncertainties of the retrievals, further in situ field measurements of SIF and controlled 515 

experiments are needed to strength our understanding of how biochemical mechanisms 516 

and environmental factors control SIF (Miao et al. 2018; Schlau-Cohen et al. 2015). 517 

Our results could have a range of implications for both research and policy. First, 518 

accurate and timely monitoring of heat stress at large scales could better enable the 519 

evaluations of their impacts on wheat yields. As there are lags in the response to heat 520 

stress from the greenness-based VIs (Wang et al. 2003) and uncertainties in crop models 521 

(Asseng et al. 2015), SIF can be an independent tool to monitor and assess the impacts 522 

of warming on wheat production in a timely manner. In particular, more accurate 523 

evaluations of the impacts of heat stress could be conducted by improving the spatial 524 

and temporal resolution of the satellite SIF in the near future. Second, the ability to 525 

detect wheat senescence to heat stress over a large scale and in a timely manner could 526 

help policy-makers or farmers target appropriate mitigation strategies during the critical 527 

grain filling stage. Field experimental studies have shown that irrigation managements 528 

that match with the grain filling stage can offset the heat stress impacts on wheat in 529 

Haryana, India (Gupta et al. 2010).  530 

The earlier detection from SIF could provide insights for adaption for agricultural 531 

practices. As indicated by SIF, the wheat with earlier sowing dates in Punjab in the 532 

northwest of the study area suffered from fewer losses, but the wheat in the central part 533 

of the study area experienced more losses, which suggest that climate smart agricultural 534 

(CSA) practices such as zero-tillage can also compensate for the impacts of heat stress 535 



on wheat to some extent (Campbell et al. 2014). However, although the SIF results 536 

indicate a shortening of wheat growing season length due to extreme high temperatures, 537 

the adoption of certain managements practices such as earlier transplanting date can 538 

partly mitigate heat impacts on wheat growth, to what extent these management 539 

practices can mitigate climate impacts remain uncertain. Crop models are generally 540 

used to separate climate change impacts from management practices on the length of 541 

the rice growing period (Wang et al. 2017). Thus, incorporating satellite SIF data into 542 

crop models may provide better constraints to phenology simulations, and further 543 

improve the modelling of crops’ response to climate change. 544 

In the IGP during wheat growing period, extreme high temperatures usually occur 545 

in March and April. Thus, advancing the planting time can make wheat key growing 546 

phase escape the extremely high temperatures period and avoid yield penalty due to 547 

heat stress. However, when the temperature increases in the cropping regions exceed a 548 

certain threshold (3.5°C higher than the multiyear-mean value in this study), this 549 

method will be less effective. Thus, more adaptation strategies need to be implemented, 550 

such as breeding new wheat varieties that have a higher tolerance to warming 551 

temperatures. Finally, the spatial and temporal patterns of the effects of heat stress that 552 

are captured in the satellite SIF data, especially the physiological response to warming, 553 

provide a useful new data set that can be used as a benchmark for the widely used crop 554 

models (Asseng et al. 2013). In particular, the use of spaceborne SIF measurements 555 

could complement the existing VIs and provide more directly measurable signals of 556 



crop photosynthetic activities. These measurements would help address the broader 557 

scale questions that have been increasingly addressed by crop simulation models to 558 

evaluate the impacts of climate change (Lobell et al. 2012; Asseng et al. 2015). 559 

For future applications, improved SIF datasets would be needed at better spatial 560 

and temporal resolution, even at the subdaily scale. Higher spatial and temporal 561 

resolution SIF products are anticipated from several new satellite instruments such as 562 

TROPOMI with a high spatial resolution of 7×3.5m2 at nadir (successfully launched on 563 

13 October 2017 on board the Sentinel 5 (Guanter et al. 2015)), the NASA TEMPO 564 

instrument (to be launched in 2019, (Chance et al. 2013)), the ESA Sentinel-4/UVN 565 

instrument (to be launched in 2019, (Stark et al. 2012)), and the GeoCARB instrument 566 

(Rayner et al. 2014). The current SIF data employed in this study are measured by 567 

GOME-2, which has a morning overpass time, future satellite missions such as the 568 

launched TROPOMI (the overpass time is 13:30 at local time) will improve the 569 

monitoring of heat stress in plants. Although more satellite instruments capable of 570 

generating SIF products at higher spatial and temporal resolution will be launched in 571 

the near future, SIF product availability has a large delay after the satellite data 572 

acquisition. Thus, it will be essential to further improve processing algorithms and data 573 

distribution so that the SIF product latency to the user community can be reduced. 574 

In summary, this work shows that spaceborne SIF can be an effective tool to 575 

monitor heat stress in wheat crops across the Haryana-Uttar belt in India. The high 576 

correlations between SIF and the yield at both large and small scales demonstrate that 577 



spaceborne SIF can be a good proxy for crops yields. In addition, spaceborne SIF and 578 

SIFyield show earlier and more pronounced responses to extreme high temperatures than 579 

the greenness VIs, which indicate that satellite SIF observations are sensitive to both 580 

the structural and physiological variations of plants and can be used to monitor the heat 581 

stress on crops at near real-time over a large scale. The various wheat losses induced 582 

by heat stress in Punjab and the central part of the study region suggest that the earlier 583 

sowing dates resulting from the zero-tillage of the CSA in India can offset the influence 584 

of heat stress to some extent. However, with the continuing increase in global warming 585 

and extreme events, better strategies need to be implemented to further reduce the 586 

temperature-induced yield loss. 587 
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Supporting information 1 

Vapor pressure deficit calculation 2 

Equations (1-3) below are employed to calculate the vapor pressure deficit (VPD): 3 
VPD = 𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑉𝑉𝑉𝑉𝑠𝑠𝑎𝑎𝑎𝑎 (1) 

Where 𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 is the saturation vapor pressure of the air in psi that is calculated 4 
using equation (2), 𝑉𝑉𝑉𝑉𝑠𝑠𝑎𝑎𝑎𝑎 is the vapor pressure in the air in psi at the actual relative 5 
humidity that is calculated using equation (3). 6 

𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑒𝑒
𝐴𝐴
𝑇𝑇+𝐵𝐵+𝐶𝐶𝑇𝑇+𝐷𝐷𝑇𝑇

2+𝐸𝐸𝑇𝑇3+𝐹𝐹×ln (𝑇𝑇) 
(2) 

where T is the temperature of the air in Rankine, here we used the monthly ERA 7 

interim skin temperature with a spatial resolution of 0.5×0.5 degree as the input. A =8 

−1.044 × 104,𝐵𝐵 = −11.29,𝐶𝐶 = −2.7 × 10−2,𝐷𝐷 = 1.28910−5,𝐸𝐸 = −2.478 ×9 
10−9,𝐹𝐹 = 6.456. 10 

𝑉𝑉𝑉𝑉𝑠𝑠𝑎𝑎𝑎𝑎 = 𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑅𝑅𝑅𝑅 ÷ 100 (3) 
where RH is the relative humidity (%) of the air, the monthly ERA interim relative 11 

humidity with a spatial resolution of 0.5×0.5 degree was employed in this study. 12 

Wheat phenology calculation 13 

The phenology of the wheat in the study area was calculated by fitting double 14 

logistic functions to the GOME-2 SIF and AVHRR NDVI time series over the entire 15 

study area using Timesat software. The green-up date of each year was defined as the 16 

point when the fitted curves reached 10% of the maximum amplitude, and senescence 17 

was defined as the point when the fitted curves declined to 10% of the maximum for 18 

that year. The green season length (GSL) was calculated as the number of days between 19 

the green-up date and senescence (Jönsson and Eklundh 2004, Lobell, Sibley and Ivan 20 

Ortiz-Monasterio 2012). 21 
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 36 

 37 
Figure S1. The growing season length (GSL) of wheat in the study area calculated by SIF and 38 
NDVI, the red bar indicates the GSL of 2010, and the black bar indicates the GSL value of the 39 
multiyear mean from 2008 to 2013. 40 



 41 
Figure S2. Seasonal variations of (a) the monthly and the entire study area means of the GOSAT 42 
SIF from November 2009 to May 2010 and (b) its change percent during the wheat growing 43 
season 44 

 45 



 46 

 47 
Figure S3. The monthly seasonal variations and the means of temperature (Tair) and their 48 
anomalies, GOME-2 SIF data, AVHRR NDVI data and their percent changes from December 49 
2009 to May 2010 in three independent states (Punjab: a-f, Haryana: g-l and Uttar Pradesh: m-r)50 



 51 
Figure S4 Spatial distributions of the ESA CCI soil moisture uncertainty from December 2009 to 52 
May 2010 53 



 54 
Figure S5. Spatial distributions of the absolute value of the Vapor pressure deficit (VPD) from 55 
December 2009 to May 2010 56 

 57 
Figure S6. Inter-annual variations of yield and SIF/NDVI/EVI of March (a) and April (b) from 58 
2008 to 2013 in the IGP area, the values of R2 indicate the linear fit between SIF/NDVI/EVI and 59 
yield. Single asterisk (*) denote statistical significance levels of p-value <0.05. 60 



 61 
Figure S7. The determination coefficients (R2) between yield and SIF/NDVI of 62 
January/February/March/April from 2008 to 2013 at county scale, all the linear correlations are 63 
statistical significant at levels of p-value<0.001. 64 



 65 
Figure S8. Seasonal variations of the 16-day maximum value compositing (MVC) of GOME-2 66 
SIF, its multiyear mean and SIF change percent from December 2009 to May 2010.  67 
 68 



 69 
Figure S9. Interannual variations of yield and wheat growing season mean SIF with maximum 70 
value composite (MVC) processing from 2008 to 2013 in the IGP study area, the value of R2 and 71 
P indicate the linear fit between SIFMVC and yield. 72 
 73 
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