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Abstract There has been recent progress in the understanding of the evolution of Quaternary
climate. Simultaneously, there have been improvements in the understanding of glacial erosion processes,
with better parameter constraints. Despite this, there remains much debate about whether or not the
observed cooling over the Quaternary has driven an increase in glacial erosion rates. Most studies agree that
the erosional response to climate change must be transient; therefore, the time scale of the climatic change
and the response time of glacial erosion must be accounted for. Here we analyze the equations governing
glacial erosion in a steadily uplifting landscape with variable climatic forcing and derive expressions for
two fundamental response time scales. The first time scale describes the response of the glacier and the
second one the glacial erosion response. We find that glaciers have characteristic time scales of the order
of 10 to 10,000 years, while the characteristic time scale for glacial erosion is of the order of a few tens
of thousands to a few million years. We then use a numerical model to validate the approximations made
to derive the analytical solutions. The solutions show that short period forcing is dampened by the glacier
response time, and long period forcing (>1 Myr) may be dampened by erosional response of glaciers when
the rock uplift rates are high. In most tectonic and climatic conditions, we expect to see the strongest
response of glacial erosion to periodic climatic forcing corresponding to Plio-Pleistocene climatic cycles.
Finally, we use the numerical model to predict the response of glacial systems to the observed climatic
forcing of the Quaternary, including, but not limited to, the Milankovich periods and the long-term secular
cooling trend. We conclude that an increase of glacial erosion in response to Quaternary cooling is
physically plausible, and we show that the magnitude of the increase depends on rock uplift and ice
accumulation rates.

1. Introduction

One of the best-documented transitions of Earth’s climate history is the cooling that has occurred during
the last 10 Myr. This cooling has led to the onset of Northern Hemisphere glaciations, which proceeded
throughout the Pleistocene and continue today. While the exact timing of onset of glaciation in middle- to
high-latitude mountain ranges remains uncertain, a high-resolution record of oxygen isotope measurements
on foraminifera deposited on the ocean floor (Lisiecki & Raymo, 2005; Zachos et al., 2001) testifies that global
climate has continuously fluctuated between times of relative warmth and coldness, with periods about 23,
41, and 100 kyr, as dictated by Milankovitch orbital forcings. Furthermore, thanks to the advent of new proxies
for estimating how sea surface temperature varied through time, it is now thought that temperatures have
dropped by 10 to 15∘C during the last 10 Myr (Herbert et al., 2016). The magnitude of the temperature drop
mainly depends on latitude and is more pronounced toward the poles than at the equator. Several studies
argue that this climate transition may have caused a widespread increase of erosion based on an observed
increased terrigenous sediment flux to ocean basins (Molnar & England, 1990), increased sedimentation rate
in continental basins (Molnar, 2004; Zhang et al., 2001) and thermochronologically derived erosion rates in the
last few million years (Herman & Champagnac, 2016; Herman et al., 2013; Shuster et al., 2005, 2011; Valla et al.,
2012). An alternative perspective suggests that the widespread increase in erosion rates is an artifact, citing
the Sadler effect (Ganti et al., 2016; Willenbring & von Blanckenburg, 2010; Willenbring & Jerolmack, 2016).
The Sadler effect implies that the observed increase of erosion rates toward the present is caused by the inter-
mittency of erosional processes (Finnegan et al., 2014; Ganti et al., 2016) as well as the incompleteness of the
sedimentation record (Barrell, 1917; Sadler & Jerolmack, 2015, 2009; Tipper, 1983).
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The debate over these two perspectives exists within the framework of the null hypothesis, which is the idea
that over long time scales, landscapes are at, or close to, steady state and that erosion rates are determined
solely by tectonic uplift rates (von Blanckenburg, 2005; Willenbring & von Blanckenburg, 2010; Willenbring
& Jerolmack, 2016). Any increase in erosion rate due to a shift in climate is a transient response, which leads
to the conclusion that over the long term, climate is a much less important driver of erosion than tectonics.
The null hypothesis is not in question. It stems ultimately from the conservation of mass, and it will prevail as
long as tectonic rates globally are roughly constant through time. However, the time scale over which the null
hypothesis becomes accurate is less known. It will be determined by the longest period that a landscape can
sustain a transient erosional response. If landscapes, particularly glacial landscapes, cannot or do not sustain
transient conditions for as long as the secular cooling trend, then the observation of widespread increased
erosion over the last 5 Myr must be related to the Sadler effect (assuming constant tectonic rate). On the
other hand, if landscapes can sustain transient conditions for 1–10 Myr, then an erosional response to secular
cooling is physically plausible, and such a response may then be recorded.

There is ample evidence that geomorphic processes such as fluvial and glacial erosion are transient across
different time scales (Ganti et al., 2016; Koppes & Montgomery, 2009), but the characteristic time and maxi-
mum time over which geomorphic processes respond to climate change is not established for all erosional
processes. This characteristic time must be established to estimate the time scale over which a landscape can
sustain the transient conditions. Work using the stream power model for fluvial erosion implies maximum
time scales up to a few million years, depending on uplift rate, erosional efficiency, spatial scale, and sustained
transient conditions during the late Cenozoic (Braun et al., 2015; Whipple, 2001). Here our objective is to now
estimate the response time for glacial erosion.

To estimate the glacial erosion response time, one needs constraints on the glacial erosion processes.
Although there has been great progress in modeling glacial erosion processes (e.g., Braun et al., 1999; Egholm
et al., 2009, 2011; Harbor et al., 1988; Kessler et al., 2008; MacGregor et al., 2000; Oerlemans, 1984; Pedersen et
al., 2014; Sternai et al., 2013), the use of glacial erosion models has in part been hampered by a lack of obser-
vational constraints. It is thought that glaciers erode the underlying bedrock mainly through abrasion and
plucking, which theories predict to be proportional to the ice sliding velocity raised to some power (Hallet,
1979, 1981, 1996; Iverson, 1990, 2012). Recently, two independent studies, one in the Antarctic Peninsula and
the Patagonian Andes (Koppes et al., 2015) and the other on the Franz Josef Glacier (Herman et al., 2015),
simultaneously collected erosion rate and ice velocity data to find that erosion rate depends nonlinearly on
sliding velocity and that the exponent on velocity is about 2. Previous field studies had suggested a linear rela-
tionship between sliding velocity and erosion rate (Humphrey & Raymond, 1994; Tomkin & Braun, 2002) but
relied on data collected from a surging glacier in Alaska combined with spatially averaged data from glaciers
in the Alps and Norway. Interestingly, Koppes et al. (2015) and Herman et al. (2015) found very similar values
for the proportionality constant, and the range of acceptable values reported in both studies includes the esti-
mates of Humphrey and Raymond (1994). Altogether, these recent results provide new constraints on glacial
erosion rules that can be implemented in landscape evolution models.

By taking advantage of the recent progress in deciphering Quaternary climate and understanding glacial ero-
sion processes, as described above, we propose to estimate the response of glacial erosion to variable forcings
imposed by late Cenozoic climate and tectonics. We start by deriving an analytical solution for two charac-
teristic time scales for the ice response and erosion response of a glacier eroding an uplifting landscape. We
then use a 1-D numerical model to estimate the response of glacial erosion to various forcings. The numer-
ical model enables us to validate the analytical solution and include more feedbacks between topography,
mass balance, and erosion. Finally, using existing constraints on the late Cenozoic cooling, we estimate how
climate may have potentially modulated glacial erosion depending on precipitation (or ice accumulation) and
rock uplift rates. It is worth stressing that we only concentrate on glacial erosion, even though it is clear that
other processes, such as fluvial or hillslope erosion, have played a fundamental role for the global response of
mountain erosion to late Cenozoic cooling.

2. Glacial Erosion Model

The evolution of mountain topography is governed by the competition between rock uplift and glacial
erosion, which can be summarized by the following equation:

𝜕z
𝜕t

= U − ė (1)
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Table 1
Variables Description and Values Used for the Analytical Solutions and the Numerical Model

Variable Symbol Value Units

Glacial erosion response time 𝜏e 104 to 107 year

Glacier response time 𝜏i 10 to 104 year

Deformation flow parameter fd 4.2 × 10−5 1/m3 year

Sliding parameter fs 1.27 1/m year

Glen flow law exponent n 3 —

Glacial erosion law constant Kg 10−7 to 10−4 m1−l/year1−l

Glacial erosion law exponent l 1 to 2 —

Maximum accumulation rate c 0.1 to 3 m/year

Mass balance rate gradient 𝛽 0.005 1/year

Net mass balance A - m/yr

Rock uplift rate U 0.1 to 10 mm/year

Erosion rate ė — mm/year

Bedrock elevation z — m

Time t — year

Ice thickness H — m

Ice surface elevation h — m

Slope S — —

Equilibrium line altitude E 1,000 to 2,000 m

Ice velocity u — m/year

Ice sliding velocity us — m/year

Ice deformation velocity ud — m/year

Glacier characteristic length L 0 to 40 km

Note. A range of values is reported for variables that are varied. No value is provided for
the variables that are model outcome.

where z is bedrock elevation, U is rock uplift rate, ė is glacial erosion rate, and t is time. Glacial erosion rate is
assumed to be proportional to the sliding velocity raised to some power (Hallet, 1979, 1981, 1996; Herman
et al., 2015; Humphrey & Raymond, 1994; Iverson, 1990, 2012; Koppes et al., 2015):

ė = Kg|us|l (2)

where Kg is the glacial erosion rate constant, and l is an exponent. Kg is thought to vary between about 10−4

and 10−7 (m1−l/year1−l), depending on the choice of the exponent l between 1 and 2. To model erosion, one
needs to compute the sliding velocity, which can be estimated from the ice thickness and ice surface slope.
This can be achieved by solving the mass conservation equation:

𝜕H
𝜕t

= A − ∇ ⋅ q (3)

where H is the ice thickness, A is the net mass balance, and q is the ice flux. The net mass balance is given by

A = min(𝛽(h − E), c) (4)

where 𝛽 is the mass balance rate gradient, h is the ice surface elevation (i.e., z + H, where z is the bedrock
elevation), c is a maximum ice accumulation rate, or cutoff, and E is the position the equilibrium line
altitude (ELA).

The flux is the integral of the velocity over the ice thickness:

q = Hū (5)

where ū = ud +us, and ud is the deformation velocity. Assuming the shallow ice approximation (Hutter, 1983;
Mahaffy, 1976), the vertically integrated velocity is given by

ū = fdHn+1|∇h|n−1∇h + fsHn−1|∇h|n−1∇h (6)
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where the first term on the right-hand side is the deformation velocity and the second term is the sliding
velocity. fd and fs are the flow parameters for deformation and sliding, respectively, and n is the Glen flow law
exponent, which is often assumed equal to 3. Here the flow parameters are taken from Oerlemans (1997)
who used values from Budd et al. (1979). In Table 1, we summarize the values of the main variables that are
used in the following sections.

3. Characteristic Time Scales

Our objective is to derive analytical expressions for glacier and glacial erosion response times. This is done
assuming a fixed accumulation rate, A, above the ELA. A is thus lower or equal to c. Combining equations (1),
(2), and (6) and introducing the following dimensionless variables,

H′ = H∕H0 z′ = z∕z0 x′ = x∕L t′ = t∕𝜏e S′ = S∕S0 (7)

where x is for horizontal distance, S is for slope, L is the length of the glacier, and 𝜏e is the erosion response time
scale we wish to derive. The subscript 0 is for characteristic variables. The characteristic topographic slope is
defined as

S0 = z0∕L (8)

Using these variables and equation (1), we can write the following dimensionless equation:

z0

𝜏e

𝜕z′

𝜕t′
= U − Kgf l

s H(n−1)l
0

( z0

L

)nl
(H′n−1S′n)l (9)

and a natural value for the erosion response time, 𝜏e, is

𝜏e =
Lnl

Kgf l
s H(n−1)l

0 znl−1
0

(10)

or, after eliminating z0

𝜏e =
L

K1∕nl
g f 1∕n

s H1−1∕n
0 U1−1∕nl

(11)

which can be used to derive the characteristic topographic height, z0:

z0 = LU1∕nl

K1∕nl
g f 1∕n

s H1−1∕n
0

(12)

or the characteristic topographic slope, S0 = z0∕L:

S0 = U1∕nl

K1∕nl
g f 1∕n

s H1−1∕n
0

(13)

These three characteristic scales depend on H0, which must be estimated. Assuming that the ice surface slope
is mostly controlled by the bedrock slope, which is the case for high relief areas, and using our dimensionless
variables, equation (3) becomes

H0

𝜏i

𝜕H′

𝜕t′
= A +

Hn
0zn

0 fs

Ln+1

(
H′n +

H2
0fd

fs
H′n+2

)
S′n (14)

Taking the convention that 𝜏i = A∕H0, the ice, or glacier, characteristic time scale, 𝜏i , can be derived:

𝜏i =
L1+1∕n

f 1∕n
s A1−1∕nz0

(15)

and the characteristic ice thickness, H0:

H0 = L1+1∕nA1∕n

f 1∕n
s z0

. (16)

Combining equations (12) and (16) yields the following expression for z0:

z0 = L1∕nU1∕l

K1∕l
g f 1∕n

s A1−1∕n
(17)
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Figure 1. Characteristic time scales. The blue curves are for l = 1, and red curves are for l = 2. (a) Glacier response time.
The three curves are for rock uplift rates, U, equal to 0.35, 1, and 5 mm/year, going from top to bottom. Kg is equal to
10−4 for l = 1 and Kg = 7 × 10−6 year/m for l = 2. (b) Glacial erosion response time. U is equal to 0.35 mm/year and A is
equal to 0.1, 1, and 5 m/year from top to bottom. Kg is equal to 10−4 for l = 1 and Kg = 7 × 10−6 year/m for l = 2.

and H0:

H0 = LA

(Kg

U

)1∕l

(18)

From these expressions we can finally derive 𝜏i:

𝜏i = L

(Kg

U

)1∕l

(19)

and the glacial erosion response time, 𝜏e:

𝜏e =
L1∕n

K1∕l
g f 1∕n

s A1−1∕nU1−1∕l
(20)

and the characteristic surface topography slope, S0:

S0 = h0∕L = U1∕l

K1∕l
g f 1∕n

s A1−1∕nL1−1∕n
(21)

When the erosion model is linear (i.e., l = 1), the glacier response time is directly proportional to L and inversely
proportional to U:

𝜏i ∝
L
U

(22)

Similar equations have been developed in other studies (e.g., Jóhannesson et al., 1989; Oerlemans, 2001, 2008,
2012; Roe & O’Neal, 2009; Roe et al., 2017), and all reach the conclusions that the glacier response time is pro-
portional to its length divided by a characteristic velocity. Here we use rock uplift rate, as it has the dimensions
of velocity and has a first-order effect on setting the characteristic slope, and thus ice thickness and ice sliding
velocity. In addition, 𝜏e is controlled mostly by the accumulation rate and, to a lesser degree, by the length of
the glacier:

𝜏e ∝
L1∕3

A2∕3
(23)

Interestingly, the glacial erosion response time seems independent of the rock uplift rate. However, one
should keep in mind that the length, L, is set by U. Higher uplift rate leads to steeper topography (equation
(21)), and in the turn a longer glacier, and the response is not strictly independent of U, as discussed further
below.
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When the erosion model is quadratic (i.e., l = 2), the glacier response time scale dependence on uplift rate
becomes

𝜏i ∝
L

U1∕2
(24)

and the erosion response time becomes dependent on the inverse of square root of the uplift rate:

𝜏e ∝
L1∕3

A2∕3U1∕2
(25)

In Figure 1, we compute the response times for realistic values of U, L, A, l, and Kg. Under a set of parameter
values based on observations, the glacier response time varies between ten and a few thousand years, which is
similar to other estimates (Oerlemans, 2012). In contrast, the glacial erosion characteristic time is much longer.
It ranges from tens of thousands to a few million years. This result implies that while the glacier will respond
to short-term variations (10–100 years), it will take much longer (i.e., 10 kyr to 10 Myr) for glacial erosion to
reequilibrate with rock uplift rates in response to changes in climate forcings. This result indicates that the
time scale for glacial erosion to reequilibrate is about the same order, or larger than Milankovitch cycles.

4. Steady State Topography and Time-Dependent Erosion Using
a Numerical Model

We use a numerical solution to test the predicted time scales. A numerical solution is required because erosion
and uplift modify topography and mass balance, which set the glacier length and in turn make the prob-
lem nonlinear. It also provides us with a means to test our analytical solution and relax the assumption that
the accumulation rate is constant. We solve equations (2) to (6) in one dimension using the finite difference
method. A linearly decreasing topography is assumed as initial condition. A fixed elevation on bedrock is used
at the bottom of the model domain, and a no ice flux boundary condition is imposed at the top. For numeri-
cal stability a maximum hillslope threshold of 30∘ is imposed for the top bedrock of the model. Artificial linear
diffusion is included where the ice thickness is less than 1 m and is kept as small as possible. Where there
is no ice, erosion rate is set equal to rock uplift rate, and the topography does not change. Finally, we calcu-
late how glacial erosion rates vary by monitoring the mean glacial erosion rate over the entire length of the
glacier, since we are only investigating the response of glacial erosion to climate forcings, and do not explore
the feedbacks with other geomorphic processes. In addition, the parameter values are informed by the latest
observational constraints (Herman et al., 2015; Koppes et al., 2015).

Below we start by assessing a steady state situation. Then we analyze the behavior of the system in a situation
where climate cools dramatically. Cooling is prescribed by lowering the ELA.

4.1. Steady State Longitudinal Profiles
In this section, we report a series of steady state solutions to illustrate how the topography varies as a function
of rock uplift and maximum ice accumulation rates. The model is run for a fixed ELA until steady state between
erosion and uplift is reached.

The first results illustrate the effect of varying uplift rate on steady state topography (Figure 2a). In case of low
rock uplift rates, the model produces a concave profile, with the largest curvature about the ELA. More impor-
tantly, the glacier erodes the zone above the ELA substantially and in turn reduces the accumulation area. This
result is consistent with previous modeling results (e.g., Braun et al., 1999; Egholm et al., 2009; MacGregor et
al., 2000; Oerlemans, 1984; Pedersen et al., 2014; Sternai et al., 2013) and the idea that glacial erosion may limit
the mean height of mountain ranges about the ELA (Egholm et al., 2009). In contrast, when we increase the
rock uplift rate, the topographic profile becomes steeper and the glacier thinner. By raising the topographic
gradient, glacial erosion increases and balances rock uplift rates.

Varying the maximum accumulation rates, c, has the opposite effect of varying the rock uplift rate (Figure 2b).
Topography becomes steeper when the accumulation rate decreases. At low accumulation rate, which is
equivalent to dry conditions, the ice flux and sliding velocities are low and the slope must increase to reach
steady state.

An implication of these simple modeling results is that at high uplift rates and/or low accumulation rates
the glacier must be steep and thin, and thus long, for erosion to balance uplift. Therefore, there exists a rela-
tionship between glacier length and rock uplift or maximum accumulation rates. In Figure 3a, we show how
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Figure 2. Steady state topography. (a) Topography and ice profiles for two different rock uplift rates of 0.5 and 5
mm/year, respectively. The maximum accumulation rate, c, is 1 m/year. (b) Topography and ice profiles for two different
maximum accumulation rates of 0.1 and 3 m/year, respectively. The rock uplift rate is 1 mm/year. All models are run
using l = 2, Kg = 7 × 10−6 year/m, and 𝛽 = 0.005 1/year. E, the position of the equilibrium line altitude, is 1,250 m.

the glacier varies with increasing uplift rate. It shows that the glacier as a function of uplift rate follows a
logistic function. The glacier grows rapidly for uplift rates between 0 and 2 mm/year and reaches a maximum
length for uplift rates higher than 4 mm/year. Given that for most mountainous areas the uplift rate is less
than 4 mm/year, this effect is significant. In Figure 3b, we observe the inverse relationship with the maximum
accumulation rates. For low accumulation rate, the glacier must be long to balance rock uplift rate. The glacier
becomes shorter when accumulation rate increases.

The relationship we observe between L, the length of the glacier, and U, the uplift rate when the system has
reached steady state, that is, such that U = ė = Kg|us|l , can also be derived semianalytically and yields the
following relationship between L and U (Appendix A):

L ∝ U(n−1)∕2nl (26)

that is in agreement with the results we obtain with the numerical model (Figure 3a).
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Figure 3. Relationship of glacier length versus uplift and glacier length versus accumulation at erosional steady state.
A maximum accumulation rate of 1 m/year was used for (a) and a rock uplift rate of 0.35 mm/year was used for
(b). All models are run using l = 2, Kg = 7 × 10−6 year/m, and 𝛽 = 0.005 1/year. E, the position of the equilibrium line
altitude, is 1,250 m.
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This relationship implies that the scaling we derived for the two time scales, 𝜏e and 𝜏i , becomes

𝜏e ∝
U(2n2(1−l)+n−1)∕(2n2 l)

K1∕l
g f 1∕n

s A1−1∕n
(27)

and

𝜏i ∝
K1∕l

g

U(n+1)∕(2nl) (28)

or for l = 1 and n = 3:

𝜏e ∝
U1∕9

Kgf 1∕3
s A2∕3

∝ A−2∕3 (29)

and

𝜏i ∝ U−2∕3 (30)

and for l = 2 and n = 3:

𝜏e ∝
U−4∕9

K1∕2
g f 1∕3

s A2∕3
∝ U−4∕9A−2∕3 (31)

and

𝜏i ∝ U−1∕3 (32)

From these derivations, one can see that 𝜏e scales with climate in the linear erosion law and scales both with
tectonics and climate for the quadratic erosion rule. It is worth stressing that we only derived a scaling relation.
From this result is therefore not possible to calculate the exact response times. Instead, the scaling relation
provides a means to estimate how the relation between the uplift rate and length affects the time response
in a time-dependent model.

The relationship between uplift/accumulation rate and glacier length is important. It has been shown that the
glacier sensitivity to change in the position of the ELA depends on its length (Oerlemans, 2001, 2012):

dL
dE

= − 2
S0

+ 2
S0

𝜕H0

𝜕L
dL
dE

(33)

Assuming that the second term on the right-hand side is negligible (Oerlemans, 2001, 2012), climate sensitiv-
ity is inversely proportional to the characteristic slope, S0. Steep glaciers observed under high rock uplift rate
and/or low maximum accumulation rates are thus less sensitive to changes in the position of the ELA. This
has important implications when estimating the response time of a glacier with a time dependent solution,
as we show below.

Finally, these modeling results also show that rock uplift rates and accumulation rates affect the ratio between
accumulation and ablation areas. Obviously, one must keep in mind that such steady state conditions may
not necessarily be observable today.

4.2. Transient Response to a Drop of ELA
To estimate the glacial erosion response time to a change in the position of the ELA, we first run the model until
steady state, and then drop the position of the ELA. Assuming different uplift, U, and maximum accumulation
rates, c, and erosion parameters, Kg and l, we can verify the analytical solution.

The results show that a drop of ELA leads to an increase of erosion rates in all cases. The magnitude of the
increase is inversely proportional to the uplift rate (Figure 4a). At high uplift rates, the change of erosion
rate is small. This is in part because the glacier is steep, and thus less sensitive to changes in the position of
the ELA. Furthermore, the response time, that is, the time to come back to equilibrium, is inversely propor-
tional to uplift rate. For the chosen model length (40 km) and other model parameters, the response time
varies from more than 1.5 Myr down to less than 300 kyr with uplift rate increasing from 0.35 mm/year to 3
mm/year. These results are consistent with our analytical solution, which predicts characteristic times of hun-
dreds of thousands to millions of years (Figure 1b) and 𝜏e to be inversely proportional to the square root of
the uplift rate.
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Figure 4. Response to a drop of equilibrium line altitude (ELA) for different uplift and maximum accumulation rates.
(a) Erosion rate versus time for a drop of ELA from 1,250 to 1,000 m for different rock uplift rates. Blue, red, and magenta
are for a rock uplift rate of 0.35, 1, and 3 mm/year, respectively. (b) Erosion rate versus time for a drop of ELA from 1,250
to 1,000 m for different maximum accumulation rates. Blue, red, and magenta are for an accumulation rate of 1, 5, and
0.1 m/year, respectively. All models are run using l = 2, Kg = 7 × 10−6 year/m, and 𝛽 = 0.005 1/year.

In the case of different maximum accumulation rates, we also observe that mean erosion rates increase when
the ELA drops and that the amplitude of increase depends on the maximum accumulation rate (Figure 4b).
The change in erosion rate is largest when the maximum accumulation rate is about 1 m/year and is very
small when it is low (i.e., 0.1 m/year). The limited change in erosion rates under dry conditions can also
be explained by the fact that the glacier is steep when the maximum accumulation rate is low (Figure 2b),
which turn leads the glacier to be less sensitive to a drop of ELA. Furthermore, these numerical experiments
show that the response time is inversely proportional to the maximum accumulation rate and ranges from
about 1 Myr at high rates to several million years under dry conditions. Response times are much larger for
changes in accumulation rate than for changes in uplift rate, which also consistent with the analytical solu-
tion that predicts the characteristic time to be inversely proportional to the accumulation rate raised to the
power of 2/3.

Figure 5. Response to a drop of equilibrium line altitude (ELA) for different Kg , l, and U. The blue lines are for l equal to 1
and red lines for l equal to 2. (a) Erosion rate versus time for a drop of ELA from 1,250 to 1,000 m, assuming a rock uplift
rate of 0.75 mm/year, and a maximum accumulation rate of 1 m/year. (b) Erosion for a drop of ELA from 1,250 to 1,000
m, assuming different rock uplift rates. Kg is 1 × 10−4 when l is 1, and Kg is 7 × 10−6 when l is 2. All models are run using
𝛽 = 0.005 1/year.
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are for a maximum accumulation of 0.1 m/year. The rock uplift rate is 0.5 mm/year. All models are run using l = 2,
Kg = 7 × 10−6 year/m, and 𝛽 = 0.005 1/year.

Finally, we investigate the response to a change in ELA for different glacial erosion law constants, Kg, and
erosion law exponents, l. The results show that the response time varies greatly with Kg (Figure 5a). Note that
Kg is only constrained within an order of magnitude. Therefore, we must keep in mind that the response time
can only be estimated within an order of magnitude. In any case, the numerical experiments show that 𝜏e

increases when Kg decreases, regardless of l (Figure 5a). This result confirms the prediction of the analytical
solution (equation (20)). More interestingly, we also observe that the response time is relatively insensitive
to a change of uplift rate when l is 2 compared to 1 (Figure 5b). This may seem contradictory to equation
(20). However, the length of the glacier, L, varies with the uplift rate (Figures 2 and 3 and equation (26)). As a
result, the characteristic time increases with uplift rate when l is 1 and is less sensitive to a change in uplift rate
when l is 2.

4.3. Response to a Periodic Forcing
A key part of our analysis is to assess how glacial erosion of uplifting mountain ranges responds to periodic
forcings. In this section we then compute the gain, which corresponds to the ratio of output amplitude of
oscillation (here the erosion times series predicted by the numerical model) to that of the input (the ELA
periodic time series that is used as forcing), both normalized by their mean value. A gain of 1 means that there
is no amplification or damping of the forcing. If the gain is less than one, the forcing is dampened, and a gain
greater than 1 signifies that the perturbation is amplified by the system.

Here we vary the ELA as a periodic time series with an amplitude of 100 m for periods from 10 years to 10 Myr.
The results are shown in Figure 6. Note that for long periods and low uplift rates, the glacier becomes very
small at steady state, so we limit our analysis to examples of relatively high rock uplift rates (0.5–3 mm/year),
which remains representative of long-term mountain erosion rates. We also vary the maximum accumulation
rate, c, between 0.1 and 1 m/year. The same setup as in Figure 2 is used.

The results show that the gain is higher than 1 for forcings with periods higher than 100 years and starts to
decrease for periods longer than about 10 Myr, assuming a rock uplift rate of 0.5 mm/year and a maximum
accumulation rate of 1 m/year. The amplification effect is observed for forcing periods that are longer than
the glacier response time, 𝜏i, and shorter than the glacial erosion response, 𝜏e. The gain decreases when rock
uplift rate increases, or the maximum accumulation rate decreases. These results agree with the analytical
solution that predicts the glacial erosion response time to be inversely proportional to rock uplift rates and
mass balance and that the glacier becomes insensitive to ELA changes when the uplift rate is high or the
maximum accumulation rate is low.
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Figure 7. Glacial erosion response to late Cenozoic cooling. (a) Glacial erosion response for different rock uplift rates. The blue, black, and red curves are for uplift
rates of 0.1, 0.35, and 1 mm/year, respectively. (Note that at low uplift rate, the glacier rapidly erodes the topography above the equilibrium line altitude [ELA],
and glacial erosion only happens once the ELA is sufficiently low; (b) Glacial erosion response for different maximum accumulation rates. Blue, black, and red are
for an accumulation rate 0.1, 1, and 5 m/year, respectively. (c) Prescribed ELA history. All models are run for l = 2, Kg = 7 × 10−6 year/m, and 𝛽 = 0.005 1/year.

5. Glacial Erosion Response to Late Cenozoic Cooling

In this final section, we estimate the glacial erosion response to the late Cenozoic cooling. First, we convert
the 𝛿18O anomaly data (Lisiecki & Raymo, 2005) into an ELA anomaly. Given the sea surface temperature drop
of about 5∘C at midlatitudes (Herbert et al., 2016) during the last 5 Myr and assuming a moist temperature
lapse rate of 5∘C/km (Minder et al., 2010), we prescribe that the maximum drop in ELA was about 1 km during
the last 5 Myr. The change in ELA is shown in Figure 7c. Note that the change may have been larger, and such
an ELA drop may be seen conservative.

The results show that in all cases, glacial erosion rate increases in response to late Cenozoic cooling (Figure 7).
The magnitude of the increase is inversely proportional to rock uplift rates. In the examples shown in Figure 7a,
erosion rates are 4 times higher in the last 2 Myr compared to 5 Myr ago when the uplift rate is 0.1 mm/year,
about twice higher when the rock uplift rate is 0.35 mm/year and 50% higher when the rock uplift rate is 1
mm/year. The decrease in the magnitude of change in erosion rates with increasing rock uplift rate is in part
because the response time of glacial erosion is short and the glacier is steep, and thus less sensitive to changes
in the position of the ELA.

The model responds very similarly for different maximum accumulation rates. Erosion rates become insen-
sitive to the ELA drop under very dry conditions. This is also because the glacier is steep and insensitive to
changes in the position of the ELA, even though the response time is very long. In contrast, erosion rates
increase by about a factor of 2 when the maximum accumulation rate is higher than 1 m/year.

An alternative approach to examine the erosion response to some forcing is to compare the power density
spectrum of forcing and erosion rate for different uplift and accumulation rates. Here we compute the power
density spectrum using a discrete wavelet transform with the Morelet wavelet. The wavelet power spectrum is
then calculated following the approach described in Torrence and Compo (1998) and implemented in MATLAB
(Grinsted et al., 2004; Torrence & Compo, 1998).

We compare models with an ELA that is progressively lowering (blue curves in Figure 8) with one that has been
detrended from the long-term cooling (red curves in Figure 8) and report three examples with varying rock
uplift and maximum accumulation rates. The two forcings are shown in the inset of Figure 8a. The forcings’
power spectra show that the power is maximized around 40 and 100 kyr and that the ELA time series that
includes a long-term cooling contains additional power at a period of about 1.5 Myr.

In Figure 8b, we show the power spectra for the erosion rate history for the two forcings using a rock uplift rate
of 0.5 mm/year and a maximum accumulation rate of 1 m/year. It shows that the erosion time series contains
power around 40 and 100 kyr and that the forcing that includes a progressive cooling keeps power around
1.5 Myr, which is not the case for the detrended ELA history.

When the rock uplift rate is increased to 3 mm/year, the erosion rate time series retains power around the 40
and 100-kyr periods but contains no power for time scales greater than 1 Myr (Figure 8c). This is consistent
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Figure 8. Power spectrum density. (a) Power spectrum of the forcing. The inset shows the equilibrium line altitude (ELA) time series used as forcings. The blue
curve is for the same ELA time series as in Figure 7c, and the red curve is a detrended ELA time series (i.e., the long-term cooling trend has been removed).
(b) Power spectra of the erosion rate history for a case where the rock uplift rate is 0.35 mm/year and max accumulation rate is 1 m/year. (c) is the same
as (b) with the rock uplift rate that is increased to 3 mm/year. (d) Same as (b) with the maximum accumulation rate reduced to 0.1 m/year. All models are run
using l = 2, Kg = 7 × 10−6 year/m, and 𝛽 = 0.005 1/year.

with our scaling of the time response of glacial erosion. Under high rock uplift conditions, the time response is
shorter and the effect of climatic oscillations is dampened. In other words, the rock uplift rate is high enough
for the topography to adjust to Myr climate variations, but it will still respond to Milankovitch cycles.

In the last case (Figure 8d), we decrease the maximum accumulation rate down to 0.1 m/year. It shows that
power is retained in the power spectra, but the magnitude of the power is much smaller. Although the time
response is large, the amplitude of changes remains small, as illustrated in Figure 4b.

Finally, this approach was not applied to the low rock uplift rate conditions. In that case, the topography is
quickly eroded and the wavelet analysis makes less sense.

Altogether, these results confirm the idea that the response of glacial erosion might be strongest for climatic
forcing corresponding to Plio-Pleistocene climatic cycles.
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6. Discussion

Discussions about the impact of late Cenozoic cooling on erosion have been centered on the difficulty of find-
ing direct observations for (e.g., Herman et al., 2013; Molnar, 2004; Zhang et al., 2001) or against an increase of
erosion (e.g., Ganti et al., 2016; Willenbring & von Blanckenburg, 2010). The processes must be transient (Ganti
et al., 2016; Herman et al., 2013; Koppes & Montgomery, 2009; Molnar, 2004; Willenbring & von Blanckenburg,
2010; Zhang et al., 2001), but estimates of characteristic time scales for glacial erosion are lacking. Here we
take advantage of the most recent progress on the quantification of geomorphic processes, and on glacial
erosion processes in this particular case, to calculate erosion rates for climate forcings varying differently with
time. Our results show that the glacier characteristic time scale is between 10 and 10,000 years, which agrees
with other studies (Oerlemans, 2012; Roe & O’Neal, 2009), and that the glacial erosion time scale ranges from
ten thousand to ten million years, depending on rock uplift and ice accumulation rate.

The characteristic time for glacial erosion is comparable to Milankovitch cycles, but it also varies with rock
uplift and maximum accumulation rates. We show that the glacial erosion response time varies as the inverse
to the rock uplift rate and ice accumulation rate, but it also becomes insensitive to changes in the position
of the ELA under higher rock uplift rates and dry conditions. This result has important implications, because
one may expect to see the largest response to Quaternary glaciations in regions where the uplift rate is
moderate (0.3–1 mm/year) and climate is wet. Indeed, recent studies that investigated the impact of glacia-
tions on mountain erosion have suggested that the change in erosion may show a maximum at midlatitude
(Champagnac et al., 2014; Haeuselmann et al., 2007; Shuster et al., 2005; Thomson et al., 2010; Valla et al., 2012),
where ice accumulation rates were maximized during glacial periods. Furthermore, it has been observed
that the highest change in erosion rates have been documented in tectonically moderate mountain ranges
(Champagnac et al., 2014). Our results show that the increase may be as large as a factor of 4 in conditions of
low rock uplift rates, up to a factor of 2 in more active places, and is less pronounced in very active mountain
ranges (i.e., where the rock uplift rates are of the order of 5 mm/year).

Our results also highlight the important role of precipitation. Latitudinal patterns of glacial erosion are often
attributed to temperature gradients. However, spatial variations of fluvial and glacial erosion at a global scale
must be influenced by the patterns of precipitation associated with the westerly wind belts. Our results
suggest that the response time and amplitude of changes is highly dependent on precipitation or ice accu-
mulation rates. The response time of glacial erosion is long under dry conditions but the amplitude of erosion
changes remains small. In other words, it seems unlikely to observe a large increase of erosion in dry places.

Our analysis suffers from several important limitations that could be tested with more sophisticated
approaches. It neither includes other geomorphic processes, such as river incision or hillslope erosion, nor
the feedbacks they may have with glacial erosion. It also ignores the effects of isostasy, which could increase
the response time of glacial erosion to a time scale well beyond Milankovitch cycles (Ahnert, 1970; Braun et
al., 2015). Similarly, the ice was treated as isothermal, even though the effects of cold-based conditions on
glacial erosion and the evolution of topography are well documented (Garwood, 1910; Kleman & Stroeven,
1997; Sugden, 1968; Thomson et al., 2010; Tomkin & Braun, 2002). Finally, we show that the response time
depends on the length scale and that glacier length depends on uplift and precipitation and have limited our
numerical analysis to alpine type glaciers, that is, 10–40 km.

7. Conclusions

We have derived two expressions for two characteristic times for a glacier and its associated erosion in an
uplifting mountain range, which we validated using a numerical model. The glacier response time scale, 𝜏i, is
given by

𝜏i = L

(Kg

U

)1∕l

(34)

and the glacial erosion response time scale, 𝜏e, by

𝜏e =
L1∕n

K1∕l
g f 1∕n

s A1−1∕nU1−1∕l
(35)

𝜏i is much shorter (10 years to 10 kyr) than 𝜏e (10 kyr to 10 Myr). The exact response times depend on the
erosion parameters, Kg and l, and the rock uplift and accumulation rates.
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These derived time scales, combined results from numerical simulation, lead us to conclude that short period
forcing is dampened by the glacier response time and long period forcing (>1 Myr) may be dampened by the
erosion response of glaciers when the rock uplift rates are high.

Our analysis shows that an increase of glacial erosion in response to Quaternary cooling is physically plausi-
ble. The magnitude of erosion increase due to late Cenozoic cooling is expected to vary locally depending
on the tectonic and climate conditions. In particular, the response of glacial systems to the observed climatic
forcing of the Quaternary, including the Milankovich periods and the long-term secular cooling trend, sug-
gests the strongest response of glacial erosion to periodic climatic forcing corresponding to Plio-Pleistocene
climatic cycles, but the magnitude of the increase depends highly on rock uplift and ice accumulation
rates. The increase is expected to be highest in regions that are relatively wet and of moderate uplift rates
(i.e., 0.3–1 mm/year).

Appendix A: Semianalytical Scaling Relationship Between Glacier Length
and Uplift Rate

From equation (3), one can write that

q = −∫
x

0
A(x) dx (A1)

and from equation (4), limited to the case where the maximum accumulation rate or cutoff, c, is never reached:

q = −∫
x

0
𝛽 (z(x) + H(x) − E(x)) dx (A2)

Assuming that the sliding velocity is much greater than the deformation velocity, which is only strictly valid
for steep and wet glaciers, one can also write:

q = Hus = −∫
x

0
𝛽 (z(x) + H(x) − E(x)) dx (A3)

Differentiating this with respect to x leads to

𝜕H
𝜕x

= − 𝛽

us
(z + H − E) (A4)

and, after further differentiation:

𝜕2H
𝜕x2

= − 𝛽

us

𝜕 (z + H)
𝜕x

(A5)

From the steady state assumption, one can write as follows:

us = fs

(
𝜕(z + H)

𝜕x

)n

Hn−1 (A6)

or, using the previous relationship:

us = fs

(
us

𝛽

)n (
𝜕2H
𝜕x2

)n

Hn−1 (A7)

and the following relationship is obtained:

(
𝜕2H
𝜕x2

)n

Hn−1 = − 𝛽n

un−1
s fs

= −C (A8)

which shows that, at topographic steady state, at every point along a glacier, the product of the curvature of
the ice thickness (to the power n) by the ice thickness (to the power n − 1) is a constant which we will call C:

C = 𝛽n

u(n−1)
s fs

= 𝛽n

(U∕Kg)(n−1)∕l fs

(A9)
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Assuming that in the vicinity of any point x along the glacier, the ice thickness can be approximated by a
second-order Taylor expansion:

H(x − 𝜖) = H(x) − 𝜖
𝜕H
𝜕x

(x) + 𝜖2 𝜕
2H
𝜕x2

(x) + O(𝜖3) (A10)

We can derive a set of evolution equations from x to x − 𝜖 for the first- and second-order derivatives of the
ice thickness:

𝜕H
𝜕x

(x − 𝜖) = 𝜕H
𝜕x

(x) − 𝜖
𝜕2H
𝜕x2

(x) + O(𝜖2) (A11)

and

𝜕2H
𝜕x2

(x − 𝜖) = −C1∕nH−(n−1)∕n(x − 𝜖) (A12)

and the bedrock height:

z(x − 𝜖) = −𝜕H
𝜕x

(x − 𝜖)
us

𝛽
+ (E − H(x − 𝜖)) (A13)

We can use these evolution equations to derive the thickness of the glacier H(x) from the ELA down to the
base of the glacier. At the ELA, that is, at x = xe, we assume that the ice thickness is known H(x) = He. We also
assume that the ice thickness does not change as the accumulation rate is nil. One can therefore write

H(xe) = He;
𝜕H
𝜕x

(xe) = 0; 𝜕2H
𝜕x2

= C1∕nH−(n−1)∕n
e (A14)

and

z(xe) = E − He (A15)

We call Le the distance from xe where the ice thickness goes to zero:

H(xe − Le) = 0 (A16)

and make the assumption that this length is approximately equal to half the glacier length:

L = 2Le (A17)

After running a large number of computations varying all parameters, that is, U, Kg, 𝛽 , He, we found that the
length of the glacier scales as:

L ∝ U(n−1)∕2nl (A18)

regardless of the value of the other parameters.
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