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Abstract

The production of gas from unconventional resources became an important position in the world energy 

economics. In 2012, the European Commission's Joint Research Centre estimate 16 trillion cubic meters 

(Tcm) of technically recoverable shale gas in Europe. Taking into account that the exploitation of 

unconventional gas can be accompanied by serious health risks due to the release of toxic chemical 

components and natural occurring radionuclides into the return flow water and their near-surface 

accumulation in secondary precipitates, we investigated the release of U, Th and Ra from black shales 

by interaction with drilling fluids containing additives that are commonly employed for shale gas 

exploitation. 

We performed leaching tests at elevated temperatures and pressures with an Alum black shale from 

Bornholm, Denmark and a Posidonia black shale from Lower Saxony, Germany. The Alum shale is a 

carbonate free black shale with pyrite and barite, containing 74.4 µg/g U. The Posidonia shales is a 

calcareous shale with pyrite but without detectable amounts of barite containing 3.6 µg/g U.

Pyrite oxidized during the tests forming sulfuric acid which lowered the pH on values between 2-3 of 

the extraction fluid from the Alum shale favoring a release of U from the Alum shale to the fluid during 

the short-term and in the beginning of the long-term experiments. The activity concentration of 238U is 

as high as 23.9 mBq/ml in the fluid for those experiments. The release of U and Th into the fluid is 

almost independent of pressure. The amount of uranium in the European shales is similar to that of the 

Marcellus Shale in the United States but the daughter product of 238U, the 226Ra activity concentrations 

in the experimentally derived leachates from the European shales are quite low in comparison to that 

found in industrially derived flowback fluids from the Marcellus shale. This difference could mainly be 

due to missing Cl in the reaction fluid used in our experiments and a lower fluid to solid ratio in the 

industrial plays than in the experiments due to subsequent fracking and minute cracks from which Ra 

can easily be released.

Key words: unconventional gas production, black shales, flowback, radioactivity, NOR, batch 

experiments
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43 1. Introduction

44 Increasing gas production from unconventional shale gas plays in the United States (U.S.) and the 

45 related engineering improvements for shale gas production in terms of drilling and hydraulic 

46 fracturing took also exploitation of European shale gas under consideration. The U.S. Energy 

47 Information Administration (U.S. EIA, 2013) estimated that Europe could hold 13.4 Tcm (trillion 

48 cubic meters) technically recoverable shale gas. A similar value of 15.9 Tcm was estimated by the 

49 European Commission's Joint Research Centre (JRC, 2012). 132 shale gas exploitation and appraisal 

50 wells have been drilled in Europe so far, most of them in Poland, Sweden and the UK (AAPG, 2016). 

51 Due to commercial viability, political barriers and public concerns, roughly 2/3 of all companies 

52 relinquished their concessions or let them expire (AAPG, 2016). In Germany, eight wells were drilled 

53 since 2008 in the Wealden or in the Posidonia formation (both Lower Saxony) but no details about the 

54 gas flow were published. One well was drilled in the Alum shale in Denmark and the drilling of 17 

55 shallow wells into the Alum shale of Ostergötland is reported for Sweden from which only some 

56 showed a gas flow (AAPG, 2016).

57 The production of unconventional gas is linked with a high-pressure injection of several thousand 

58 cubic meters of water for each well (Gregory et al., 2011; SEAB, 2011) to create minute cracks in 

59 which hydrocarbons can flow to the wellbore. The formation and the operator determine the 

60 composition of the suspension for injection that is generally made of 90% water, 9 - 9.5% sand or 

61 ceramics and 1 - 0.5% chemical additives (e.g. Arthur et al., 2008; King, 2012; Wood et al., 2011). 

62 Additives could include small volumes of mainly hydrochloric acid (< 10 m3) injected during the 

63 initial stage of the gas exploitation to clean perforation tunnels and dissolve carbonate precipitates that 

64 seal veins. Chelating agents (e.g. citric, acetic acid) are added to the fracturing fluid to prevent the 

65 precipitation of iron and manganese compounds. Additional ingredients of the fracturing fluid could 

66 be corrosion inhibitors, friction reducers, surfactants, clay stabilizers, biocides and cross-linkers 

67 tailored for the specific lithological conditions (e.g. Arthur et al., 2008; Stringfellow et al., 2014). In 

68 practice, 10 - 80% of the injected suspension returns to the surface: the so called flowback (Arthur et 

69 al., 2008; Wood et al., 2011). The amount of flowback depends on formation characteristics, well 

70 design and operating parameters. 

71 To date, much of the research on the environmental impacts of unconventional gas production is 

72 related to the origin of gas leakages during drilling, exploitation and production (e.g. Molofsky et al., 

73 2013), the chemical composition of the flowback (e.g. Barbot et al. 2013; Chermak and Schreiber, 

74 2014; Dieterich et al., 2016; Gregory et al., 2011; Gordalla et al., 2013; Renock et al., 2016), the 

75 release of microbiota and organic molecules from the shales (e.g. Hölzer et al., 2016; Strong et al., 

76 2013; Zhu et al., 2015) and the enrichment of toxic trace elements like As, Cd, Co, Cr, Hg, Ni, Zn, U, 

77 V in the flowback (e.g. Marcon, et al., 2017; Wilke et al., 2015; Chermak and Schreiber, 2014 and 

78 references therein). Some studies deal with the release of naturally occurring radionuclides (NORs) of 

79 oil- and gas-field produced waters, scales or drill cuttings but these studies cover only very specific 
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80 areas such as the Marcellus shale in the Appalachian Basin (U.S.) (e.g. Chem and Sharma, 2016; Phan 

81 et al., 2015; Nelson et al., 2015 & 2014; Haluszczak et al., 2012; Rowan et al., 2011; NYSDEC, 

82 2009), the Bowland shale in the UK (Environment Agency, 2011) or one shale in Pomerania, Poland 

83 (Mykowska et al., 2015; Mykowska and Hupka, 2014). Therein, the focus is on alpha particle emitter 

84 of the 238U -, 235U - and 232Th - decay series e.g. 226Ra (Fig.1). 

85 238U series nuclides are often enriched in TOC-rich shales when U was scavenged as U(IV) under 

86 reducing conditions (e.g. Chen and Sharma, 2016; Chermak and Schreiber, 2014; Schovsbo, 2002; 

87 Stetten et al., 2018; Raiswell and Berner, 1985). It can be assumed that the reservoir of leachable U-

88 series nuclides initially relates dominantly to scavenging and/or chemical precipitation of uranium 

89 from weathering fluids whereas the proportion of U238- and Th232-series nuclides re-mobilized from 

90 weathering resistant minerals (e.g. zircon) is negligible. Uranium may be initially co-precipitated with 

91 Fe(Mn)OOH (Muller et al., 1995 and references therein) or hosting in biogenic calcite (Russell et al., 

92 1994) and may be initially or post-depositional immobilized as U(IV) to form, e.g. secondary uraninite 

93 (UO2), coffeinite (U(SiO4)1-x(OH)4x) or autunite (Ca[(UO2)(PO4)]2 · 10 - 12 H2O), depending on the 

94 composition of the coexisting fluids during early stages of sediment burial (Duff et al., 2002; 

95 Fredrickson et al., 2000; Cumberland et al., 2016; Lecomte et al., 2017). 

96 The release of U into the drilling fluid may depend on the amount of leachable U available from the 

97 shale deposits processed for gas exploitation but also from the carbonate and sulfide contents of the 

98 shale (e.g. Nelson et al., 2015; Wilke et al., 2015). Interaction of pyrite-rich shales with oxic fluids 

99 generates sulfuric acid that dissolves carbonates and can generate fluids with low pH when the 

100 buffering capacity of the carbonate gets exhausted (Chermak and Schreiber, 2014; Wilke et al., 2015). 

101 Decrease in pH favors the release of weakly bound cations from cation exchange sites and the 

102 solubility of minerals hosting uranium. If acids are present, either as ingredient in the fracturing fluid 

103 or formed by fluid-rock interactions during the course of shale gas production, U(IV) would be mobile 

104 even under reducing conditions (Garrels and Christ, 1965). Oxygen-containing fluids force the 

105 formation of easily soluble U(VI)-oxyanions. U(VI) or U(IV) release due to pH decrease during solid-

106 fluid interactions may be associated with the formation of less soluble secondary U(VI) or U(IV) 

107 precipitates with CO3
2- or PO4

3- that may counteract uranium increase in the return fluids (Sandino & 

108 Bruno, 1992; Stetten et al., 2018). 

109 226Ra (T1/2= 1600 a; 238U - series) and 228Ra (T1/2=5.76 a; 232Th-series) behave less mobile in natural 

110 environments (e.g. Vengosh et al., 2014), though they frequently show slightly enhanced activities in 

111 groundwater compared to their activities in surface waters (Schettler et al., 2015 and references 

112 therein). 226Ra and 228Ra are preferentially sorbed to ion-exchange sites of particle surfaces (Ames et 

113 al., 1983), get co-precipitated with BaSO4 or BaCO3 (Langmuir and Riese, 1985) or may be taken up 

114 by plants (Bettencourt et al., 1988). Moreover, Ra is efficiently scavenged by Mn(IV)-hydroxides 

115 which finds analytical application as a pre-concentration step for Ra (Charette et al., 2015 and 

116 references therein). These reactions will lower the concentration of dissolved Ra in the drilling fluid 
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117 and can yield substantial accumulative enrichments of Ra and its decay products (210Pb, 210Po) in 

118 coexisting solids at near-surface compartments (e.g. Nelson et al., 2015 and references therein). 

119 In this study, we determine and assess the activity concentrations of 238U, and 232Th from one Alum 

120 and one Posidonian black shale and, furthermore, the activity concentration of 238U and the radioactive 

121 decay product 226Ra from the experimentally derived black shale leachates. We intend to increase the 

122 knowledge about the amount of radioactive elements that might be enclosed in the drill cutting waste 

123 and that may become mobilized from black shales into the fluids, the radioactivity they produce and 

124 how European shales prospected for gas production differ in this topic from shales used for 

125 unconventional gas production in the U.S. (e.g. the Marcellus shales).

126

127 2. Experimental settings

128 2.1 Black shales

129 A black shale sample from the Upper Cambrian Alum shale of Scandinavia (Skelbro-2, Bornholm, 

130 Denmark) and one from the lower Jurassic Posidonia shale of central Europe (Haddessen, NW-

131 Germany) were chosen to simulate temporal changes in the composition of flow back water by 

132 solid/fluid interaction in lab experiments under defined conditions (Table 1; Fig. 2; see Wilke et al., 

133 2015 for details). The selection of shales was done in accordance with a perspective shale gas 

134 production (Horsfield et al., 2010). Both samples were taken from cores (not from cuttings) in 

135 lithologies suitable for industrial gas production. Samples have been milled to < 2 mm grain size and 

136 were not sieved to preserve different grain size fractions.

137

138 2.2 Extraction experiments

139 We designed two experimental set-ups consisting of A) 250 ml Erlenmeyer flasks connected with a 

140 reflux condenser for short-term experiments (24 h) under atmospheric pressure and at 100°C and B) of 

141 800 ml autoclaves made of a Ni-Cr-Mo-W alloy (Hastelloy™) coated inside with 

142 polytetrafluoroethylene (PTFE), for long-term studies of 2 and 6 month at 100 bar and 100 °C. Latter 

143 conditions roughly simulate the target formation in Damme 3 well (Lower Saxony, Germany), where 

144 hydraulic fracturing was performed in a shale at ca. 1-1.5 km depth at a pressure of 110-150 bar and a 

145 temperature of ca. 80 °C (Olsson et al., 2013). Both experimental set-ups run under oxidizing 

146 conditions. A solid to liquid ratio of 1:12.5 was applied for both experimental set-ups. Fluids in the 

147 autoclaves were O2-saturated and overlaid by headspace containing 1% O2 at the beginning of the 

148 experiment and 0.2% O2 at the end. About 3 ml fluid was sampled at each sampling time for HR-ICP-

149 MS measurements and the pH measured instantaneously before degassing to avoid a change in pH. 

150 After sampling, the pressure in the autoclave was re-adjusted to 100 bar by adding N2 from the gas 

151 pressure bottle. Further experimental details are given in Wilke et al. (2015).

152

153 2.3 Analytical methods
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154 We determined the initial mineralogical compositions of both shales using X-ray diffraction analysis 

155 (XRD) using a PANalytical Empyrean (Table 1). Elemental concentrations in the shales were 

156 determined by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS, 

157 THERMO ELEMENT XR) following HF-aqua regia (1/1) digestion, fuming with HClO4 and dilution 

158 by 1/1000 with 2% HNO3 (Table 2, Supplement 1). Reaction fluids from the experiments were filtered 

159 using a 0.45 µm Nylon membrane filter and diluted by 1/10 with 2% HNO3 before HR-ICP-MS 

160 analyses. For all measurements, calibration solutions with concentrations of 0.25 and 10 µg/l were 

161 applied and at least three aliquots of the reaction fluids were analyzed. The uncertainty for all ICP-MS 

162 analyses is about 2-5%. The detection limits of the applied analytical routine using ICP-MS in the high 

163 resolution mode typically ranged between 0.5 and 1 ng/g depending on the element.

164

165 2.4 Gamma-spectrometry

166 An amount of 4 ml out of 30-50 ml reaction fluid of the two short-term and on the beginning and the 

167 end of both long-term experiments was used for gamma spectrometry. Special treatment was needed 

168 for the reaction fluid from the short-term experiment using Alum. 40 ml fluid were diluted to 50 ml 

169 with 5% HNO3 prior analysis to dissolve precipitations from the fluid. Fluid activities were measured 

170 using a high purity well-type germanium detector of Canberra (cryostat model: 7915-30-ULB). 4 ml 

171 of the fluids were filled in PE tubes (d= 15 mm, h = 45 mm) for gamma measurements (Table 2). 

172 Our measurements aimed on the quantification of Ra activity concentrations of the 238U- and 232Th-

173 decay series. The Ra release of 238U and 232Th-decay series into the extraction fluids could be in 

174 similar order of magnitude due to Th and U concentrations of the shales.

175 Presumed 226Ra equilibrium with 238U, the theoretical number of counts for 214Pb (238U-series nuclide) 

176 at 351.92 keV exceeds the sum of counts for 226Ra and 235U 3.5-fold. Nonetheless, we decided to 

177 perform the 226Ra determinations at 186 keV for the following arguments: a) Background peaks of 

178 214Pb  at 295.21 keV  and  351.92 keV may vary over time due to changes in the 222Rn concentration of 

179 the lab-air b) we cannot be sure about the impermeability to 222Rn of the PE-tubes used and c) the 

180 efficiency calibrations that considered the 222Rn distribution between the headspace and the 4 ml fluid 

181 in the PE tubes were not available when we performed the measurements. 

182 The 186 keV peak is affected by 226Ra at 186.211 keV (3.64%) and 235U at 185.715 keV (57.0%) 

183 (NuDat2.7 Database (NNDC) 2017). Interferences by 234Pa at 186.15 keV with a recommended 

184 intensity of 0.00325 (Huang and Wang, 2011) and by 234mPa at 184.7 keV with an intensity of 0.00168 

185 (NuDat2.7 Database (NNDC) 2017) are neglectable. Detector calibration based on the measurement of 

186 a dilution of 4 ml NIST4966 Standard (289.1 Bq/ml) in the PE tube (41071 counts, uncertainty 0.53%, 

187 tmeas= 1919 s) yielded an efficiency of 0.49 at 186 keV. The inferred detector efficiency might be an 

188 overestimation if the standard includes impurities of 235U. An efficiency calibration using solid powder 

189 of Nussloch loess which considered 235U interference corrections for assumed 238U-226Ra equilibrium 

190 with the same fill height in the PE tube (IAG reference material data sheet) yielded a detector 
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191 efficiency of 0.47 at 186 keV that supports the plausibility of the efficiency calibration for the 4 ml 

192 fluid aliquots.

193 Uncertainty values for γ-counting at 186 keV of the fluid samples from the lab experiments varied 

194 between 5.4 and 16.8% (Table 2). Calculations followed the equations given in Supplement 2. 

195 Corrections for interferences by 235U are based on 238U concentration measurements using ICP-MS 

196 (Table 2). We considered an 238U/235U ratio of 137.818 ± 0.045 (Hiess et al., 2012) which corresponds 

197 to an activity ratio of 21.709. 

198 Long-term background measurements did not yield significant photopeaks at 186 keV above the 

199 background scatter. We did not consider spectral coincidences for photopeak measurements at 186 

200 keV which are minor (e.g. Yücel et al., 2010). A slight photopeak at 351.92 keV of 214Pb (35.6%) 

201 (tmeas= 13 days, 153 counts, uncertainty 26.4%) mostly represents the 222Rn activity in the measuring 

202 room and is not related to a significant 226Ra blank of the detector. Otherwise, it would be related to a 

203 226Ra activity blank concentration of 0.3 mBq/ml. 

204 The 232Th-decay series includes 224Ra and 228Ra. The most intense photopeak of 224Ra at 240.98 keV 

205 (4.1%) was not strong enough to be measurable in the extraction fluids of our experiment. Less intense 

206 photopeaks of 228Ra occur in the low-energy range, outside of our measuring span. Alternatively, the 

207 short-lived 212Pb of the 224Ra decay is detectable by its strong photopeak at 238.62 keV (43.6%) which 

208 is inferred by 224Ra at 240.98 keV (4.1%). We only obtained a photopeak at 238.62keV (tmeas= 

209 1208830 s, 235 counts) in the fluid sampled at the beginning of the long-term experiment using Alum 

210 Shale. 

211

212 3. Results

213 3.1 Shales

214 The XRD data show significant differences in mineralogy between the Alum shale from Bornholm, 

215 Denmark and from the Posidonia shale from Lower Saxony, Germany (Table 1). The Alum shale is 

216 non-calcareous and contains high amounts of pyrite whereas the Posidonia shale is carbonate rich and 

217 contains a lower amount of pyrite. ICP-MS data show a more than 20-times higher U content in the 

218 Alum shale (74.4 µg/g) compared to the Posidonia shale (3.6 µg/g; Table 2). 11.1 µg/g of 232Th was 

219 obtained from the Alum shale and 6.6 µg/g from the Posidonia shale.

220

221 3.2 Fluids

222 Due to pyrite oxidation and the formation of sulfuric acid during the course of the experiment the pH 

223 in the reaction fluid of the Alum shale declined to 2-3 (Table 2, Suppl. Table 1, Fig. 3), whereas the 

224 reaction fluid in contact with the Posidonia shale increased up to 7-8. Under oxidizing but neutral 

225 conditions during the short-term experiment with the carbonate-rich Posidonia shale ca. 0.2% of the 

226 uranium was mobilized from the shale (Table 2, Fig. 3). Under oxidizing and acidic conditions during 

227 the short-term and at the beginning of the long-term experiments using the pyrite-rich Alum shale and 
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228 EF ca. 32% and 22% of the uranium was mobilized, respectively (Fig. 3). 232Th was released from the 

229 Alum shale to the fluid with ca. 22% at the beginning of the long-term experiments and with ca. 0.8 % 

230 during the short-term experiment using the Alum shale and EF (Table 2, Fig. 3).

231 The activity concentration of 238U is as high as 23.9 mBq/ml in the fluids of the short-term experiment 

232 with the Alum shale. During the long-term experiment with the Alum shale 238U-activity 

233 concentrations, calculated on the basis of the ICP-MS analyses, decreased from 16 mBq/ml to 0.0006 

234 mBq/ml. For all Posidonia shale extracts the activity concentration of 238U is very low (≤ 0.0075 

235 mBq/ml) or below detection limit. The activity concentrations for 226Ra lie between 3.5 and 

236 5.0 mBq/ml in Alum shale experiments (Table 2). The activity concentrations of dissolved 226Ra 

237 remained unchanged at 4.1 mBq/ml between the beginning and the end of the long-term experiment 

238 with the Posidonia shale using the extraction fluid (EF).

239

240 4. Discussion

241 A study of the International Atomic Energy Agency (IAEA, 2003), which compiles the current 

242 knowledge about the characteristics, occurrence in various compartments, and activity concentration 

243 ranges of natural radionuclides at oil and gas exploitation sites (Chapter 5.3; page 55 and Chapter 5.5; 

244 page 56), states that 238U and 232Th are not mobilized and largely remain in the reservoir (IAEA, 2003).

245 The U content of the Alum shale from Denmark used in our experiments (74.4 µg/g) is a little lower 

246 than the mean values of the two upper Cambrian Alum shales in Bornholm, namely from the Olenus 

247 and Peltura zones with 92 µg/g and 100 µg/g, respectively, and is similar to the lower-most 

248 Ordovician Alum shale from Denmark with 73 µg/g (Schovsbo, 2002) and an Alum black shale from 

249 Sweden (72.6 µg/g; Lavergren et al., 2009). It is shown that the primary enrichment of U in the upper 

250 Cambrian Alum shale has likely been taken place by the diffusion of ions through the seafloor along 

251 sulfate reductions horizons at or above the sediment-water interface (Schovsbo, 2002). During the 

252 middle Cambrian, scavenging of uranium onto organic particles lead primarily to the uranium 

253 enrichment in the Alum shales (Lecomte et al., 2017). The Posidonia shale contains 3.6 µg/g U. 

254 Comparing both European shales with the Marcellus shale in the U.S., the investigated shales show 

255 comparable contents in U whereas the experimentally derived leachates show a much lower 226Ra 

256 activity (Table 2) than published Ra activities of the flowback water from the Marcellus shale. The 

257 Devonian Marcellus shale is known for particularly high U contents compared to those of other shales 

258 in the U.S., such as Eagle Ford, Utica or Antrim (Chermak and Schreiber, 2014; Kargbo et al., 2010). 

259 Whole rock ICP-MS analyses show 13.5±0.3 µg/g U for a Marcellus shale from the Chenago County, 

260 NY (Renock et al., 2016), between 0.6 and 72.3 µg/g U for a Marcellus shale from Greene County, PA 

261 (Chen and Sharma, 2016) and 2-47 µg/g for Marcellus shale from the Tioga and Greene Counties, NY 

262 and PA respectively (Phan et al., 2015). 
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263 In our experiment, the non-calcareous U-rich Alum shale behaves differently than the calcareous 

264 Posidonia shale. The reaction fluid of the calcareous Posidonia shale had a pH of 7-8 during the course 

265 of the experiments and only 0.2% of the U was mobilized from the solids. The pyrite-rich and 

266 carbonate-free Alum shale leads to an acid reaction fluid with a pH of 2-3 containing max. 32% of the 

267 U that the shale initially contained (Fig. 3). One has to take into account that the Alum shale has no 

268 carbonate that could counteract the pH decrease in the fluid due to oxidizing of pyrite. The actual 

269 uranium concentrations in the shale and the substantially higher pyrite concentrations in the Alum 

270 shale compared to the Posidonia shale are the driving prerequisites to generate the high U-content in 

271 the extraction fluids. 238U is detectable for all extracts except for the beginning of the long-term 

272 experiment using the Posidonia shale. We obtained enhanced 238U activities, calculated on the basis of 

273 the ICP-MS analyses, in the reaction fluids during the short-term (23.9 mBq/ml) and at the beginning 

274 of the long-term (16.0 mBq/ml) experiment using the Alum shale.

275 Compiled Marcellus shale flowback data show a max 238U activity concentration of 5.6 mBq/ml with a 

276 median (N=16) of 0.012 mBq/ml but there is no information about the sampling time after hydraulic 

277 fracturing (e.g. Abualfaraj et al., 2014; Haluszczak et al. 2012 and references therein). Following 

278 hydraulic fracturing, an increase in the U concentration of the produced water was observed during the 

279 first week in the Marcellus shale (Phan et al., 2015) and in the Niobrara formation, NE-Colorado 

280 (Rosenblum et al., 2017) whereas in later stages of the gas exploitation the U concentration dropped. 

281 This is similar to the results of our long-term experiment using the Alum shale (Fig. 3). After U(IV) is 

282 oxidized to the soluble and hence readily mobile U(VI) it could scavenged by FeOOH precipitates or 

283 reduced again inorganically by Fe2+ or Mn2+ species (via e.g. Fe2+⇔Fe3++e-) that are either present 

284 dissolved in the aqueous phase or structurally sorbed to phyllosilicates, phosphates or oxides (e.g. 

285 Stetten et al., 2018 and references therein). Oxidation of pyrite, present in the Marcellus, Alum and 

286 Posidonia shales (Table 1) yields reactive Fe2+ that was leached in our experiments. 

287 Due to their age, the 226Ra activity concentrations of both shales leached in our experiments can be 

288 assumed to be in secular equilibrium with 238U. The 226Ra activities of the low-pH Alum shale extracts 

289 slightly exceeded those of the Posidonia shale (Table 2) in the long-term experiments. Obtained 226Ra 

290 activity concentrations from the Alum shale extracts seem to increase during the course of that 

291 experiment but are similar taken the given count uncertainties into account. Therefore, our findings do 

292 neither support nor oppose results of produced waters from the Marcellus shale by Rowen et al. 2011 

293 in which the total Ra activities have been found to be higher in later production stages. 

294 A rough Ra release estimation from the shales into the extraction fluids, taken into account the U 

295 concentration of the solids determined by ICP-MS, the ratio of solids and liquids used during the 

296 experiments and the presupposed equilibrium between 238U and 226Ra show that ca. 80% of the solid-

297 bound 226Ra was released from the Posidonia shale but only <5% from the Alum shale. We suggest 
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298 that the detectable minor percentages of Ra released from the Alum shale into the fluid could point to 

299 co-precipitation of Ra with secondary sulfates (Fisher, 1998) like moorhousite and bianchite that were 

300 evident using X-ray diffraction (see Wilke et al., 2015 for details) or to a recrystallisation of barite 

301 (Grandia et al., 2008). The Ba concentrations in the Posidonia extractions increased during the course 

302 of the long-term experiment, whereas the increase of dissolved sulphate associated with the oxidation 

303 of pyrite for the Alum shale experiment might have counteracted a Ba increase in the coexisting fluid 

304 by the precipitation of Ba-rich sulfates (Supplement 1).

305 Ra can be remobilized from particle surfaces by replacement with other similar cations such as Ca, 

306 depending on their concentration in the extraction fluid and/or released by dissolution of chemical 

307 precipitates. Radiation damage may favor Ra liberation from solids but is unlikely. Secondary 

308 precipitates of U less strongly bind 226Ra than detrital minerals such as zircons that also host 232Th. At 

309 the beginning of the short-term experiment using Alum shale we measured weak 224Ra and 212Pb 

310 photopeaks, indicating very low 228Ra activity concentrations. The dominance of 226Ra versus 228Ra in 

311 the experimental fluids is likely related to differences in the solid substrates hosting 238U and 232Th. 

312 226Ra-bearing solids may be dominantly represented by chemical precipitates hosting U from which 

313 226Ra is easily released, whereas 228Ra should be predominantly hosted in fluvial or aeolian debris that 

314 more strongly embeds the 232Th-series nuclides. Substantial 226Ra/228Ra fractionation associated with 

315 precipitation from the fluid or due to cation exchange is unlikely.

316 The Pennsylvania Department of Environmental Protection (PA DEP, 2009; unpublished) analyzed 25 

317 flowback fluids from Devonian Marcellus shale typically using gamma-spectrometry and obtained a 

318 226Ra activity concentration as high as 625 mBq/ml (median A[226Ra]: 22 mBq/ml; max. total 

319 (226Ra+228Ra): 667 mBq/ml; median total (226Ra+228Ra): 35 mBq/ml). The New York State 

320 Departments of Environmental Conservation (NYSDEC, 2009) detected a 226Ra activity concentration 

321 as high as 593 mBq/ml out of 13 flowback fluids (median A[226Ra]: 203.1 mBq/ml) from the 

322 Marcellus shale. Since there is no information about the analytical method, the data need to be handled 

323 with care (Nelson et al., 2014). Latter study observed 670±26 mBq/ml in Marcellus shale flowback 

324 water. The United States Geological Survey (USGS) analyzed 14 production waters from Devonian 

325 Marcellus shale in Bradford County, PA and obtained a 226Ra activity concentration as high as 201 

326 mBq/ml (median A[226Ra]: 64 mBq/ml; max. total (226Ra+228Ra): 231 mBq/ml; median total 

327 (226Ra+228Ra): 91 mBq/ml Rowen et al., 2011). Here, Ra was co-precipitated with Ba and the 

328 precipitate measured by gamma-spectrometry. All studies revealed median activities that are higher 

329 than the industrial effluent discharge limit of 2.2 mBq/ml for 226Ra (U.S. Nuclear Regulatory 

330 Commission, 2011). 

331 For comparison, the Environment Agency of UK published a report in 2011 about the Bowland shale. 

332 The flowback of the Preese Hall well showed 226Ra activity concentrations between 14±2.1 and 90±12 
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333 mBq/ml. This is three to twenty-times higher to our experimental findings of 3.5 - 5.0 mBq/ml using 

334 the Alum shale but in the range of median 226Ra activities for Marcellus shale flowback fluids derived 

335 by PA DEP (2009) and Rowen et al. (2011). In a recent publication from Jodłowski et al. (2017), 

336 returned frackturing fluids, drilling mud and proppants as well as drill cuttings were subject to activity 

337 measurements from multiple rigs from either the Baltic basin or the Lublin Trough in north-eastern 

338 Poland. The returned fracturing fluids were sampled after a set a solid–fluid separators on-site. The 

339 238U activity concentrations (< 30 mBq/ml) and the 226Ra activity concentrations (2-70 mBq/ml; 

340 median 43 mBq/ml) of the Polish sites cover our experimental data.

341 In contrast to the U concentration in flowback fluids at shale gas production sites, the activity 

342 concentration of Ra was found to be higher in late stage production waters of active industrial shale 

343 gas production (e.g. Haluszczak et al., 2012) but kept quite constant in both long-term experiments. 

344 The main reason for elevated Ra activities in flowback fluids from production sites compared to those 

345 from our reaction fluids could be seen in the fluid itself because our experimental fluids do not have 

346 elevated Cl concentrations (e.g. Kraemer and Reid, 1984; Fisher, 1998; Vengosh et al., 2014; Nelson 

347 et al., 2015) and our experiments do not simulate connected intra-and intergranular pores filled with 

348 reservoir water (Dresel and Rose, 2010) from which Ra can easily release. Furthermore, a smaller 

349 fluid to solid ratio due to minute cracks in grains after subsequent hydraulic fracturing in industrial 

350 drills would also explain the differences in the activity concentrations of 226Ra. 

351 5. Conclusions

352 The Posidonia shale from Germany and the Alum shale from Denmark, both differ in their 

353 mineralogical and chemical composition were chosen to quantify the release of U, Th and Ra by 

354 solid/water interaction in long-term lab experiments under defined experimental conditions. 

355 Temperature, pressure, and initial fluid composition roughly simulated the target formation in Damme 

356 3 well, Lower Saxony, Germany. The flow through character regarding the solid/fluid interaction, 

357 however, could not be simulated in the static lab experiments, which probably underestimated the 

358 solid/fluid ratio during the real gas exploitation. The release of U into the extraction fluid appears to be 

359 independent from pressure and independent from the pH of the initially applied fluid during gas 

360 exploitation (Wilke et al., 2015) but depends on the carbonate and sulfide contents of the shales and 

361 therewith also from the pH of the resulting fluid as well as the amount of leachable U in the shale. Our 

362 findings point to a preferential Ra release from U-hosting solids.

363 The carbonate-rich Posidonia shale which contains less U and Th than the non-calcareous and pyrite-

364 rich Alum shale also releases comparably low amounts of U and Th whereas the Ra release from the 

365 shales into the extraction fluid was similar. Both European shales show comparable contents in U than 

366 reported by the USGS for the Marcellus shale. However, the experimentally derived flowback samples 

367 show much lower Ra activity concentrations than the flowbacks from the Marcellus shale. The main 

368 reasons could be a) the missing Cl in our reaction fluid that is naturally present in the reservoir fluids, 
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369 b) that in industrial plays the fluid to solid ratio is most probably smaller c) minute cracks and well 

370 connected intra-and intergranular pore spaces facilitate the release of Ra in industrial drills and d) co-

371 precipitation of Ra or recrystallization of barite. 

372
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563 Figure Captions
564
565 Fig. 1 Upper radioactive decay chains for A) 238U and B) 232Th. Half-lives are given: a=years, d=days, 
566 h=hours, m=minutes, s=seconds. Half-lives from the international nuclear structure and decay data 
567 network under the auspices of the IAEA. https://www-nds.iaea.org/relnsd/NdsEnsdf/QueryForm.html. 
568 Radionuclides marked by a green background were quantitatively determined for this study.
569
570 Fig. 2 Geographic map showing the location of described black shales in Europe. The map was 
571 adapted from the Esri World Geocoder. The Alum shale distribution is modified from Buchardt et al., 
572 1997 and the Posidonia shale distribution adapted from the BGR (2016). Red circles show our sample 
573 locations.
574
575 Fig. 3 ICP-MS analyses of U and Th of fluids sampled during the course of long-term experiments 
576 using both shales and the extraction fluid (EF). The uncertainty is approx. 5%. On the secondary axis, 
577 the pH is given.
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Table 1. Description and composition of black shales from europe and the US for comparison. Mineral abbreviations after Whitney and Evans, 2010. 
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Supplement 2: Specifications of the radiometric analyses and calculation formula

Variables used

Eff (186 keV)= 0.49 Detector efficiency at 186 keV

Ab[235U (185.715keV)]= 57.0% Intensity

Ab[226Ra (186.21keV)]= 3.64% Intensity 

counts (186 keV)

Δtmeas (s) Measuring time

Av= 6.02x1023 mol-1 Avogadro constant
238Umeas (ng/ml) ICP-MS results

A[238U]calc (mBq/ml) calculated on the basis of ICP-MS analyses

T1/2[238U] = 4.47x109 a Half-life 238U

T1/2[235U]= 7.04x108 a Half-life 235U
238U/235U = 137.818 ± 0.045 (2σ) after Hiess et al. (2012)

A[238U]/A[235U] = 21.709 Reciprocal is 0.04606

Vmeas = 4 ml Volume aliquot for γ-measurement

𝐴[238
 𝑈](𝑚𝐵𝑞/𝑚𝑙) =

(238
 𝑈

 
[𝑚𝑒𝑎𝑠](𝑛𝑔/𝑚𝐿) × 10 - 6 × 𝐴𝑣 × ln⁡(2))

238 × 𝑇1/2[238
 𝑈] × 365.2422 × 24 × 3600

𝐴[235
 𝑈](𝑚𝐵𝑞/𝑚𝑙)=

𝐴[238
 𝑈]

21.709

𝐴[226
 𝑅𝑎](𝐵𝑞𝑚𝑙) = [ 𝑐𝑜𝑢𝑛𝑡𝑠[186𝑘𝑒𝑉]

𝑉𝑚𝑒𝑎𝑠 × 𝑡𝑚𝑒𝑎𝑠 ×  𝐸𝑓𝑓[186𝑘𝑒𝑉] - 𝐴[235
 𝑈] × 0.57] × 1

0.0364


