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Abstract Understanding the variability of the ionosphere is important for the prediction of space
weather and climate. Recent studies have shown that forcing from the lower atmosphere plays a significant
role for the short-term (day-to-day) variability of the low-latitude ionosphere. The present study aims to
assess the importance of atmospheric forcing for the variability of the daytime equatorial ionospheric
electric field on the interannual (year-to-year) time scale. Magnetic field measurements from Huancayo
(12.05∘S, 75.33∘W) are used to augment the equatorial vertical plasma drift velocity (VZ ) measurements
from the Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere radar during
2001–2016. VZ can be regarded as a measure of the zonal electric field. After removing the seasonal
variation of ∼10 m/s, midday values of VZ show an interannual variation of ∼2 m/s with an oscillation period
of 2–3 years. No evidence of solar cycle influence is found. The Ground-to-topside Atmosphere-Ionosphere
model for Aeronomy, which takes into account realistic atmospheric variability below 30 km, reproduces
the pattern of the observed interannual variation without having to include variable forcing from the
magnetosphere. The results indicate that lower atmospheric forcing plays a dominant role for the observed
interannual variability of VZ at 1200 local time.

1. Introduction

The zonal electric field in the equatorial ionosphere is typically on the order of 10−4 V/m (Alken et al., 2013;
Balsley, 1973; Fejer, 1981; Richmond, 1995a). The electromotive force responsible for the equatorial electric
field is generated by the dynamo action of neutral winds in the thermosphere (Du & Stening, 1999; Maute
et al., 2012; Stening, 1995). The zonal electric field is closely associated with the vertical plasma motion over
the magnetic equator, as the ionospheric plasma tends to move in the direction of E × B (e.g., Richmond,
1995b), where E is the electric field and B is the Earth’s main magnetic field. (Note that B is completely
horizontal at the magnetic equator.) Ground and satellite measurements of the equatorial vertical plasma
velocity (VZ ) have revealed upward (VZ >0) and downward (VZ <0) drifts during daytime and nighttime,
respectively, corresponding to the eastward and westward electric fields (Fejer et al., 1979, 2008; Kil et al., 2007;
Scherliess & Fejer, 1999; Woodman, 1970). The daytime eastward electric field drives the equatorial electrojet,
which is a narrow band of relatively strong E region current flow (several amperes per square kilometer) along
the magnetic equator (Alken & Maus, 2007; Lühr et al., 2004).

In the daytime F region, the equatorial plasma, which is lifted by the upward drift, diffuses downward and
poleward along geomagnetic field lines due to gravity and plasma pressure gradients (Hanson & Moffett,
1966). As a result, there is a depletion of the plasma density over the magnetic equator and a local plasma
density maximum on both sides of the magnetic equator (about 15∘–20∘ away from the magnetic equator).
This plasma density structure in the daytime F region is referred to as the equatorial ionization anomaly
(EIA) (e.g., Jee et al., 2004; Lin et al., 2007). Studies have shown that the intensity and location of the two EIA
crests depend strongly on the equatorial electric field (Rastogi & Klobuchar, 1990; Rush & Richmond, 1973;
Stolle et al., 2008). Therefore, understanding the behavior of the equatorial electric field is important for the
prediction of the F region plasma distribution.

Traditionally, studies of the low-latitude ionosphere considered two types of external energy sources. One
is solar radiation especially at extreme ultraviolet (EUV) and X-ray wavelengths, which are most significant
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for the heating and photoionization of the upper atmosphere (e.g., Solomon & Qian, 2005). The solar activity
cycle causes the 11-year variation of the plasma density (e.g., Li et al., 2018; Liu et al., 2007; Zhao et al., 2009)
and currents (e.g., Matzka et al., 2017; Yamazaki et al., 2011) in the low-latitude ionosphere. The other external
source of ionospheric variability is the energy deposition from the magnetosphere (e.g., Fuller-Rowell et al.,
1994; Lu et al., 2014). Disturbances of the ionosphere start in the polar region but eventually extend to lower
latitudes. Observations have shown that the equatorial ionosphere can be significantly disturbed during geo-
magnetic storms (e.g., Lin et al., 2005; Nava et al., 2016). Empirical models of the ionosphere often involve solar
flux indices, such as F10.7 (Tapping, 2013), and geomagnetic indices, such as Kp, to take into account the influ-
ence of solar and magnetospheric forcing, respectively (e.g., Bilitza et al., 2014; Lean et al., 2011; Mukhtarov,
Andonov, et al., 2013; Mukhtarov, Pancheva, et al., 2013; Themens et al., 2017).

Studies in the last decade have revealed that the upper atmosphere is also under a significant influence of
forcing from the lower layers of the atmosphere. The energy and momentum can be transferred from the
lower atmosphere to the upper atmosphere in the form of various atmospheric waves (e.g., Liu, 2016a;
Oberheide et al., 2015; Yiğit & Medvedev, 2015). Model studies have shown that lower-atmospheric forcing
can make a significant contribution to the short-term (day-to-day) variability in the low-latitude ionosphere
(Fang et al., 2013; Jin et al., 2011; Liu et al., 2013; Maute et al., 2016; Pedatella et al., 2016). Observations
have also provided evidence to support the effect of lower-atmospheric forcing on the upper atmosphere.
For example, significant disturbances were observed in the low-latitude ionosphere following the January
2009 sudden stratospheric warming event (e.g., Chau et al., 2010; Goncharenko, Chau, et al., 2010;
Goncharenko, Coster, et al., 2010; Liu et al., 2011; Pedatella et al., 2014; Yamazaki et al., 2012; Yue et al.,
2010). Such disturbances cannot be reproduced by traditional empirical models that consider only solar and
magnetospheric forcing.

The present study also concentrates on the lower-atmospheric impact on the upper atmosphere, but our
focus is on interannual variability, which has been much less explored. By interannual variability, we mean the
changes that occur from 1 year to the next, or longer. In this study, we consider the time scales longer than a
year up to a solar cycle (∼11 years). Recently, we reported on the interannual variability of the ionospheric solar
quiet (Sq) current system (Yamazaki et al., 2017). We found an interannual variation with a period of approx-
imately 28 months in the central position of the Sq current loop over Japan during 2005–2013, when solar
and magnetospheric activities were relatively low. It was suspected that the 28-month variation of Sq might
be caused by atmospheric tides in the dynamo region (90–150 km), which showed similar variability due to
the influence of the quasi-biennial oscillation (QBO) (Baldwin et al., 2001) in the tropical stratosphere. Since
the dynamo region winds lead to both Sq currents and ionospheric electric field, the interannual variation
of the electric field might also contain useful information regarding the possible effect of lower-atmospheric
forcing. In this study, we determine for the first time the interannual variability of the daytime equatorial elec-
tric field using measurements from the Peruvian sector. The results are compared with a first-principle model
to evaluate the contribution of lower-atmospheric forcing.

2. Data and Model
2.1. JULIA radar
The Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere (JULIA) radar (Hysell
et al., 1997) is located in the Jicamarca Radio Observatory (11.97∘S, 76.87∘W), near Lima, Peru (see Figure 1).
The JULIA radar routinely measures the vertical Doppler velocity of the so-called “150-km echoes,” which are
typically observed in the height range of 140–170 km during daytime hours (Chau & Kudeki, 2006). This quan-
tity is known to give a measure of the E×B vertical plasma drift velocity (VZ) (Chau & Woodman, 2004; Kudeki &
Fawcett, 1993), which is related to the zonal electric field. We used the average velocity over 140–170 km mea-
sured at 5-min intervals during August 200 to March 2016, which were obtained from the Madrigal database
(jro.igp.gob.pe/madrigal/).

2.2. Magnetometers
We used ground-based magnetometer data from the Huancayo Geomagnetic Observatory (12.05∘S,
75.33∘W), located close to the Jicamarca Radio Observatory (see Figure 1). Being near the magnetic equa-
tor, the horizontal (H) component of the geomagnetic field at Huancayo shows large daily variations due to
the equatorial electrojet. The 1-min resolution data were obtained from the World Data Center for Geomag-
netism, Edinburgh (www.wdc.bgs.ac.uk) for 2001–2002 and from the INTERMAGNET (Love & Chulliat, 2013)
(www.intermagnet.org) from 2003 onward.
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Figure 1. Map of stations in the American longitude sector used for this study. Blue dots indicate ground magnetometer
stations, while the yellow dot shows the location of the Jicamarca Unattended Long-term Investigations of the
Ionosphere and Atmosphere (JULIA) radar. The red line indicates the magnetic equator for January 2013. The
Quasi-Dipole latitude is 0.18∘N at Huancayo (HUA), 6.69∘N at Piura (PIU), 5.20∘S at Villa Remedios (VRE), and 26.58∘N at
San Juan (SJG), for January 2013. LT = local time.

We also used the 1-min data from the following stations: Villa Remedios (16.77∘S, 68.17∘W), Piura (5.17∘S,
80.64∘W), and San Juan (18.12∘N, 66.15∘W). These stations are all located in the American longitude sector
outside the equatorial electrojet belt, which extends approximately ±3∘ from the magnetic equator. Thus,
the influence of the equatorial electrojet is less than at Huancayo. The location of these stations is indicated
in Figure 1. The 1-min data from Villa Remedios for January 2013 are available at GFZ Data Services (Matzka
et al., 2018). The Piura data and the San Juan data can be obtained from the Low-Latitude Ionospheric Sensor
Network (LISN) database (lisn.igp.gob.pe) and the INTERMAGNET, respectively.

2.3. GAIA Model
Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) is a physics-based model of
the coupled atmosphere-ionosphere system, extending from the ground to the exobase (e.g., Jin et al., 2011;
Liu et al., 2013; Miyoshi et al., 2012). The horizontal resolution of the model is 2.8∘ in longitude and latitude,
and the vertical resolution is a grid point per 0.2 scale height. GAIA incorporates an ionospheric wind dynamo
model that enables the calculation of the equatorial vertical plasma drift velocity (Jin et al., 2008).

Miyoshi et al. (2017) performed a long-term GAIA simulation for the years 1997–2013. Later, the simulation
was extended until 2016 (Liu et al., 2017; Yamazaki et al., 2017). The present study uses the model outputs from
this long-term run. Following Jin et al. (2012), the lower atmosphere below 30 km was constrained with mete-
orological reanalysis data using a nudging technique. Specifically, 6-hourly data from the Japanese 25-year
Reanalysis (Onogi et al., 2007) were used for 1997–2013 and the Japanese 55-year Reanalysis (Kobayashi et al.,
2015) from 2014 onward. This procedure introduces realistic atmospheric variability in the lower atmosphere
that acts as external forcing for the upper atmosphere, including the variability on the interannual time scale.
The F10.7 index was used as a proxy of the solar extreme ultraviolet flux intensity, which can also induce interan-
nual variability. The cross polar cap potential, which relates to the energy deposition from the magnetosphere,
was assumed to be low and constant (= 30 kV) throughout the simulation so that the interannual variability
will not result from magnetospheric forcing.

3. Estimation of VZ using Magnetometer Data

In this section, we explain how we derived monthly mean values of the midday VZ using a combination of
JULIA radar data and Huancayo magnetometer data. It was necessary to include the magnetometer data due
to gaps in the temporal coverage of the JULIA radar measurements. The JULIA VZ data cover approximately
140 days/year, and they are not evenly distributed throughout the year. This makes it sometimes difficult to
derive a robust estimate of the monthly mean value of VZ . Figure 2a shows the availability of JULIA VZ data
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Figure 2. Availability of the daytime data (1000–1400 LT) for (a) the equatorial vertical plasma drift velocity VZ from the
Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere (JULIA) radar and (b) the
geomagnetic field at Huancayo when 𝜉SMR ≤ 20 nT. The parameter 𝜉SMR is defined as the difference between the
maximum and minimum values of the four SuperMAG ring current indices. See text for more details.

between 1000 local time (LT) and 1400 LT for each month during August 2001 to March 2016. The average
data coverage is 31%. In order to overcome this shortage, we used the Huancayo magnetometer data, which
provide a better coverage during the period of our investigation (see Figure 2b). It is known that the intensity
of the equatorial electrojet, which can be estimated from the H component of the surface magnetic field,
correlates well with VZ (Anderson et al., 2002, 2004). Thus, once the relationship between VZ and the equatorial
electrojet intensity is determined, one can derive VZ from H.

There are two ways to evaluate the equatorial electrojet intensity using ground-based magnetometer data.
The first method involves two magnetometers: one magnetometer being right at the magnetic equator
and the other magnetometer being in approximately the same longitude but several hundred kilometers
away in the north or south from the magnetic equator (e.g., Manoj et al., 2006; Rastogi & Patil, 1986; Yizengaw
et al., 2012, 2014). Since the equatorial electrojet is confined within ±3∘ from the magnetic equator, H at the
magnetic equator is much more affected by the equatorial electrojet than H outside the equatorial electrojet
belt. Meanwhile, magnetospheric currents affect H in the same way at the two locations because the spatial
scale of magnetospheric currents is much greater than the distance between the two magnetometers. There-
fore, the difference of H at the two locations is substantially free from the effect of magnetospheric currents
but still contains the magnetic field produced by the equatorial electrojet. The deviation of this quantity from
nighttime data, when the equatorial electrojet is vanishingly weak, gives a measure of the daytime equatorial
electrojet intensity.

The other approach involves H from only one magnetometer close to the magnetic equator (Le Huy &
Amory-Mazaudier, 2005; Siddiqui et al., 2015; Uozumi et al., 2008). The effect of large-scale magnetospheric
currents is removed by subtracting a ring current index, such as Dst. After subtracting the nighttime baseline,
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the residual in H represents the magnetic effect of the equatorial electrojet. The problem of this technique is
that large-scale magnetospheric currents are not zonally symmetric when geomagnetic activity is very high
(e.g., Love & Gannon, 2010), and thus, ring current indices fail to remove the effect of magnetospheric currents
from H at individual stations (e.g., Olwendo et al., 2017).

We initially employed the two-station method using H from Huancayo and Piura, but the results were not sat-
isfactory because of incompleteness and/or questionable quality of the Piura data in some months. Thus, the
one-station method was preferred. Yamazaki and Maute (2017, pp. 324) presented a technique that simultane-
ously determines the effect of ring current and main field using a monthly record of H and the corresponding
Dst index. For the present study, we have revised the technique and applied it to the H data from Huancayo.
We used the SuperMAG ring current indices (Newell & Gjerloev, 2012) instead of the standard Dst index. The
SuperMAG ring current indices consist of SMR-00, SMR-06, SMR-12, and SMR-18, which are computed in a sim-
ilar way as the Dst index but separately derived for 0000, 0600, 1200, and 1800 magnetic local time sectors,
based on 1-min magnetometer data collected from nearly 100 middle- and low-latitude SuperMAG stations
(Gjerloev, 2012). We used the average of the four indices (denoted here as SMR) and the difference between
the maximum and minimum values of the four indices (denoted here as 𝜉SMR). As mentioned earlier, the
one-station method tends to fail when the zonal asymmetry of magnetospheric currents is not negligible.
Thus, the H data were discarded when 𝜉SMR is larger than 20 nT. As in Yamazaki and Maute (2017), the data
analysis was separately performed for each month of each year. After removing the data with 𝜉SMR > 20 nT,
we fitted SMR to the nighttime data (±2.5 hr from the midnight) of the same month and subtracted the fit
from all the H data. The residual, denoted here as ΔH, is a measure of the equatorial electrojet intensity at
Huancayo.

Figure 3 illustrates how our technique works using an example of December 2002. In Figure 3a, the black line
shows 1-min H data from Huancayo. The green line indicates the periods when magnetospheric currents are
highly asymmetric (𝜉SMR > 20 nT). Such periods are generally coincident with the times of relatively high
geomagnetic activity, as shown in Figure 3c. The data with 𝜉SMR > 20 nT are not used in the calculation of ΔH
nor in the evaluation of the midday VZ based on ΔH, which will be explained later. The red line in Figure 3a is
the fit in the form 𝛼 + 𝛽T + 𝛾SMR to the nighttime H data that are indicated by the blue “x” symbols. Here T is
time in Julian days. The fitting coefficients 𝛼, 𝛽 , and 𝛾 can be determined by the least squares method. There
was a weak storm during this month, starting from 19 December 2002, and moderate-to-high geomagnetic
activity lasted for many days (see Figure 3c). The minimum value of SMR was−74 nT, recorded on 21 December
2002. Figure 3b showsΔH (i.e., H minus the SMR fit).ΔH tends to be positive during daytime, corresponding to
the eastward flow of the equatorial electrojet, and around 0 during nighttime when the equatorial electrojet is
essentially nonexistent. The large day-to-day variability in the daytimeΔH data is partly due to the response of
the equatorial electrojet to variable magnetospheric forcing (e.g., Huang, 2012; Kikuchi et al., 2008; Yamazaki
& Kosch, 2015) and also partly due to the effect of tides and planetary waves from the lower atmosphere
(Kawano-Sasaki & Miyahara, 2008; Yamazaki, Richmond, Maute, Liu, et al., 2014).

The next step is to determine the quantitative relationship between ΔH and the equatorial vertical plasma
drift velocity VZ . For each month of each year, the JULIA VZ measurements made between 1000 LT and 1400
LT were plotted against the corresponding values of ΔH. Figure 4a gives an example of such a plot for Jan-
uary 2013. It is evident that ΔH tends to increase with increasing VZ . The coefficient of determination R2,
which is calculated as the square of the correlation coefficient, is 0.94. The average R2 value derived from
all the months during August 2001 to March 2016 is 0.84, including the best case R2=0.97 and the worst
case R2 = 0.62. The green curve in Figure 4a shows the fit of ΔH to VZ , which in this case is given as
VZ = 1.55 × 10−4(ΔH)2+1.33×10−1(ΔH) − 4.26. The second-order term, that is, (ΔH)2, was necessary because
of the apparent saturation of ΔH at high VZ values. Alken and Maus (2010) discussed in detail how plasma
instabilities in the equatorial ionosphere could occur under the presence of a large electric field, which leads
to a saturation of the equatorial electrojet flow. It is also noted in Figure 4a that ΔH is not 0 but ∼30 nT when
VZ is 0. A similar positive offset was also found for other months. The offset in ΔH at VZ = 0 could arise from
various reasons. For example, even if the zonal electric field is zero at heights of JULIA measurements (i.e.,
150 km), the electric field could be nonzero at 100–110 km, where the equatorial electrojet flows. Also, the
wind-driven current could exist even if the zonal electric field is zero.

Once the relationship between ΔH and VZ was determined, the monthly mean value of ΔH was calculated at
1200 LT. The results were converted to the equivalent values in VZ . In the case of January 2013, the monthly
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Figure 3. (a) H component magnetic field at Huancayo during December 2002. The black and green lines show 1-min
data, corresponding the periods when large-scale magnetospheric currents are symmetric (𝜉SMR ≤ 20 nT) and
asymmetric (𝜉SMR> 20 nT), respectively. The red line shows the fit of SMR to the nighttime data that are indicated by
the blue “x” symbols (𝜉SMR ≤ 20 nT). (b) ΔH during the corresponding period, which is calculated as the difference
between the H data and SMR fit. (c) Geomagnetic activity index Kp.

mean value of the noontime VZ is 10.39 ± 1.14 m/s, as indicated in Figure 4a. Here the 1𝜎 fitting error was esti-
mated by the bootstrap method (Efron, 1981). In order to demonstrate the consistency between the results
from the single-station method and those from the two-station method, we plot in Figures 4b–4d the rela-
tionship between VZ and ΔH derived using the two station method. For the two-station method, the zero
level of ΔH was set to be the monthly mean of the nighttime data (±2.5 hr from the midnight). Figures 4b–4d
show the results derived with the Huancayo-Piura pair, Huancayo-Villa Remedios pair, and Huancayo-San Juan
pair, respectively. The Quasi-Dipole latitude (e.g., Laundal & Richmond, 2017) is 0.18∘N at Huancayo, 6.69∘N at
Piura, 5.20∘S at Villa Remedios, and 26.58∘N at San Juan, for January 2013. ΔH is different for different pairs of
the stations, as the pattern of the daily variation in H is different at different stations. For instance, the range
of daily variation in H is small at San Juan due to the proximity of the station to the Sq current focus (e.g.,
Campbell, 1982); thus, ΔH from the Huancayo-San Juan pair is similar to ΔH from the one-station method. ΔH
from the Huancayo-Piura pair and the Huancayo-Villa Remedios pair are smaller. Nonetheless, there is a good
correlation between VZ and ΔH in all cases. The relatively large scatter in the results for the Huancayo-San
Juan pair (Figure 4d) may be due to the large distance between Huancayo and San Juan (see Figure 1). The
monthly mean of the noontime VZ is 10.27 ± 1.54 m/s for the Huancayo-Piura pair, 11.73 ± 1.63 m/s for the
Huancayo-Villa Remedios pair, and 9.45 ± 1.30 for the Huancayo-San Juan pair, which are all consistent with
10.39 ± 1.14 m/s derived from the one-station method.
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Figure 4. (a) Relationship between the daytime VZ (1000–1400 local time, LT) from the Jicamarca Unattended
Long-term Investigations of the Ionosphere and Atmosphere (JULIA) radar and the corresponding ΔH values from the
Hucancayo magnetometer for January 2013. (b–d) The same as (a) except that ΔH values are derived by the two-station
method. The pairs of stations used are as follows: (b) Huancayo (HUA) and Piura (PIU); (c) Huancayo and Villa Remedios
(VRE); and (d) Huancayo and San Juan (SJG).

As a brief summary, both one-station and two-station methods are useful for evaluating VZ from ΔH on a
monthly basis. The advantage of the one-station method is the better long-term data coverage. The disad-
vantage is that the technique needs to be restricted to the periods when the large-scale magnetospheric
currents are zonally symmetric, which is often not the case during storm events. Thus, the two-station method
is preferable when studying the disturbed ionosphere in storm conditions, while the one-station method is
more suitable for studying the long-term (>1 month) behavior of the average (or quiet) ionosphere. In the
rest of the paper, we use VZ derived from the one-station method, as it gives better data coverage than the
two-station method.

4. Results

We plot in Figure 5a monthly mean values of the midday VZ (black circles and line) during August 2001 to
March 2016. Figure 5b shows the corresponding monthly values of the solar activity index P, which is defined
as P = (F10.7 + F10.7)∕2, where F10.7 is the 81-day-centered average of the daily values of F10.7 in solar flux unit
(sfu = 10−22 W⋅m−2 ⋅Hz−1). The investigated period covers a solar cycle, including the maximum phase of solar
cycle 23 (November 2001) and solar cycle 24 (April 2014).

The green dashed line in Figure 5a depicts the seasonal solar cycle climatology derived from the JULIA data.
We constructed an empirical model of the midday VZ using the JULIA measurements between 1130 LT and
1230 LT. Following the work of Alken (2009), the functional form of the model is given as follows:

VZ(P,DoY) =
2∑

i=1

11∑
j=1

aijFi(P)Gj(DoY), (1)
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Figure 5. (a) Monthly mean values of the midday VZ during 2001–2016. The seasonal solar cycle climatology derived
from the Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere (JULIA) VZ data based on
equations (1)–(3) is also indicated by the green dashed line. (b) Monthly mean values of the solar activity index P.
HUA = Huancayo; LT = local time.

where DoY is the day of year. The functions Fi and Gj are in the following form:

Fi(P) = Pi−1 (2)

Gj(DoY) = cos

(
(j − 1)𝜋DoY

365.25

)
j odd

= sin
(
(j − 1)𝜋DoY

365.25

)
j even

(3)

The model assumes a linear dependence of VZ on P as well as the seasonal variation represented by Fourier
functions up to degree 5. Unlike the model of Alken (2009), our model does not include the dependence
on local time. This is because our data analysis is limited to a fixed local time range of 1130–1230 LT. The
model coefficients aij were determined based on a least squares technique, using the measurements during
geomagnetically quiet periods (Kp < 3∘).

Figure 6 presents the seasonal and solar activity dependence of VZ derived from the JULIA observations (green
dots) and model (red dashed line). In Figure 6a, the black line shows the 30-day running mean of the data,
which is well reproduced by the model with P = 110 sfu, corresponding to the average value of P during the
period of our investigation. In Figure 6b, the black circles are the average of the data for P <80, 80 ≤ P < 120,
120 ≤ P < 160, 160 ≤ P < 200, and 200 ≤ P (in sfu). The red line shows the model prediction with DoY = 300,
which happens to give a value close to the annal mean of VZ . Neither model nor data reveals evidence for the
solar activity effect on VZ during 1130–1230 LT. The model results for different seasons similarly showed little
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Figure 6. Dependence of VZ on (a) season and (b) solar activity. In each panel, the green dots indicate the VZ data from
the Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere (JULIA) radar observed between
1130 local time (LT) and 1230 LT. In panel (a), the black line shows the 30-day running mean of the data, while the red
dashed line shows the seasonal variation of VZ obtained from our empirical model based on equations (1)–(3). In panel
(b), the black circles are the average of the data for P < 80, 80 ≤ P < 120, 120 ≤ P < 160, 160 ≤ P < 200, and 200 ≤ P (in
sfu), while the red dashed line shows the solar activity dependence of VZ obtained from the empirical model.

dependence on P. A similar analysis was also performed using daily values of F10.7 instead of P. The results
were very similar, showing no evidence for the solar activity dependence of VZ .

Going back to Figure 5a, the month-to-month variability of the midday VZ is dominated by the seasonal vari-
ation (∼10 m/s), which is well reproduced by the model as indicated by the green dashed line. The seasonal
pattern, characterized by two equinoctial maxima, is consistent with earlier results in the literature (Alken,
2009; Alken et al., 2013). Yamazaki, Richmond, Maute, Wu, et al. (2014) numerically showed that upward prop-
agating tides from the lower atmosphere play an important role for the equinoctial maxima in the equatorial
electrojet intensity.

The anomaly ΔVZ , shown in Figure 7a, was calculated as the deviation of VZ (black line in Figure 5a) from the
seasonal solar cycle climatology (green dashed line in Figure 5a). Following Yamazaki et al. (2017), a moving
average with a 13-month window was applied to ΔVZ in order to extract the variation on time scales longer
than a year. The results, shown in Figure 7a (red line), reveal an interannual variation of ∼2 m/s. The variation
pattern is very similar when a moving average with a 7-month window is used (Figure 7a, blue dashed line).
Thus, the obtained results are not particularly sensitive to our choice of the window width for averaging.

Midday values of VZ derived from GAIA were analyzed in the same way as the data. That is, the seasonal
solar cycle dependence was first evaluated based on equations (1)–(3), and the residual from the climatology
was calculated. ΔVZ from GAIA, presented in Figure 7b, reproduces the observed pattern of the interannual
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Figure 7. Anomaly ΔVZ calculated as the deviation of VZ from the seasonal solar cycle climatology derived from
equations (1)–(3). The results are shown for (a) the observations and (b) GAIA model. The gray thin lines show monthly
mean values, while the red and blue dashed lines show 13-month and 7-month smoothed values, respectively.
JULIA = Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere; GAIA = Ground-to-topside
Atmosphere-Ionosphere model for Aeronomy; HUA = Huancayo; LT = local time.

variation. Local maxima in 2006, 2009, 2011, and 2013 can be found in both observations (Figure 7a) and sim-
ulation results (Figure 7b). Although the pattern of the interannual variation is similar, the variability is larger
in the observations compared to the GAIA results. It should also be noted that the GAIA model predicted an
unrealistically large solar cycle variation in the midday values of VZ (∼4 m/s after the 13-month smoothing
during August 2001 to March 2016). The reason for this is unclear. Since the solar activity influence is taken
into account in equations (1)–(3), the anomaly ΔVZ , shown in Figure 7b, is not affected by the overestimation
of the solar activity dependence of VZ in GAIA.

5. Discussion

We have shown that there is an interannual variation of ∼2 m/s in the midday values of VZ . In this section,
we discuss potential sources of the variability. As we stated earlier, the ionosphere is subject to external
forcing by energetic solar radiation, magnetospheric forcing, and wave forcing from the lower layers of the
atmosphere. Although the 11-year variation of energetic solar radiation is an important driver of year-to-year
variations for many ionospheric parameters, we did not observe any obvious solar cycle influence on VZ at
1200 LT (Figure 6b). During August 2001 to March 2016, monthly values of the P index varied in the range of
67–223 sfu (see Figure 5b). The difference of the midday VZ at P = 67 sfu and P = 223 sfu estimated from
our model based on equations (1)–(3) is 0.19 m/s, which is smaller than the 1𝜎 error (= 0.22 m/s) estimated
using the bootstrap technique. The results suggest that the solar cycle contribution to the interannual vari-
ability of VZ is negligible at 1200 LT. The absence of, or very small, solar cycle influence on the daytime VZ is
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Figure 8. (a) Interannual variations of VZ . The blue line shows the result derived using only quiet time (Kp < 3∘) data.
The magenta dashed line is the same as the red line in Figure 7a. (b) Interannual variations in the amplitude of the
migrating diurnal tide (DW1) and eastward propagating nonmigrating tide with zonal wave number 3 (DE3) from GAIA.
JULIA = Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere; GAIA = Ground-to-topside
Atmosphere-Ionosphere model for Aeronomy; HUA = Huancayo; LT = local time.

consistent with earlier studies (e.g., Fejer et al., 2008; Richmond et al., 2015; Scherliess & Fejer, 1999). These
studies also showed that the effect of solar activity on VZ depends largely on local time. It is well known
that the solar activity dependence of VZ is particularly strong around the time of prereversal enhancement
(1800–1900 LT).

The magnetospheric influence is also considered to be small, given that the GAIA model was able to
reproduce the pattern of the interannual variation without variable magnetospheric forcing. As shown in
Figure 8a, the pattern of the interannual variation is largely the same when the investigation is strictly
limited to geomagnetically quiet periods (Kp < 3∘ as well as 𝜉SMR ≤ 20 nT). This further supports that
magnetospheric forcing does not make a significant contribution to the observed interannual variation of
VZ at 1200 LT.

There is a possible contribution from the change in the Earth’s main magnetic field B. At the JULIA location,
the strength of the geomagnetic field decreased by approximately 4% during 2001–2016. Changes in the
strength of the geomagnetic field can affect the ionospheric electrodynamics (Cnossen & Richmond, 2013;
Takeda, 1996). Recently, Tao et al. (2017), using the GAIA model, examined the response of various ionospheric
parameters to the reduction of the dipole magnetic moment. They performed a simulation with the magnetic
dipole moment of 7.8 ×1022 Am2 as the base case and compared the results with other simulations in which
the magnetic dipole moment was reduced to 75%, 50%, and 10% of the base case. We also evaluated the
change in VZ due to the 4% reduction of the magnetic field strength during 2001–2016 using GAIA. The
change in VZ was found to be very small (<0.1 m/s).
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Our results rule out the dominant contribution from solar and magnetospheric forcing, as well as from the
Earth’s main magnetic field, to the observed interannual variation of VZ . It is, therefore, likely that the interan-
nual variation of VZ at 1200 LT is mainly driven by lower atmospheric forcing. One possible mechanism that
enables lower atmospheric effects on the ionosphere is the modulation of the daytime equatorial electric
field by atmospheric tides (e.g., Millward et al., 2001; Yamazaki & Richmond, 2013). The tidal waves that prop-
agate to the ionosphere from below have been observed to vary from year to year (e.g., Forbes et al., 2008;
Oberheide et al., 2009; Vincent et al., 1998; Wu et al., 2008). The interannual variability of upward propagat-
ing tides is due in part to the interannual variability of the background atmosphere, through which the tidal
waves propagate (Mayr & Mengel, 2005; McLandress, 2002). Some identified sources of the interannual vari-
ability of tides include the QBO in the stratosphere (Liu, 2014; Yamazaki et al., 2017) and the El Niño–Southern
Oscillation (ENSO) in the troposphere (Liu et al., 2017; Pedatella & Liu, 2012; 2013). The QBO has a regular
oscillation cycle of ∼28 months, while ENSO consists of longer-period oscillations (∼43 and ∼62 months) (Liu,
2016b). Yamazaki et al. (2017) examined the interannual variability of tides at dynamo region altitudes dur-
ing 1997–2016 using GAIA. We show in Figure 8b the interannual variation in the amplitude of the migrating
diurnal tide “DW1” (orange dashed line) and the eastward propagating nonmigrating diurnal tide with zonal
wave number 3 “DE3” (green line) in the zonal wind at 12.5∘S latitude at 110 km height derived from GAIA.
As discussed in Yamazaki et al. (2017), the interannual variations of these tidal modes are under a signifi-
cant influence of the stratospheric QBO. Yamazaki et al. (2017) pointed out that the interannual variability of
tides in GAIA was somewhat smaller compared to observations, which may explain the smaller interannual
variability of VZ in GAIA than in data (Figure 7). Although the comparison of Figures 8a and 8b reveals some
resemblance between the interannual variations of VZ and tidal amplitudes, there is no one-to-once corre-
spondence. Further studies are required to clarify the effect of tides and other atmospheric waves on the
interannual variability of the equatorial ionospheric electric field. Similar observations from other longitudi-
nal sectors (e.g., Patra et al., 2014) would be useful for the identification of the waves involved. Also, it needs to
be investigated how the plasma density in the low-latitude ionosphere responds to the interannual variation
of the equatorial electric field. According to the empirical formula presented by Stolle et al. (2008), an increase
of VZ by 2 m/s can cause an increase in the crest-to-trough ratio of the EIA by approximately 5%, which might
be detectable. Previous studies found a quasi 2-year variation in the ionospheric plasma density (e.g., Chang
et al., 2016; Chen, 1992; Echer, 2007; Kane, 1995; Tang et al., 2014; Zhou et al., 2016). The role of the equatorial
electric field is yet to be examined.

6. Conclusions

The main results of the present study may be summarized as follows:

1. Monthly mean values of the equatorial vertical plasma drift velocity VZ at 1200 LT during 2001–2016 are
dominated by a seasonal variation of ∼10 m/s and show no significant dependence on solar activity as
represented by the P index. After the removal of the seasonal variation, the VZ data reveal an interannual
variation of ∼2 m/s, which has an oscillation period of 2–3 years.

2. The pattern of the interannual variation is reproduced by the GAIA model that takes into account realistic
interannual variability of the atmosphere below 30 km but ignores interannual variability of the magne-
tosphere. Thus, it is likely that the observed interannual variation of VZ at 1200 LT is mainly driven by
atmospheric forcing from below. The atmospheric process that is responsible for the interannual variabil-
ity of VZ remains to be identified. It is noticed that the interannual variation of VZ shows some resemblance
with those in atmospheric tides.
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