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Abstract Glaciers and rivers are the main agents of mountain erosion. While in the fluvial realm
empirical relationships and their mathematical description, such as the stream power law, improved the
understanding of fundamental controls on landscape evolution, simple constraints on glacial topography
and governing scaling relations are widely lacking. We present a steady state solution for longitudinal
profiles along eroding glaciers in a coupled system that includes tectonics and climate. We combined the
shallow ice approximation and a glacial erosion rule to calculate ice surface and bed topography from
prescribed glacier mass balance gradient and rock uplift rate. Our approach is inspired by the classic
application of the stream power law for describing a fluvial steady state but with the striking difference that,
in the glacial realm, glacier mass balance is added as an altitude-dependent variable. From our analyses
we find that ice surface slope and glacial relief scale with uplift rate with scaling exponents indicating
that glacial relief is less sensitive to uplift rate than relief in most fluvial landscapes. Basic scaling relations
controlled by either basal sliding or internal deformation follow a power law with the exponent depending
on the exponents for the glacial erosion rule and Glen’s flow law. In a mixed scenario of sliding and
deformation, complicated scaling relations with variable exponents emerge. Furthermore, a cutoff in glacier
mass balance or cold ice in high elevations can lead to substantially larger scaling exponents which may
provide an explanation for high relief in high latitudes.

1. Introduction

Glaciers shape major mountain landscapes worldwide and scour characteristic landforms such as cirques and
overdeepened troughs (e.g., Davis, 1906; Ehlers & Gibbard, 2007; Penck, 1905). The resulting landscapes are
clear evidence for a climate control on the shape of the Earth’s surface (e.g., Davis, 1906; Herman et al., 2013;
Hinderer, 2001; Peizhen et al., 2001; Penck, 1905; Robl et al., 2015). Glaciers are thought to increase local relief
below the equilibrium line altitude (ELA) through the carving of deep troughs by channeled ice, while they
reduce relief above the ELA due to distributed glacial erosion (e.g., Brardinoni & Hassan, 2006; Brocklehurst
& Whipple, 2004; Egholm et al., 2017; Steer et al., 2012). Over long timescales this may lead to a hypsometry
that displays a maximum at the ELA due to the altitude dependence of glacier mass balance and conse-
quently ice flux and glacial erosion, a mechanism known as the glacial buzzsaw. The buzzsaw effect, however,
is only loosely defined, and some interpretations include a governing influence of rock uplift rate or total
rock column uplift on glacial topography (Brocklehurst & Whipple, 2007; Pedersen et al., 2010), while others
claim a purely climatic control on mountain height through glacial processes (Brozović et al., 1997; Mitchell &
Montgomery, 2006). Furthermore, the time frame of the buzzsaw effect has not been clearly articulated.
It may describe the climate-induced rapid destruction of fluvial relief in an overall transient system state but
also a glacial steady state scenario where climate controls how rock uplift and erosion rates can balance each
other. Empirical studies have found evidence for both an increase (e.g., Champagnac et al., 2014; Montgomery,
2002; Shuster et al., 2011; Valla et al., 2011) and decrease (e.g., Schlunegger & Hinderer, 2003; Tomkin & Braun,
2002) of relief due to glacial erosion, and a concentration of peak height and hypsometric maxima within a
certain vertical distance to the Pleistocene mean ELA (e.g., Egholm et al., 2009), as well as relief being similar in
glacial and fluvial terrain (Brocklehurst & Whipple, 2002) and invariant over glacial-interglacial cycles in regions
of very high uplift (Herman et al., 2010). Furthermore, headward propagation of glacial erosion (Shuster
et al., 2011), a dependence of glacial erosion on valley shape (Leith et al., 2014; Pedersen & Egholm, 2013),
and a control of rock uplift rates on the fluvial overprinting of glacial topography (Prasicek et al., 2015)
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have been proposed. It remains difficult to put each of these findings into a theoretical context of glacial land-
scape evolution as long as the characteristics and dependencies of a glacial steady state topography have not
been further constrained.

The physics of glaciers has been investigated for decades, and theoretical models of different complexity exist
to describe the flow of ice (e.g., Gagliardini et al., 2013; Hutter & Hughes, 1984; Nye, 1952). Furthermore, our
understanding of glacial erosion has significantly improved in recent years due to a wealth of new field data
(Herman et al., 2015; Koppes & Montgomery, 2009; Koppes et al., 2015) and improved mathematical descrip-
tions (e.g., Anderson et al., 2006; Braun et al., 1999; Egholm et al., 2011; Hallet, 1979, 1996; Harbor, 1992;
MacGregor et al., 2000). Similarly, the long-term impact of fluvial erosion on mountain landscapes and its rela-
tion to tectonic and climatic forcing are well constrained (e.g., Goren, 2016; Kirby & Whipple, 2012; Lague,
2014; Perron & Royden, 2013; Robl et al., 2017; Whipple & Tucker, 1999; Whittaker, 2012) and the first-order
applicability of simple erosion models to describe fluvial landscape evolution has been tested in numerous
experiments (e.g., Montgomery, 2001; Snyder et al., 2000; Wobus et al., 2006). However, a profound under-
standing of the impact of tectonics and climatic preconditioning on fluvial landscapes is based on predicting
steady state end-members and how fluvial topography will evolve under given conditions (e.g., Whipple &
Tucker, 1999). In spite of that, a glacial counterpart to this approach has not yet been fully developed and a
proper description of glacial steady state topography is lacking.

This may in part reflect the different disciplines involved. Physicists and glaciologists have developed sophis-
ticated ice sheet models, but their research focuses rather on the physics of ice flow and the relation between
glaciers, climate, and environmental change than on landscape evolution over geological timescales. In addi-
tion, glaciers have occupied most mountain landscapes only since the last 2 Myr and under strongly varying
climatic conditions (e.g., Ehlers & Gibbard, 2007; Lisiecki & Raymo, 2007; Sosdian & Rosenthal, 2009), a time
span possibly too short and climatically too unstable for most high-mountain landscapes to reach or even
closely approach a glacial steady state. However, theoretical constraints on the direction of landscape evo-
lution and its governing parameters are critically needed to improve our understanding of the entire system
and serve as a benchmark against which other system states can be tested.

In this study, we derive constraints on glacial steady state longitudinal profiles from the shallow ice approxima-
tion (SIA) and a glacial erosion rule. Our approach extends the work of Headley et al. (2012) by using a different
method to solve the SIA at topographic equilibrium and, more importantly, by treating glacial landscapes as
a coupled system in which glacial topography is the product of the different interactions between tectonic
and climatic processes. This allows us to investigate the potential links and feedbacks between rock uplift rate
and glacier mass balance. While rock uplift rate produces glacial relief, ice flux depending on glacier mass bal-
ance tends to reduce it above the ELA. We compare glacial steady state topography to its fluvial equivalent
and highlight the altitude-dependent glacier mass balance as an independent variable that reduces the sen-
sitivity of glacial topography on rock uplift rate. Our theoretical results help to put constraints on the nature
of the glacial buzzsaw effect and to explain the observed dependencies of glacial relief on rock uplift rates, as
well as the presence of high topography in high latitudes.

2. Shallow Ice Solution for Glacial Equilibrium Profiles
2.1. Analytical Solution
Here we first follow the idea of Headley et al. (2012) to derive an analytical solution to the equations governing
a glacier steady state longitudinal profile using the SIA and an erosion rule but propose a new method that
leads to a more versatile solution. Subsequently, we expand our analyses beyond the analytical approach
and treat glacial landscapes as a coupled system in which glacial topography is a product of the interaction
between tectonics and climate.

The change of bedrock elevation over time in an active orogen is commonly described as the result of a
competition between rock uplift rate U and erosion rate ė:

𝜕z
𝜕t

= U − ė (1)

Glacial erosion ė is commonly modeled as proportional to basal sliding velocity us (Hallet, 1979; Hallet et al.,
1996):

ė = Kg|us|l (2)
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where Kg (m1−l yearl−1) is an erodibility coefficient (or erodibility) and l an exponent likely to lie between 1
and 2 (e.g., Harbor, 1992; MacGregor et al., 2009; Tomkin & Braun, 2002). Assuming topographic steady state,
the rate of change of topography is zero and U must equal ė at all points under the glacier. Consequently, us

is given by

us =
(

U
Kg

) 1
l

(3)

If rock uplift rate and erodibility are uniform under the glacier, erosion rate and hence sliding velocity must
be uniform as well (equations (2) and (3)). The exponent l is only needed to calculate us in equation (3) and
can thus be chosen with no influence on the subsequent calculation procedure.

To determine the shape of the glacier, a glacier mass balance has to be prescribed. Here the glacier mass
balance is assumed to be linearly dependent on the position along the glacier (x, measured in a downstream
direction) via the mass balance gradient 𝛽x and in relation to the horizontal position of the equilibrium line,
Ex . This is consistent with the approach of Headley et al. (2012). The mass balance can then be integrated from
the summit of the glacier to estimate ice flux q at any point x along the glacier:

q = ∫
x

0
−𝛽x

(
x − Ex

)
dx (4)

If we further assume that the glacier is in equilibrium with climate such that, at every point along the glacier,
mass outflux exactly balances mass influx plus (or minus) the ice accumulation (or ablation), q can also be
written as a function of mean deformation velocity (ud), sliding velocity (us), and ice thickness (H):

q = (ud + us)H (5)

Under the SIA, both ud and us can be written as a function of deformation (fd) and sliding (fs) parameters, H
and ice surface slope dh∕dx (equations (6) and (7)), where n = 3 is Glen’s flow law exponent for ice (Cuffey &
Paterson, 2010).

ud = fdH(n+1)
(dh

dx

)n

(6)

us = fsH(n−1)
(dh

dx

)n

(7)

The deformation and sliding parameters are themselves functions of the ice deforming and sliding factors, Ad

and As, respectively, according to

fd = 3.16 × 107(𝜌g)nAd; fs = 3.16 × 107(𝜌g)nAs (8)

where 𝜌 is ice density and g gravitational acceleration.

By dividing equation (6) by equation (7), ud can be expressed in terms of us. Equation (5) can then be
rewritten as

q =
fdus

fs
H3 + usH (9)

Equation (9) is a cubic equation that has only one real solution for H. From this, H can be found analytically at
every point along the glacier length where the ice flux is known (i.e., according to equation (4). Equation (7)
can now be solved for ice surface slope dh∕dx, which remains as the only unknown. The ice surface elevation
(h) of a steady state glacier longitudinal profile can finally be obtained by integrating ice surface slope and
considering the ELA, E.

h = E +
(

us

fs

) 1
n

∫
L

0
H

1−n
n dx (10)

Bedrock topography z can further be obtained by subtracting H from h. This approach produces a glacier
with an ice flux that is symmetric about the ELA (Figure 1), here assumed to be at a reference elevation 0. All
parameters used to produce this and all following model results are listed in Table 1.
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Figure 1. (a) Glacier mass balance, (b) ice surface (solid line) and bedrock surface (dashed line), and (c) total flux (solid black line), flux from deformation
(dash-dotted lines), and flux from sliding (dotted lines) of a glacier longitudinal profile in topographic steady state plotted for l = 1 and different rock uplift rates.
Glacier mass balance defined to depend linearly on x. Note that the flux components of sliding and deformation adjust due to variations of surface slope and ice
thickness with U, while total flux is a function of x and hence remains unchanged in this scenario. ELA = equilibrium line altitude.

2.2. Glacier Mass Balance as a Function of Elevation
In contrast to analytical solutions for fluvial erosion based on the widely used stream power law (Flint, 1974;
Whipple & Tucker, 1999), the glacier mass balance and the ELA used to model glacial landscapes depend
strongly on temperature and hence altitude. A mass balance prescribed via x (equation (4)) inherently con-
tains information on ice surface elevation as ice surface slope depends on ice thickness and hence flux
(equation (10)). Unfortunately, the dependence of the mass balance on x and the constraints it imposes on the
ice surface in a glacial steady state are a priori unknown. This is depicted in Figure 1 where glacial steady state
longitudinal profiles are modeled under the assumption of a linear variation of glacier mass balance with x.
The linear dependence of mass balance on x leads to a curved mass balance over elevation (Figure 1a). This

Table 1
Constants Used to Model Glacial Steady State Topography in This Study

Parameter Description Value Unit Source

AdE
Ice deformation factor at ELA 2.4 × 10−24 Pa−3 ⋅ s−1 Cuffey and Paterson (2010)

AsE
Ice sliding factor at ELA 1.7 × 10−19 Pa−3 ⋅ m2 ⋅ s−1 Headley et al. (2012)

𝛽 Glacier mass balance gradient over z 1 × 10−3 — Hagen et al. (2003)

𝛽x Glacier mass balance gradient over x 5 × 10−5 — —

Bmax Maximum glacier mass balance 0.4 m/year Oerlemans and Hoogendoorn (1989)

𝛿 Temperature lapse rate with z 6 × 10−3 K/m Rolland (2003)

E ELA 0 m —

Ex Horizontal position of equilibrium line 2.5 × 104 m —

g Gravitational acceleration 9.81 m/s2 —

𝛾 Glacier mass balance ratio 1.5 — —

k Valley width shape parameter 1.4 × 10−4 — Oerlemans (2008)

Kf Erodibility in fluvial erosion rule 1 × 10−4 — Wobus et al. (2006)

Kg (l=1) Erodibility in glacial erosion rule 1 × 10−4 — Humphrey and Raymond (1994)

Kg (l=2) Erodibility in glacial erosion rule 1 × 10−5 m−1 year Herman et al. (2015)

l Exponent of glacial erosion law 1; 2 — Herman et al. (2015)

n Exponent from Glen’s law 3 — Cuffey and Paterson (2010)

𝜌 Ice density 910 kg/m3 —

w0 Valley width at terminus 500 m —

𝜁d Temperature-deformation factor 2 × 10−3 — Cuffey and Paterson (2010)

𝜁s Temperature-sliding factor 9 × 10−3 — —

Note. Glacier mass balance gradients chosen to mimic empirical data of mountain glaciers in humid areas (e.g., Cuffey & Paterson, 2010; Fischer, 2010; Meier & Post,
1962). ELA = equilibrium line altitude.
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Figure 2. (a) Glacier mass balance, (b) ice surface (solid line) and bedrock surface (dashed line), and (c) total flux (solid lines), flux from deformation
(dash-dotted lines), and flux from sliding (dotted lines) of a glacier longitudinal profile in topographic steady state plotted for l = 1 and different rock uplift rates.
Mass balance defined to depend linearly on z. Note that the mass balance gradient is constant over elevation and for all U while all flux components change
with relief. ELA = equilibrium line altitude.

indicates a mass balance gradient that constantly and systematically changes with altitude while a constant
mass balance gradient, that is, a linear relation of mass balance with altitude, at least to a certain cutoff, is sug-
gested by empirical data (e.g., Benn & Lehmkuhl, 2000; Hagen et al., 2003; Oerlemans & Hoogendoorn, 1989).
Furthermore, the mass balance gradient in the analytical solution varies with rock uplift rate (Figures 1a and
1b), while the total flux remains unaffected (Figure 1c, black line). This contradicts the nature of the glacier
mass balance gradient as a climatic variable which depends on temperature and precipitation and should
thus be independent from tectonic influences, at least as long as orographic effects are neglected. To over-
come these issues, we extend our study beyond the work of Headley et al. (2012) and consider glacier mass
balance as a function of altitude instead of distance along the glacier. For this, it is convenient to introduce
a glacier mass balance gradient over elevation, 𝛽 = dB∕dz, where B is the glacier mass balance. In this way
an empirically determined relation between glacier mass balance and altitude can be used to derive glacial
steady state topography. Consequently, the SIA solution for topographic equilibrium must involve two sets of
independent variables, one in the horizontal domain including rock uplift rate and erodibility and one in the
vertical domain including glacier mass balance.

To model glacial equilibrium topography in a coupled system with U and Kg prescribed as independent vari-
ables in the horizontal and glacier mass balance gradient 𝛽 in the vertical domain, we follow an iterative
approach. This is necessary, because steady state ice surface elevation is a priori unknown but needed to cal-
culate glacier mass balance B from an empirical 𝛽 . We thus prescribe the glacier mass balance as a function
of x (position along the glacier) only in the initial model iteration to arrive at a first guess for ice surface eleva-
tion. For this, glacier mass balance is initially assumed to vary linearly with x as defined by an arbitrary mass
balance gradient 𝛽x . The elevation of the ice surface h predicted in the initial run is then used to calculate an
updated glacier mass balance B from

B = 𝛽(h − E) (11)

where E is the ELA and with 𝛽 taken from observations (Table 1) and assumed to be constant in this first simple
formulation. B is then used to update the ice flux, which is fed back into equation (9) to correct ice thick-
ness and subsequently ice surface elevation (equation (10)). The procedure is repeated until the difference
between two successive estimates of the glacier mass balance falls below a defined convergence criterion.
In this way we obtain glacier mass balance, ice flux, and ice thickness along an equilibrium glacier, as well as
the corresponding ice surface and bed topographies (Figure 2). 𝛽 is now independent of U and Kg (Figure 2a),
while ice flux changes due to the dependence of ice surface elevation on U and Kg (Figure 2c). In this sim-
ple example glacier mass balance depends linearly on elevation, which again makes the ice flux symmetric
about the ELA. Consequently, maximum ice thickness and flux occur at the ELA. This glacial steady state sce-
nario of a simple temperate glacier with n = 3, U = 1 × 10−3 m/year, Kg = 1 × 10−4, and l = 1 will be used as
a reference when analyzing how model parameters and assumptions influence the predicted glacier geome-
try. Our reference choice of n is based on a review of field studies on glacier dynamics by Cuffey and Paterson
(2010). The reference U represents a rock uplift rate magnitude that has been observed in many mountain
ranges. Kg = 1 × 10−4 together with l = 1 in the glacial erosion rule have been suggested in several studies
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(Humphrey & Raymond, 1994; Koppes & Montgomery, 2009; Riihimaki et al., 2005) and are used in glacial
erosion models (e.g., Harbor, 1992; Headley et al., 2012; Herman & Braun, 2008; although other values have
been suggested recently; see section 3). Note that E and the horizontal position of the equilibrium line
(Ex , equation (4)) are predefined and an E ≠ 0 has to be considered in equation (10). We assume Ex to be
constant and independent of U in our model runs.
2.2.1. Nonuniform Glacier Mass Balance Gradients
Glacier mass balance depends on altitude through a broad range of processes: the atmospheric lapse rate
(i.e., the temperature gradient over elevation), which, for a given total amount of precipitation, determines the
proportion falling as snow, the ice and snow ablation, the short-wave radiation absorption, and the incoming
long-wave radiation (e.g., Benn & Lehmkuhl, 2000; Oerlemans & Hoogendoorn, 1989; Réveillet et al., 2017).
For contiguous, snowfall-fed, clean-ice glaciers these dependencies result in an approximately linear glacier
mass balance over elevation which is simulated in the approach described above (equation (11)). This does not
take into account that avalanching, debris cover, and topographic effects can have an influence on patterns
of accumulation and ablation in high-mountain environments (e.g., Anderson, 2000; Benn & Lehmkuhl, 2000).
Furthermore, both mountain glaciers and ice shields have been found to show a glacier mass balance cutoff
due to the depletion of moisture available for precipitation at higher elevations (e.g., Huss et al., 2008; Kessler
et al., 2006).

In our glacial equilibrium approach any variation of glacier mass balance over elevation can be prescribed.
We introduce two simple scenarios in addition to the case of a linear mass balance with elevation. First, mass
balance gradients may differ upstream and downstream of a certain point along the glacier, here assumed to
be the ELA, as defined by a glacier mass balance ratio 𝛾

B =
{

h> E, 𝛽(h − E)
h < E, 𝛽𝛾(h − E)

(12)

which can represent, for example, dirty ice (𝛾 > 1) or a thick debris cover (𝛾 < 1) below the ELA (e.g., Benn &
Lehmkuhl, 2000). Example profiles for different U are plotted in Figures 3a–3c and show that, in cases where
𝛾 ≠ 1, the symmetry of the ice flux about the ELA is lost. In the particular case shown in Figures 3a–3c, the
part of the glacier below the ELA has shortened due to the increase in mass balance gradient (𝛾 > 1). From the
ELA to the terminus the flux decreases more rapidly than it increases from the top to the ELA.

Second, we consider the existence of a mass balance cutoff, Bm, such that mass balance is uniform above a
certain elevation, according to

B = min
{
𝛽(h − E), Bm

}
(13)

In Figures 3d–3f Bm is set to 0.4 m/year and is reached 400 m above the ELA. This leads to a reduction in glacier
mass balance and flux, and, consequently, to lower ice thickness, steeper ice surface slopes, an increase in
glacial steady state relief, and a decrease in glacier length. In both cases of mass balance change, maximum
H, and q are still located at the ELA.

2.3. Ice Temperature
The influence of a vertical atmospheric temperature gradient on ice temperature and hence ice deformation
and sliding is not included in the formulation of the SIA (Hutter & Hughes, 1984). While heat conduction in
ice is physically well constrained (e.g., Bird et al., 2007) and the relationship between ice temperature and the
deformation factor Ad has been experimentally determined (Cuffey & Paterson, 2010), the ice sliding law is
poorly known (Schoof, 2005) and the influence of ice temperature on sliding is difficult to directly measure in
the field. This is because there exists only a very limited number of glaciers where access to their base is pos-
sible and also because the relationship between temperature and sliding is influenced by a number of factors
that are difficult to constrain and differentiate, such as basal water pressure and thickness and solute content
of the basal water film (e.g., Bartholomaus et al., 2008; Shreve, 1984). Despite this, a first-order approxima-
tion of the effect of ice temperature on sliding may be obtained by prescribing an air temperature gradient
with elevation, 𝛿, equating ice temperature with air temperature above the ELA, and assuming sliding and
deformation parameters for ice just below the melting point below the ELA. Furthermore, the presence of
some amount of basal sliding even at temperatures below the pressure melting point (e.g., Cuffey et al., 1999;
Echelmeyer & Zhongxiang, 1987; Shreve, 1984) has to be assumed to be able to solve for steady state topog-
raphy. In case of a glacier frozen to its bed and thus zero sliding, there is no erosion to balance rock uplift and
thus no steady state solution can be found.
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Figure 3. (a) Glacier mass balance, (b) ice surface (solid line) and bedrock surface (dashed line), and (c) total flux (solid lines), flux from deformation (dash-dotted
lines), and flux from sliding (dotted lines) of a glacier longitudinal profile in topographic steady state plotted for l = 1, different rock uplift rates, and a mass
balance ratio 𝛾 of 1.5. (d–f ) Similar plots for a mass balance cutoff of 0.4 m/year. ELA = equilibrium line altitude.

Above the ELA, the change of Ad with temperature can be described by the following power law:

Ad = A1−h𝛿𝜁d
dE

(14)

as derived experimentally (Cuffey & Paterson, 2010). AdE
is the deformation factor at the ELA where ice temper-

ature is assumed to be just below the melting point, and 𝜁d is scaled to fit the decrease of ice deformation with
temperature to the experimental data. We describe the change of As with elevation by a similar function but
assume a faster decrease with decreasing temperature. In this way, glacier motion asymptotically approaches
zero with decreasing temperatures (and thus increasing elevation) and deformation becomes more and more
dominant, a behavior that can be expected in glaciers. The deformation and sliding parameters are then
obtained from

fd = 3.16 × 107(𝜌g)nA1−h𝛿𝜁d
dE

; fs = 3.16 × 107(𝜌g)nA1−h𝛿𝜁s
sE

(15)

as explained previously (equation (8)). Note that this formulation is only a very simple surrogate for both the
temperature of glacier ice and the resulting differences of glacier motion with elevation. In fact, glaciers only
reach down below the ELA because ice temperature does not equal air temperature, a result of conductive
and advective heat transfer (e.g., Cuffey & Paterson, 2010). However, this approach predicts the first-order
influence of temperature change with elevation above the ELA on glacial steady state topography.

The temperature dependencies of fd and fs lead to a strong increase in glacial relief as reduced basal sliding
has to be compensated by steeper slopes (Figure 4). This causes an increase in ice flux and results in a longer
glacier. The sliding parameter fs asymptotically approaches zero sliding with increasing elevation which makes
deformation more and more dominant (Figure 4d) as defined by equation (15).

3. Nonlinear Erosion Law

Recent evidence suggests a nonlinear glacial erosion law (equation (2)) with a sliding velocity exponent of
l = 2 (Herman et al., 2015; Koppes et al., 2015). Earlier constraints on the glacial erosion law from various field
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Figure 4. (a) Glacier mass balance, (b) ice surface (solid line) and bedrock surface (dashed line), (c) total flux (solid lines),
flux from deformation (dash-dotted lines), and flux from sliding (dotted lines), and (d) ratio of sliding parameter fs and
deformation parameter fd as a function of elevation (𝛿 = 0.006 K/m, 𝜁 = 0.09) of a glacier longitudinal profile in
topographic steady state plotted for l = 1 and different rock uplift rates. ELA = equilibrium line altitude.

data suggest that l = 1 and Kg ≈ 1 × 10−4 derived from spatially integrated erosion rates and sliding veloci-
ties (Humphrey & Raymond, 1994; Koppes & Montgomery, 2009; Riihimaki et al., 2005). Due to the trade-off
between Kg and l these observations can also be explained with a nonlinear erosion law and an adjusted Kg

(Herman et al., 2015). l only appears in equation (3) in our approach, and we can thus apply various sliding
velocity exponents without the necessity of other adaptations. We perform the adjustment of Kg to l = 2 for
the reference scenario of a simple glacier such that the resulting glacial steady state longitudinal profile with
l = 2, Kg = 1 × 10−5 m−1 year and U = 1 × 10−3 m/year (Figure 5) is identical with the one presented in Figure 2

Figure 5. (a) Glacier mass balance, (b) ice surface (solid line) and bedrock surface (dashed line), and (c) total flux (solid lines), flux from deformation (dash-dotted
lines) and flux from sliding (dotted lines) of a glacier longitudinal profile in topographic steady state plotted for l = 2 and Kg = 1 × 10−5 m−1 year and different
rock uplift rates. ELA = equilibrium line altitude.
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Table 2
Exponents of H and dh∕dx Scaling With the Governing Parameters of the Shallow Ice Approximation for Sliding-Dominated
(fs ≫ fd) and Deformation-Dominated (fs ≪ fd) Scenarios

Scenario Ufs≫fd
Ufs≪fd

𝛽fs≫fd
𝛽fs≪fd

qfs≫fd
qfs≪fd

fs fd

H − n−1
2nl−l

− n−1
l(n2+n)−l

n
2n−1

n
n2+n−1

1 1
n

− 1
2n−1

− 1
n2+n−1

dh
dx

n
2nl−l

2n−1
l(n2+n)−l

− n−1
2n−1

− n−1
n2+n−1

− n−1
n

− n−1
n2 − 1

2n−1
− n

n2+n−1

for l = 1, Kg = 1 × 10−4, and U = 1 × 10−3 m/year. Such a redefinition of Kg for a nonlinear erosion law can be
done to fit a certain reference scenario, but a higher l reduces the sensitivity of glacial steady state profiles to
external forcing. In contrast to the scenario with l = 1 (Figure 2), glacial relief, ice thickness and consequently
ice flux are less sensitive to changes in rock uplift rate for a nonlinear erosion law (Figure 5).

4. Scaling Relations in a Glacial Topographic Steady State

A scaling relation describes how one variable depends on another and thus depicts the sensitivity of a vari-
able to different kinds of system changes. Such scaling relations are fundamental properties of any system
and have been established for the fluvial realm. They include, for example, the dependence of channel slope
on drainage area (Flint, 1974; Hack, 1957) or the dependence of fluvial relief on rock uplift rate (Whipple &
Tucker, 1999; Wobus et al., 2006). For glacial topography, however, such scaling relations are still missing for a
coupled system including climate and tectonics. The approach presented above can be utilized to derive such
scaling relations for a glacial equilibrium under the assumption that the ELA and the horizontal position of
the equilibrium line are constant. We first report basic scaling for sliding- or deformation-dominated versions
of a simple glacier to constrain the fundamental controls that tectonics and climate exert on glacier shape.
Subsequently, we analyze the influences of spatial variations in glacier mass balance gradient and ice tem-
perature in a mixed scenario including both sliding and deformation which lead to more complicated scaling
relations and nonuniform scaling exponents. In all analyses scaling relations for ice thickness H and ice sur-
face slope dh∕dx have been derived by applying our approach to different rock uplift rate and glacier mass
balance scenarios and by artificially varying l and n to test the sensitivity of the relations to these exponents.
Investigated rock uplift rates and glacier mass balance gradients were chosen to cover a large variety of field
data and range from 0.01 to 10 mm/year and from 1 × 10−4 to 1 × 10−2, respectively. Spatially uniform U and
Kg are assumed. We interpret the derived scaling relations in section 6.

4.1. Basic Scaling Relations
We explore basic scaling relations for a glacial topographic steady state for two simplified cases in which either
sliding (fs ≫ fd) or deformation (fs ≪ fd) are assumed to be the dominant mechanism of ice motion in a simple
glacier, which we define as temperate with constant temperature and mass balance gradient (Figure 2). Such a
glacier has an ice flux that is symmetric about the ELA and ice thickness H and surface slope dh∕dx depend on
both rock uplift rate and glacier mass balance. Note that the scaling of ice surface slope is also valid for glacial
relief as the horizontal position of the ELA is fixed in our approach and ice surface and bedrock elevation are
identical at the glacier origin. The basic scaling regimes with U and Kg depend on the exponent of the erosion
law l and the exponent of Glen’s law n (Table 2). The scaling with the mass balance gradient𝛽 , the ice flux q, and
the sliding and deformation parameters fs and fd is independent from the erosion law and only depends on
n. The scaling with q also depends on n with the exception that it is always linear for H in a sliding-dominated
scenario where H is just given by q∕us.

The scaling relations derived from our iterative model show that ice surface slope dh∕dx increases with rock
uplift rate and decreases with mass balance gradient, while ice thickness H behaves in the opposite way. Both
variables thus represent the competition between tectonics and climate in shaping glacier steady state char-
acteristics. The scaling relations are characterized by positive exponents < 1 and negative exponents >−1,
which indicates that the sensitivity to both tectonic and climatic forcing decreases when the magnitude of
forcing increases. In both a sliding- and a deformation-dominated regime steady state H and dh∕dx are more
sensitive to forcing in case of a linear erosion law than in case of a nonlinear law (Table 2), which is also depicted
in the example profiles in Figures 2 and 5. H and dh∕dx decrease with increasing fs and fd . The scaling of glacier
mass balance itself follows the scaling of relief and thus dh∕dx.

PRASICEK ET AL. 1352



Journal of Geophysical Research: Earth Surface 10.1029/2017JF004559

Figure 6. Scaling relations for dh∕dx (a–c) and H (d–f ) with U, 𝛽 , and q, respectively. Sliding-dominated reference scenario (solid red line, scaling exponents
are 0.6 [a], −0.4 [b], −0.67 [c], −0.4 [d], 0.6 [e], and 1 [f ]); power law scaling reference for orientation with exponent = 1 (a, e, and f ) and exponent = −1
(b, c, and d; dotted gray line); sliding-deformation mix (solid black line); sliding-deformation mix with a glacier mass balance cutoff (dashed black line);
sliding-deformation mix with elevation-dependent ice viscosity and basal sliding (dash-dotted black line). All scaling regimes determined for the accumulation
part of the glacier, for l = 1, n = 3. Mass balance cutoff Bm for 𝛽 and q scaling relationships defined to depend linearly on 𝛽 . Note the logarithmic scales: the slope
of the graphs depicts the scaling exponents.

Note that the scaling exponents for dh∕dx and H derived from our model differ from those given by Headley
et al. (2012). For example, Headley et al. (2012) report a linear relationship between U and dh∕dx in a
sliding-dominated scenario with n = 3 and l = 1 and an exponent of 0.5 for l = 2, while the exponent derived
here is 0.6 for n = 3 and l = 1, and 0.3 for l = 2. Similarly, the scaling exponent of H with U is −1 (l = 1) or −0.5
(l = 2) according to Headley et al. (2012), but −0.4 (l = 1) or −0.2 (l = 2) in this study. This is a consequence
of considering the glacier mass balance as a function of elevation instead of distance along the glacier, which
leads to a feedback between ice surface elevation and glacier mass balance.

4.2. Complicated Scaling Relations
The basic relations between rock uplift rate, glacier mass balance, ice thickness, and ice surface slope for
sliding- or deformation-dominated glaciers all follow power laws. However, the scaling becomes complicated
if ice sliding and deformation interact. Furthermore, scaling relations may be complicated by a break or cutoff
in glacier mass balance and an elevation dependence of ice viscosity and basal sliding. Such scaling relations
are difficult to report and interpret, but we suppose that a realistic scenario of a glacial equilibrium likely devi-
ates from a simple glacier by incorporating a mix of ice deformation and sliding, a mass balance cutoff, or
some temperature dependence. We thus report model implications on the related scaling of ice surface slope
and ice thickness with rock uplift rate, mass balance gradient, and ice flux (Figure 6). Scaling exponents are
not constant but vary with U, Kg, 𝛽 , and q in these scenarios.

For a scenario allowing the interaction of ice sliding and deformation, the exponent describing the relation
between dh∕dx and U increases with U (Figure 6a, solid black line), while the exponent describing the relation
between dh∕dx and 𝛽 decreases with 𝛽 (Figure 6b, solid black line). Similar scaling relations emerge with the
other parameters (Figures 6c–6f, solid black lines). However, scaling exponents for dh∕dx and H with U, 𝛽 , and
q again remain substantially < 1 or >−1 (Figure 6, dotted gray lines for reference). Furthermore, the slopes of
the graphs in Figure 6 are also mostly lower than in the sliding-dominated scenario (Figure 6, solid red lines)
which indicates a reduction of sensitivity to tectonic and climatic forcing.
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In the case of a glacier mass balance cutoff, the scaling exponent of dh∕dx with U substantially increases with
U and approaches unity because, with increasing rock uplift rates, larger parts of the glacier are located above
the mass balance cutoff elevation and hence become subject to uniform mass balance (Figure 6a, dashed
line). In contrast, ice surface slope decreases at a reduced pace with increasing 𝛽 and q (Figures 6b and 6c,
dashed lines). The opposite behavior is observed for ice thickness H (Figures 6d–6f, dashed lines).

The consideration of temperature- and hence altitude-dependent sliding and deformation parameters again
changes the scaling behavior (Figure 6a, dash-dotted line). In such a scenario, higher topography induced
by higher rock uplift rates leads to lower air and ice temperatures and consequently reduced deformation
and sliding parameters. This demands for steeper slopes to match the required sliding velocity which again
increases mountain height (compare Figure 4). This positive feedback results in a very strong increase of dh∕dx
and thus glacial relief with U. This extreme development, however, is to some part owed to the simplicity of
our model where ice temperatures equal air temperature and other processes such as periglacial rock wall
retreat are not included to erode steep slopes. Nevertheless, our model implies scaling exponents ≥ 1 due to
the feedback in such a scenario where glaciers approach a cold-based state at high elevations.

H and dh∕dx are generally less sensitive to changes in U, 𝛽 , and q in a regime with a combination of sliding
and deformation than in the sliding-dominated reference scenario (Figure 6). Higher sensitivity of dh∕dx and
H in mixed scenarios is only observed in the case of temperature-dependent ice movement, for high U and/or
low 𝛽 and q, and vice versa. Similar relationships can also be described for a nonlinear erosion law with l = 2.
In this case, the sensitivity of ice surface slope and ice thickness to rock uplift rates is further reduced and the
scaling exponents approximately halve, similar to the simplified scenarios described in Table 2. For example,
if l = 2, the scaling exponents of dh∕dx with U are generally≤ 0.3, with exceptions for substantial relief above
the mass balance cutoff and cold ice in high elevations.

5. Discontinuities and Valley Width

Our steady state model of glacial topography only allows predictions about glacier longitudinal profiles.
Conclusions about the plan view shape of a steady state glacier or valley network cannot be derived. However,
some additional variables can be prescribed to the 1-D model to evaluate the possible effects of tributaries
and changes in lithology or valley width.

5.1. Valley Steps
The analyses presented so far imply that glacial steady state valleys have a smooth and gradually changing
topography. Valley steps as observed along actual glacial valleys are often interpreted as transient features.
However, in many cases distinct valley steps are a result of glacier confluences (e.g., Anderson et al., 2006;
MacGregor et al., 2000), which have not been considered in our model so far. In addition, geological dis-
continuities marking differences in rock uplift rates and/or erodibility may cause abrupt changes in valley
morphology and glacier characteristics (Headley et al., 2013). In Figure 7 we show model simulations that
attempt to reproduce both situations.

In the first case, we set ice flux to double 5-km up-valley of the ELA, which represents the confluence of two
similar ice streams. Figure 7a shows that, if such valley junctions exist in steady state, a distinct valley step
would develop at the glacier confluence. At the confluence, the ice flux doubles (Figure 7b), but ice thickness
only increases by about 1∕3 due to scaling properties and a change in trade-off between flux from sliding and
deformation. The increase in ice thickness downstream of the convergence (i.e., 20-km downstream from the
top of the glacier) also leads to a slight decrease in bedrock and ice surface slopes.

An abrupt change in U or Kg along the glacial profile has an effect similar to a glacier confluence. In the case
of a two-fold decrease of rock uplift rate downstream of a fault (Figure 7), a similar but lower bedrock step
develops accompanied by an increase of ice thickness and a clear decrease of bedrock and ice surface slopes.
Note that in both scenarios, maximum ice thickness may be located below the ELA depending on the location
of the glacier confluence or fault. In the first case, erosion rate and sliding velocity are uniform, while in the
latter case ė and us vary as they have to match U. Headley et al. (2012) provide similar scenarios but without
the feedback between glacier mass balance and ice surface elevation.

5.2. Accumulation Area Ratio and Valley Width
Glacial equilibrium profiles derived from uniform U and Kg and linear B (i.e., only linearly dependent on ice
surface elevation) have an ice flux pattern that is symmetric about the ELA. A nonlinear glacier mass balance
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Figure 7. Effect of discontinuities such as a glacier confluence (purple) and a fault (yellow) on the shape of a glacial
steady state longitudinal profile (a) and ice flux (b). Both discontinuities are located 5-km up-valley of the equilibrium
line altitude. (ELA). In the case of the glacier confluence, q is assumed to double at the confluence, in the case of a fault
rock, uplift rate doubles uphill of the fault.

over elevation as introduced in section 2.2 leads to an asymmetric ice flux and hence to a deviation from
equally sized accumulation and ablation areas. Such deviations also exist in real-world glaciers with Ablation
Area Ratios (AARs) generally > 0.5 (e.g., Gross et al., 1977; Meier & Post, 1962; Porter, 1975). In contrast to our
model, the AAR in real-world glaciers does arise not only from differences in the 1-D ice flux above and below
the ELA but also from the hypsometry of the glacier, the distribution of glacier area over elevation. However,
the shape and elevation of the steady state glacier profile are a priori unknown in our analysis and we thus
adopt an approach of Anderson et al. (2006). We utilize a function that was introduced by Oerlemans (2008)
to model glacier width, w, along its length based on observations of alpine glaciers with a wide accumulation
basin and a narrow tongue. The width is given by

w = w0 + w1xe−kx (16)

where w0 is the width at the terminus, w1 is a scaling parameter, and k is a shape parameter. The area of the
glacier can be obtained by analytically integrating width along the glacier profile:

A = w0x + w1(−e−kx k−2(kx + 1)) − C (17)

with

C = w0x0 + w1(−e−kx0 k−2(kx0 + 1)) (18)

This allows two different approaches. Either all three parameters in equation (16) can be chosen to fit observa-
tions of glacier width or one parameter is left undefined and the system is solved for a width distribution that
yields a predefined AAR at the ELA. To derive a glacier in topographic steady state with a predefined width
along its length, we fix k, w0, and w1 as defined in Table 1. Our one-dimensional model cannot be used to
derive any information on equilibrium valley width, and thus, this addition is implemented solely to estimate
its possible influence on steady state topography. Alternatively, other width formulations could be chosen
(e.g., Anderson et al., 2006) or glacier width along with mass balance may be derived from a real-world or
modeled glacier that is thought to closely match an ice mass in topographic equilibrium.

The wide accumulation area in conjunction with the narrow tongue defined by our formulation of glacier
width leads to channeled ice and an increased ice thickness below the ELA which results in an increased
glacier length (Figure 8). In this steady state scenario maximum H and q are located below the ELA while glacial
erosion and us are uniform.

The way glacial relief, ice surface and bedrock slopes, and ice flux are affected by glacier width of course
depends strongly on the formulation. With a fixed width, the AAR changes with rock uplift rate in our
approach, if influences like temperature-dependent sliding or a mass balance cutoff are included. In contrast,
with a fixed AAR, the width of the glacier has to change with the governing parameters U, Kg, and 𝛽 . It is dif-
ficult to argue whether this is a realistic scenario for a glacial steady state as the related hypsometry remains
essentially unknown. In any case, absolute values of H and dh∕dx, and thus glacier shape and topography,

PRASICEK ET AL. 1355



Journal of Geophysical Research: Earth Surface 10.1029/2017JF004559

Figure 8. (a) Glacier mass balance, (b) ice surface (solid line) and bedrock surface (dashed line), and (c) total flux
(solid lines), flux from deformation (dash-dotted lines), and flux from sliding (dotted lines), and (d) width of a glacier
longitudinal profile in topographic steady state plotted for an Ablation Area Ratio of 0.6, l = 1, different rock uplift rates,
and a mass balance ratio 𝛾 of 1.2. Note that the width is assumed to be independent from both U and glacier mass
balance. ELA = equilibrium line altitude.

are affected by including glacier width and the AAR, but related scaling relations do not (fixed width) or only
marginally (fixed AAR) depend on these influences for the tested parameter ranges. The only exception is a
combination of a mass balance cutoff with a fixed AAR for U > 2 × 10−3 m/year.

6. Implications for Steady State Relief

The limiting effect of a climatically induced glacial buzzsaw on the height of mountain ranges has been
extensively discussed in the literature (see section 1). The buzzsaw concept assumes that climate controls the
amount of topography present above the ELA, while the rock uplift rate has little or even no relevance. This
view is supported by analyses of hypsometric patterns in orogens worldwide and numerical landscape evolu-
tion models that show that glacial erosion modifies the hypsometry and reduces the overall relief of mountain
landscapes (e.g., Brozović et al., 1997; Egholm et al., 2009; Mitchell & Montgomery, 2006). However, such mod-
els often do not incorporate tectonic uplift and can only simulate glacial erosion over a limited amount of
time, typically one or several glacial cycles. Similarly, most glaciated mountain landscapes are likely to be in
a transient state and related observations are thus only a snapshot of a system in an unknown evolution-
ary state. In contrast, constraints on steady state profiles and related glacial relief can be derived from our
model, at least in 1-D and under the assumption that the horizontal position of the ELA is constant. In such
an analysis it seems adequate to consider scaling relationships of two indicators, glacial relief above the ELA
and mean bedrock elevation, as both definitions have been used to describe the impact of cold climate on
mountain topography. When predicting mean bedrock elevation in absolute values in a glacial topographic
steady state, however, limitations arise from a 1-D approach as the related hypsometry remains unknown.
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Nevertheless, we are still able to test whether or not steady state mean bedrock elevation above the ELA
changes with rock uplift rate in our one-dimensional approach. In any case, a discussion of the role of rock
uplift rate in controlling glacial steady state relief and mean elevation seems to be most useful, if only to
compare it to a nonglacial steady state scenario.

6.1. Comparison of Glacial and Fluvial Steady State Relief
In defining glacial steady state topography we were inspired by the work of fluvial geomorphologists who
constrained the most important long-term controls on fluvial topography and the shape of related steady
state landscapes (Flint, 1974; Hack, 1957; Whipple & Tucker, 1999). In a fluvial steady state, erosion rate
balances rock uplift rate (U = ė), and thus,

U = Kf Di
(dz

dx

)j

(19)

where D is drainage area and i and j are constants. Note that drainage area (i) and slope (j) exponents are
commonly called m and n in related literature. The scaling of slope with U is then determined by the slope
exponent j from

dz
dx

=
(

U
Kf

)1∕j

D−i∕j (20)

The value of j is still debated. In many modeling studies j ≈ 1 is assumed (e.g., Perron & Royden, 2013; Wobus
et al., 2006), while observations indicate j > 1, i.e., a nonlinear scaling of fluvial steady state relief with rock
uplift rate, with a scaling exponent < 1 (e.g., Kirby & Whipple, 2012; Lague, 2014; Scherler et al., 2017).

The scaling regimes for slope above the ELA in a glacial steady state presented in section 4 are derived from
analyzing mean ice surface slope and are thus also valid for glacial relief above the ELA, as the horizontal posi-
tion of the ELA is a fixed boundary condition in our approach and ice thickness approaches zero at the glacier
origin, which makes ice surface and bedrock elevations identical. From this it becomes clear that rock uplift
rate exerts some control on mountain height in glacial steady state landscapes for both linear and nonlinear
erosion rules and leads to steepening of the ice and bedrock surfaces, which corresponds to findings of Brock-
lehurst and Whipple (2007); Pedersen et al. (2010). It is also clear that the dependence of glacier mass balance
on altitude reduces the sensitivity of mountain height to rock uplift rate in a glacial steady state. This effect
emerges from a feedback between mountain height and glacier mass balance. Higher rock uplift rates can
be expected to increase mountain height in both fluvial and glacial landscapes, but in the latter, the increase
is reduced due to a resulting increase in glacier mass balance and hence ice flux, sliding velocity and glacial
erosion, which counteracts the growth of relief. The scaling exponent of dh∕dx with U is ≤ 0.6 for temper-
ate glaciers, if a linear erosion law (l = 1) is assumed (Figure 6a). This is similar to scaling exponents reported
for the fluvial realm (Kirby & Whipple, 2012; Lague, 2014). However, recent evidence suggests a nonlinear
glacial erosion law with l = 2 (Herman et al., 2015; Koppes et al., 2015). In this case, glacial scaling exponents
approximately halve. The scaling exponent of dh∕dx with U reduces to ≤ 0.3, which is substantially lower
than observations on fluvial relief-uplift scaling (Kirby & Whipple, 2012; Lague, 2014; Scherler et al., 2017).
This comparison suggests that, while both fluvial relief and glacial relief above the ELA depend on rock uplift
rate, glacial relief may be less sensitive to tectonic forcing under temperate conditions. Contrarily, if a differ-
ent modeling approach is chosen, the width of a glacially-dominated orogen seems to be more sensitive to
tectonic and climatic forcing than the width of a fluvially dominated orogen (Tomkin & Roe, 2007).

The scaling of mean bedrock elevation above the ELA with U deviates from a power law even in the simplified
scenarios with either sliding- or deformation-dominated glaciers. This is a result of the influence of both dh∕dx
and H on the horizontal position of the bedrock-ELA intersection. This leads to a variable scaling exponent
for very low uplift rates where H becomes very large. However, for moderate to high rock uplift rates mean
elevation above the ELA follows the scaling relations of relief and is thus also subject to a coupled control of
tectonics and climate.

The sliding- or deformation-dominated scaling regimes reported in Table 2 follow power laws and thus imply
that, at least in these simplified cases, the increase in glacial relief above the ELA approaches zero and may
thus become negligible for very high uplift rates. However, we have used empirically defined parameters for
deriving our scaling regimes and find that uplift rates sufficiently high to approach a relief independent of
tectonic forcing are orders of magnitudes higher than the highest reported long-term rates (e.g., Enkelmann
et al., 2011; Herman et al., 2013; Koppes & Montgomery, 2009; Lundberg & Dorsey, 1990; Tippett & Kamp, 1993).
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Furthermore, the presence of a mass balance cutoff due to the depletion of moisture with altitude and/or the
reduced sliding properties of cold ice may lead to scaling exponents for dh∕dx with U close to 1 (l = 1) or
0.5 (l = 2), or even higher (Figure 6). The importance of these two effects can be expected to increase with
elevation and thus rock uplift rates and may hence oppose a possible reduction of relief sensitivity toward zero
at very high rock uplift rates. This may contribute to explaining the presence of high relief in high latitudes
such as the Denali Range, Alaska, where temperatures are generally lower than in temperate mountain ranges.

In addition to the metrics discussed above, the shape of the glacier longitudinal profile itself depends on U, Kg,
and 𝛽 . The ice surface takes an S-shape, concave in the upper, straight in the middle, and convex in the lower
part. This S-shape becomes more distinct with increasing U and/or decreasing 𝛽 . Similarly, the concavity of
the glacier bed is most pronounced for low U and/or high 𝛽 with overdeepening close to the glacier terminus.
With increasing U and/or decreasing 𝛽 the bedrock profile straightens and eventually becomes S-shaped as
well. This applies to all investigated scenarios (Figures 2–4) and implies that glacial overdeepening and related
phenomena such as glacial lakes and abundant valley infill are most pronounced in low-uplift/high precip-
itation areas. However, different effects such as glacier length variations, valley confluences, localized basal
water pressure or erodibility contrasts have been proposed to cause glacial overdeepening at different loca-
tions along a glacier profile (e.g., MacGregor et al., 2000, and references therein). Some of these mechanisms
cannot be reproduced by our model or only occur in transient conditions.

Our model based on the SIA implies that ice thickness, glacial relief, and mean elevation above the ELA depend
on rock uplift rates in glacial steady state longitudinal profiles. This opposes a purely climatic control on moun-
tain height. However, in contrast to most fluvial regimes, the incorporation of glacier mass balance as an
altitude-dependent variable reduces the sensitivity of glacial relief to rock uplift rate. The reduction of this
sensitivity depends on the glacier type, sliding and erosion laws and sliding and deformation properties.

6.2. Periglacial Erosion
Our study does not take into account the role of hillslope processes but solely reports the impact of
glacial erosion on steady state topography based on simple theoretical formulations. Processes that denude
permafrost-affected hillslopes and rock walls undoubtedly play a major role in relief development of
high-mountain landscapes and recent studies have suggested the existence of a periglacial buzzsaw (Hales &
Roering, 2005; Scherler, 2014), have explicitly included periglacial erosion in glacial landscape evolution mod-
els (Egholm et al., 2015; MacGregor et al., 2009) and have reported possible feedbacks between hillslopes and
glaciers (Scherler et al., 2011; Ward et al., 2012). Nevertheless, similar to river incision controlling hillslope pro-
cesses in the fluvial realm, glaciers represent the backbone of cold-climate mountain landscapes and hence
can be expected to exert a major control on relief development. Our analyses thus have the potential to serve
as a benchmark for understanding the evolution of glacial mountain landscapes.

6.3. Climate Variations During the Quaternary
The direct application of our theoretical model to the real world is mainly challenged by the assumption
of an ELA that is constant in space and time. The Quaternary climate was subject to substantial variation
in ELAs and glacier extents over different time spans (e.g., Lisiecki & Raymo, 2007; Petit et al., 1999; Zachos
et al., 2001). The mean climate of the Quaternary was likely a glacial one, although most probably not a full
Last Glacial Maximum one (e.g. Kirkbride & Matthews, 1997; Porter, 1975). This raises the question of which
average climate glacial landscapes would adjust to, in particular as different parts of the landscape were occu-
pied by glaciers over different time spans (Anderson et al., 2006, 2012), and ice sliding conditions may have
changed with climate. Different parts of the landscape may have adjusted to different average climate condi-
tions, and fluvial processes may have altered or even fully transformed glacial terrain into a fluvial state during
interglacial periods (Prasicek et al., 2015). On the other hand, glacial landscapes may asymptotically approach
a steady state with rapid transformation in early stages (e.g., Leith et al., 2014; Pedersen et al., 2010), indicated
in low-lying trunk valleys where glacial erosion seems to have caused massive overdeepening and hanging
tributaries only during glacial maxima (e.g., Jaboyedoff & Derron, 2005; Pomper et al., 2017).

Testing these influences on the state of glacial topography is beyond the scope of this theoretical study. How-
ever, most of the points raised above are not yet satisfactorily understood, which demonstrates the need for
additional theoretical models and empirical studies. Although large parts of the present-day glacial topogra-
phy worldwide are most likely in a transient state, fully glaciated landscapes experiencing tectonic uplift may
allow a comparison to steady state configurations. For example, Pedersen et al. (2010) suggest that in part of
the Andes, the Himalaya and the North American Coastal Ranges erosion above the ELA may be in equilibrium
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with uplift rates. Beyond aiming to detect glacial steady state topography in the real world, spatial variations in
the degree of similarity with a steady state topography may help to improve our understanding of landscape
dynamics during the Quaternary.

7. Conclusions

We modeled the shape of glacial steady state longitudinal profiles in a coupled system in which the interac-
tion of climate and tectonics controls glacial topography and ice thickness, based on the formulations of the
shallow ice approximation and a glacial erosion law. We derived scaling relations for ice thickness and ice sur-
face slope for sliding- and deformation-controlled scenarios, as well as scenarios with a sliding-deformation
mix, and other influences such as a mass balance cutoff and temperature-dependent ice viscosity and basal
sliding properties. From these analyses we constrained the dependence of glacial relief and mean elevation
on rock uplift rate and compared it to mathematical formulations of fluvial topography. Our modeling results
imply that

1. both tectonics and climate control steady state ice thickness, ice surface slope, and glacial relief above the
ELA;

2. ice surface slope, glacial relief, and mean elevation increase with rock uplift rate in a glacial steady state,
with characteristic scaling exponents ≤ 0.6 in case of a linear glacial erosion law (l = 1) or ≤ 0.3 in case of a
nonlinear glacial erosion law (l = 2);

3. ice surface slope, glacial relief, and mean elevation decrease with glacier mass balance gradient with
characteristic scaling exponents ≥ −0.4;

4. ice thickness decreases with rock uplift rate with exponents ≥ −0.4 in case of a linear glacial erosion law
(l = 1) or ≥ −0.2 in case of a non-linear glacial erosion law (l = 2);

5. ice thickness increases with glacier mass balance gradient with exponents ≤ 0.6;
6. substantially higher scaling exponents of ice surface slope, glacial relief, and mean elevation with rock uplift

rate are possible in case of a low glacier mass balance cutoff or reduced sliding due to cold ice;
7. an increase in rock uplift rate raises mountain height in both fluvial and glacial steady state landscapes, but

in the glacial realm glacier mass balance and hence ice flux increases with elevation, which counteracts the
growth of relief and reduces the sensitivity to tectonic forcing;

8. a glacial buzzsaw concept that conforms to the shallow ice approximation and glacial erosion rules should
incorporate the coupled impact of tectonic and climatic forcing on glacial steady state topography and the
resulting reduction of sensitivity to rock uplift rates in comparison to a fluvial equilibrium.

We elaborated a quantitative relationship between glacial landscape characteristics and tectonic and climatic
controls under the assumption of topographic steady state. Further research will focus on whether glacial
landscapes that correspond to our steady state solution exist on our planet and to which average climatic
conditions various glaciated mountain belts under different tectonic settings may have adjusted to.
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