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Abstract We propose a reduced dynamical system describing the coupled evolution of fluid flow
and magnetic field at the top of the Earth’s core between the years 1900 and 2014. The flow evolution is
modeled with a first-order autoregressive process, while the magnetic field obeys the classical frozen flux
equation. An ensemble Kalman filter algorithm serves to constrain the dynamics with the geomagnetic field
and its secular variation given by the COV-OBS.x1 model. Using a large ensemble with 40,000 members
provides meaningful statistics including reliable error estimates. The model highlights two distinct flow
scales. Slowly varying large-scale elements include the already documented eccentric gyre. Localized
short-lived structures include distinctly ageostophic features like the high-latitude polar jet on the Northern
Hemisphere. Comparisons with independent observations of the length-of-day variations not only validate
the flow estimates but also suggest an acceleration of the geostrophic flows over the last century.
Hindcasting tests show that our model outperforms simpler predictions bases (linear extrapolation and
stationary flow). The predictability limit, of about 2,000 years for the magnetic dipole component, is mostly
determined by the random fast varying dynamics of the flow and much less by the geomagnetic data
quality or lack of small-scale information.

1. Introduction

In the Earth’s outer core, turbulent motion of the electrically conducting fluid sustains the geomagnetic field
through dynamo action. Part of this field, the poloidal one, crosses the mantle and can be observed at the
Earth’s surface and above. Because of the low conductivity of the mantle (see Jault, 2015; Velímský, 2010), once
measured and modeled, the poloidal field can be estimated everywhere outside and at the outer boundary
of the core (core-mantle boundary, CMB). The advection of the magnetic field at the CMB by the underlying
flow produces geomagnetic field changes that can be observed at the Earth’s surface. These changes are
known as geomagnetic secular variation, and their close examination can thus allow for inferences on the
core surface flow.

Within the outer core, the evolution of the magnetic field is prescribed by the induction equation. Under the
assumption that the mantle is a perfect electrical insulator, the magnetic toroidal field, which interacts with
the poloidal field inside the outer core, vanishes at the CMB. In addition, since the fluid cannot penetrate
the mantle, its associated velocity field is purely two dimensional. Finally, on short timescales, diffusion can
be considered as negligible in comparison to advection as shown in Roberts and Scott (1965). All in all, the
induction equation expressed at the CMB can be simplified into the so-called frozen flux (FF) approximation
(see Backus et al., 1996; Kahle et al., 1967). By inverting this equation, which couples the velocity field to the
radial component of the magnetic field and the secular variation, fluid motions at the CMB can be recovered.

However, since the velocity field has two components for one equation, and since any flow scale can inter-
act with the magnetic field to generate the large-scale, observable, secular variation, the inverse problem is
ill posed. Additional physical assumptions help to reduce the nonuniqueness of the velocity field and thus
to decrease the dimension of possible solutions. Constraints generally used in core flow inversions, such as
quasi-geostrophy, columnar, tangential-geostrophy, or purely toroidal, are, for example, described in Finlay
et al. (2010) and Holme (2015). Nevertheless, to obtain a unique solution, additional constraints on the veloc-
ity field need to be imposed. Typically, one enforces the energy associated with the small-scale velocity field
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to rapidly decay, based on the so-called large-scale assumption (see Finlay et al., 2010; Holme, 2015). However,
Baerenzung et al. (2016) have shown that although the flow is dominant at large scales, its total kinetic energy
spectrum does not exhibit a strong decaying slope. Recently, other strategies have been developed to bypass
the issues raised by the nonuniqueness of the velocity field. In particular, Aubert (2014) used the statistical
properties of an Earth-like geodynamo simulation (the coupled Earth model of Aubert, 2013) to constrain the
flow and the magnetic field a priori. A major advantage of such an approach is that the correlations between
the fields at the CMB and the fields within the outer core are available allowing for the imaging of the entire
outer core state.

Constraining priorily the temporal dependency of the velocity field is a more delicate operation than con-
straining it spatially. Optimally, one should account for the dynamics of the outer core fluid and magnetic field
prescribed by the magnetohydrodynamic equations. Approaches such as variational data assimilation (see
Canet et al., 2009; Li et al., 2014) allow to implement a physical dynamical model into the inversion framework.
To do so, the method searches for the optimal initial conditions of the system in order for the deterministic
trajectories of the different fields to explain at best the observations. The drawback of the variational method
is that all data are treated simultaneously, so whenever the dimension of data or their amount are large, the
algorithms become computationally expensive. An alternative to avoid such a block inversion is to operate
sequentially. Kuang and Tangborn (2008) were the first to adopt a sequential assimilation algorithm in the
context of geomagnetic modeling. The optimal interpolation algorithm they used proceeds recursively in two
steps. In the first one, referred as the forecast, the state variables are propagated in space and time with a given
physical model, in the case of Kuang and Tangborn (2008), a three-dimensional geodynamo simulation. Once
observations become available, the analysis is initiated, and the state variables are corrected to serve as input
for the next prediction step. Since with this approach uncertainties are not modeled, they have to be specified
in an ad hoc manner. The Kalman filter (KF) is a broadly used algorithm that allows the estimation of an opti-
mal model and its associated uncertainties (see Cohn, 1997; Evensen, 2003; Kalman, 1960; Talagrand, 1997),
also proceeding through a sequence of forecast and analysis. The main advantage compared to the approach
used by Kuang and Tangborn (2008) is that in the KF the evolution of the errors are also predicted, and when-
ever data become available, these errors are taken into account for the Bayesian update of the state variables.
However, the KF can only be applied to systems exhibiting linear dynamics. When the dynamics of the system
are nonlinear, as it is the case here for the geomagnetic field, the propagation of errors cannot be analyti-
cally derived. However, it can be either approximated by linearization with the extended version of the KF
or represented through an ensemble of possible solutions as in the ensemble Kalman filter (EnKF). Although
the forecasting potential of the EnKF has already been exploited in geomagnetic studies (see Aubert, 2015;
Beggan & Whaler, 2009; Gillet, Barrois, & Finlay, 2015), it is only recently that its ability to assimilate data has
been taken into account (see Barrois et al., 2017).

In the EnKF, the different fields of interest are represented through an ensemble of possible states. At the pre-
diction step, the dynamical model of the system prescribes the spatiotemporal evolution of each individual
member of the ensemble. At the analysis, covariances deriving from the forecasted fields and observations
are combined in order to correct the state of the predicted ensemble. Due to limitations in available com-
putational power, a balance between complexity of the dynamical model and size of the ensemble has to
be found. Here we decided to favor accuracy in statistical representation over model complexity. The evolu-
tion of the core magnetic and velocity fields is solely modeled at the CMB level, through, respectively, the FF
equation and a first-order autoregressive process (AR1). Extending the approach of Baerenzung et al. (2016) to
the time domain, the parameters of the autoregressive process are assumed to derive from scale-dependent
power laws and are directly estimated with the COV-OBS.x1 core magnetic field secular variation model of
Gillet et al. (2013) and Gillet, Barrois, and Finlay (2015).

The article is organized as follows. Section 2 describes the physical model and the mathematical approach
chosen to tackle the inverse problem. The framework is then applied to the real geophysical context, and the
results shown in section 3. Finally, conclusions are drawn in section 4.

2. Modeling Strategy
2.1. Quantities of Interest and Notations
In this study three fields are of particular interest, the radial component of the magnetic field Br(x, t), the
annual secular variation 𝜕tBr(x, t), and the velocity field u(x, t), all expressed at the Earth’s CMB described by x.
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The spectral counter parts of Br(x, t) and 𝜕tBr(x, t) are, respectively, given by the spherical harmonics (SH)
coefficients bl,m and 𝛾l,m such as the following:

Br(x, t) = −
l=+∞∑

l=1

(l + 1)
m=+l∑
m=−l

bl,m(t)Yl,m(x) , (1)

𝜕tBr(x, t) = −
l=+∞∑

l=1

(l + 1)
m=+l∑
m=−l

𝛾l,m(t)Yl,m(x) , (2)

with Yl,m(x) being the Schmidt seminormalized SH of degree l and order m.

The two-dimensional velocity field at the CMB u(x, t) is decomposed into a poloidal𝜙(x, t) and toroidal𝜓(x, t)
scalar field such as the following:

u(x, t) = r × ∇H𝜓(x, t) + ∇H(|r|𝜙(x, t)) , (3)

where ∇H corresponds to the horizontal divergence operator and r is the radius of the CMB. In spectral
space, the poloidal and toroidal fields are, respectively, derived from the coefficients 𝜙l,m and 𝜓l,m through
the formulation:

𝜙(x, t) =
l=+∞∑

l=1

m=+l∑
m=−l

𝜙l,m(t)Yl,m(x) , (4)

𝜓(x, t) =
l=+∞∑

l=1

m=+l∑
m=−l

𝜓l,m(t)Yl,m(x) . (5)

The magnetic field and secular variation energy spectra are given by the following:

Eb(l) = (l + 1)
m=l∑

m=−l

b2
l,m (6)

E𝛾 (l) = (l + 1)
m=l∑

m=−l

𝛾2
l,m . (7)

and the velocity field u(x, t) poloidal and toroidal energy spectra, respectively, as

E𝜙(l) =
l(l + 1)
2l + 1

m=l∑
m=−l

𝜙2
l,m (8)

E𝜓 (l) =
l(l + 1)
2l + 1

m=l∑
m=−l

𝜓2
l,m . (9)

In the following, we will use normal characters and bold characters. Normal characters will refer to vectors
containing the SH representation for one instant in time (epoch); for example,

b(t0) = b0 = (bl=1,m=0, bl=1,m=1, bl=1,m=−1,…)T . (10)

Bold characters refer to all single epoch vectors; for example,

b = (b0, b1, ...bN−1)T . (11)

Finally, a constant formalism for some statistical quantities will be used all over the manuscript. The mean
value of a distribution p(a) will be written with an over bar such as the following:

ā = ∫ ap(a)da (12)

BÄRENZUNG ET AL. 4541



Journal of Geophysical Research: Solid Earth 10.1029/2017JB015115

and the covariance associated with a random variable a or between a random variable a and a random
variable b will respectively be expressed as follows:

Σa = (a − ā) (a − ā)T (13)

Σab = (a − ā)
(

b − b̄
)T
. (14)

Note that the use of bold characters for space time-dependent variables also applies to statistical quantities.

2.2. Sequential Assimilation of the Core Secular Variation and Magnetic Field
We combine a dynamic model for the magnetic and velocity fields at the CMB with the geomagnetic field
model COV-OBS.x1 model by Gillet et al. (2013) and Gillet, Jault, and Finlay (2015), derived from geomagnetic
data, through an EnKF approach (Evensen, 2003). The EnKF method allows the sequential assimilation of data
within a two-step procedure: the forecast and the analysis. In the forecast, an ensemble of possible solutions of
the magnetic and velocity fields is evolved in time until data become available. In the analysis, the predictions
of the ensemble are then corrected accordingly to the data. Details on the implementation of these two steps
are given in the following.

2.2.1. Forecast
2.2.1.1. Magnetic Field
As mentioned in section 1, under the assumption that the observed secular variation is solely induced by
advection of the magnetic field at the CMB, the dynamical evolution of Br is expressed by the FF equation as
following: 𝜕tBr(x, t) = −∇H

(
u(x, t)Br(x, t)

)
. Based on the notations given in section 2.1, this equation can be

written in spectral space as

𝜕tb(t) = 𝛾(t) = −Ab(t)u(t) = −Au(t)b(t) = −A (u(t)b(t)) , (15)

where the linear operators Ab and Au and the third-order tensor A allow us to calculate the SH coefficients
associated with the advection term ∇H(u(x, t)Br(x, t)) when they are respectively applied to u, b and (ub).
2.2.1.2. Velocity Field
The dynamical evolution of the fluid within the Earth’s outer core is described by the Navier-Stokes equations.
Numerically solving this equation is not only computationally expensive; it remains out of reach in Earth
regime. Since on short timescales the observable magnetic field and secular variation only depend on the
velocity field at the CMB, we model the outer core flow only on this surface. Following Gillet, Jault, and Finlay
(2015), we choose a first-order autoregressive process (AR1) to do so. In its continuous form, this process reads

𝜕tul,m(t) +
1
𝜏(l)

ul,m(t) = 𝜎(l)�̇�(t) , (16)

where �̇�(t) is a Gaussian white noise process and where ul,m stand for either 𝜙l,m or 𝜓l,m. The characteris-
tic time 𝜏(l) and the scaling factor 𝜎(l) are the scale-dependent parameters of the AR1 process. Note that
these parameters will differ between the poloidal and toroidal part of the velocity field and that they will be
directly estimated with the observed secular variation and core magnetic field following the procedure given
in section 2.3.

2.2.2. Analysis
For the analysis step of the EnKF algorithm, the ensemble of state variables characterizing the modeled system
is predicted at observation time to be corrected with the data do. If the latter ensemble is referred as {xf}, and
if the observations are related to the state variables through the relation do = Hx + 𝜉d , where 𝜉d is a normally
distributed measurement noise with a 0 mean and a covariance matrix Σo

d , then each ensemble member xf
k

can be updated accordingly to the formulation:

xa
k = xf

k + Σxf HT
(

HΣxf HT + Σo
d

)−1 (
do

k − Hxf
k

)
, (17)

where do
k corresponds to the data perturbed by random realizations of the measurement uncertainties (𝜉d

k )
and where we recall that the covariance of a field x is referred as Σx and the covariance between a field x and
a field y is expressed as Σxy . In equation (17), whereas the product Σxf HT expresses the covariance between
the state variables and the observations, the matrix HΣxf HT +Σo

d describes the possible variations of the data
around their mean prediction Hx̄f .
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In this study, magnetic field and secular variation data are simultaneously used to correct an ensemble of
predicted magnetic field and velocity field {uf , bf}. The data are taken from the Gaussian model COV-OBS.x1
of Gillet, Barrois, and Finlay (2015) with a 2-year time interval ΔtA, which corresponds to the knots of the
model’s B-spline expansion. At a given epoch, the “observed” magnetic field bo and secular variation 𝛾o are
characterized by the normal distributions:

p(bo) =  (
b̄o,Σo

b

)
(18)

p(𝛾o) =  (
�̄�o,Σo

𝛾

)
, (19)

where the covariance matrices Σo
b and Σo

𝛾
are derived from the 100 ensemble members provided by the

COV-OBS.x1 model. Because of the singular nature of these matrices, only their diagonal part is kept.

To correct each pair (uf
k, bf

k) of the kth forecasted ensemble member with the observations bo and 𝛾o, a
prediction for the observables is built according to the following relations:

𝛾 f
k = −A

(
uf

kbf
k

)
(20)

bf<
k = Hbk, (21)

where the predicted secular variation 𝛾 f is given by the FF approximation of relation (15) and where the linear
operator H simply truncates the forecasted magnetic field at the level of the observed one leading to the
large-scale magnetic field bf<.

From the ensemble
{

uf , bf , 𝛾 f ,Hbf
}

the covariances necessary for the analysis step of the EnKF are calculated
and used to update each pair of predicted velocity field and magnetic field with the relation:(

ua
k

ba
k

)
=
(

uf
k

bf
k

)
+

(
Σf

u𝛾Σ
f
ubHT

Σf
b𝛾Σ

f
bHT

)

×

(
Σf
𝛾
+ Σo

𝛾
Σf
𝛾bHT

HΣf
b𝛾HΣf

bHT + Σo
b

)−1 (
𝛾o

k − 𝛾 f
k

bo
k − Hbf

k

)
,

(22)

where 𝛾o
k and bo

k are random realizations from the distributions of the COV-OBS.x1 model given in
equations (18) and (19).
2.2.3. Numerical Implementation of the Forecast
To predict the evolution of an ensemble of velocity and magnetic fields {u, b}, equations (15) and (16) have
to be numerically solved. For the magnetic field, this operation is not straightforward. Indeed, since the FF
equation does not contain any diffusion mechanism, cascading magnetic energy will have a tendency to
accumulate on the smallest simulated scales and to slowly contaminate the entire field through nonlinear
interactions. An extra hyperdiffusion term is thus added to the FF approximation so that the evolution of the
magnetic field is then prescribed by the following equation:

𝜕tb = −Aub − 𝜂DΔ4b, (23)

where the hypperdiffusivity term is set to 𝜂D = 9 × 1013 km8/year. This value is chosen so that over 100 years
of pure diffusion, the magnetic energy at SH degrees 13, 26, and 39, respectively, decreases by 0.09%, 18%,
and 99%. With the discretized (in time) version of equation (23), each member bk of the ensemble of magnetic
field {b} is numerically forecasted. However, since the time step of the analysis Δta = 2 years is too large
to ensure the stability of the algorithm, a smaller time step of Δtf = 0.5 year has been used to predict the
evolution of each bk . Whereas the first forecast iteration is performed with an Euler scheme, the following
ones are achieved with a second-order Adams-Bashforth scheme, such as the following:

bk(t + Δtf ) = bk(t) + Δtf Fk(t) (24)

bk(t + (i + 1)Δtf ) = bk(t + iΔtf ) + Δtf
(3

2
Fk(t + iΔtf ) − 1

2
Fk(t − iΔtf )

)
, i ≥ 1 , (25)
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where Fk = −Auk
bk − 𝜂DΔ4bk . To predict the evolution of the velocity field, we use the analytical solution

of equation 16:

ul,m(t′) = exp

(
− t′ − t
𝜏(l)

)
ul,m(t) + ∫

t′

t
exp

(
− t′ − s
𝜏(l)

)
𝜎(l)d𝜔(s) ∀t′ > t . (26)

Since the velocity field is advecting the magnetic field, the former has to be known at each t + iΔtf epochs.
Under the assumption that the flow at the CMB is in a stationary state, formulation (26) can be expressed for
each member uk of the ensemble of velocity field {u} as the following:

uk(t + (i + 1)Δtf ) = Γ(Δtf )uk(t + iΔtf ) + 𝜉k(Δtf ) , i ≥ 0 , (27)

where the memory termΓ is a diagonal matrix with entries given by exp
(
−Δtf∕𝜏(l)

)
and where 𝜉k is a random

realization of the Gaussian white noise 𝜉. The latter is characterized by a 0 mean and a covariance Σ𝜉 deriving
form the spatial covariance of the velocity field in its stationary state Σ∞

u such as the following:

Σ𝜉 = Σ∞
u − ΓΣ∞

u ΓT . (28)

Note that at this stage, Σ∞
u is unknown. It will be parameterized, as shown in section 2.3.1, and its parameters

will be directly estimated with the data, according to the methodology detailed in section 2.3.2.

2.3. Characterization of the Parameters of the Autoregressive Process
The numerical resolution of the EnKF algorithm requires a knowledge of Γ and 𝜉, the parameters of the dis-
crete AR1 process given by equation (27). Instead of imposing these parameters, they are evaluated so that
the resulting flow evolution explains at best the time series of the observed secular variation �̄�o. For this eval-
uation to be possible, a certain parametrization  of Γ and Σ∞

u (or Σ𝜉 ) is necessary. The assumptions taken
to characterize  are detailed in the following section.

2.3.1. Parametrization of the Autoregressive Process
Following the developments of Baerenzung et al. (2016), Σ∞

u is derived from the poloidal and toroidal station-
ary spectra of the flow, the latter being assumed to behave as power laws with different spectral ranges. Γ,
which contains the information on the scale-dependent temporal correlations of the velocity field, is derived
from power laws with the same ranges as the flow energy spectra. Under such assumptions, the poloidal and
toroidal stationary spectra of the flow and memory terms of the AR1 process are given by the following:

E𝜙(l) = Ci
E𝜙

I2
E𝜙

l
-Pi

E𝜙 for l ∈ Δi
𝜙

(29)

E𝜓 (l) = Cj
E𝜓

I2
E𝜓

l
-Pj

E𝜓 for l ∈ Δj
𝜓

(30)

Γ𝜙(l) = Ci
Γ𝜙

I2
Γ𝜙

l
-Pi

Γ𝜙 for l ∈ Δi
𝜙

(31)

Γ𝜓 (l) = Cj
Γ𝜓

I2
Γ𝜓

l
-Pj

Γ𝜓 for l ∈ Δj
𝜓
, (32)

where the I’s are the magnitudes of the energy spectra and the memory terms, and the Pk ’s are their slopes
within the SH ranges Δk ’s. The constants Ck ’s are given by the following:

Ck =
a=k∏
a=2

exp
(

log
(

la-1

) (
Pa − Pa-1

))
(33)

la being the SH degrees where transitions in slope occur. For a visual interpretation of relations (29) to (33),
the reader can look at Figures 1 and 2.

According to this parametrization, whereas the matrix Γ is diagonal and contains both Γ𝜙(l) and Γ𝜓 (l), the
spatial covariance Σ∞

u derives from the poloidal and toroidal energy spectra such as the following:

𝜙l,m𝜙l′ ,m′ =
E𝜙(l)

l(l + 1)
𝛿ll′𝛿mm′ (34)

𝜓l,m𝜓l′ ,m′ =
E𝜓 (l)

l(l + 1)
𝛿ll′𝛿mm′ (35)

𝜙l,m𝜓l′ ,m′ = 0 ∀l, l′,m,m′ . (36)
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Figure 1. Prior kinetic energy spectra for the toroidal part of the velocity
field (black) and for its poloidal part (gray). Estimations with the COV-OBS.x1
secular variation and magnetic field model between 1900.0 and 2014.0
(crosses) and between 1970.0 and 2014 (circles). The solid lines are the
combination of the two evaluations used as a prior information to
parametrize the autoregressive process for the flow.

In matrix form, Σ∞
u can be written as:

Σ∞
u =

⎛⎜⎜⎜⎜⎜⎝

E𝜙(l0)
l0(l0+1)

0 · · · 0

0
E𝜓 (l0)

l0(l0+1)
· · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · E𝜓 (lmax)
lmax(lmax+1)

⎞⎟⎟⎟⎟⎟⎠
, (37)

where l0 and lmax are, respectively, the smallest and largest SH degrees of
the flow spectral decomposition.

The set of parameters  associated with the autoregressive process can
be divided into two categories, one containing the parametrization of the
spatial covariances, Σ, and the other associated with the memory terms
of the process Γ. Σ and Γ are, respectively, given by the following:

Σ =
{

IE𝜙
, Pi

E𝜙
,Δi

𝜙
, IE𝜓

, Pj
E𝜓
,Δj

𝜓

}
(38)

Γ =
{

IΓ𝜙 , Pi
Γ𝜙
,Δi

𝜙
, IΓ𝜓 , Pj

Γ𝜓
,Δj

𝜓

}
, (39)

where the index i and j are associated with the different poloidal and
toroidal SH ranges.

2.3.2. Estimation of the Parameters Associated With the Autoregressive Process
To estimate the parameters , which enable the flow to optimally explain �̄�o, the secular variation time
series of the COV-OBS.x1 model, one can maximize the distribution p(|�̄�o). In order to obtain the latter
distribution, the joint posterior distribution p(u,b,|�̄�o) can be marginalized in the following manner:

p(|�̄�o) = ∫ p(u,b,|�̄�o)dudb = 1
p(�̄�o) ∫ ∫ p(𝜸o|u,b,)p(b)p(u|)p()dudb . (40)

On the second line of equation (40), p(�̄�o|u,b,) is the likelihood distribution, p(b), p() and p(u|) are
the prior distributions for, respectively, the magnetic field, the parameters of the AR1 process, and the velocity
field knowing , and finally, p(�̄�o) is the prior distribution of the secular variation data, which is a constant.
The derivation of each distribution entering relation (40) is detailed in the following.
2.3.2.1. Likelihood Distribution p(�̄�o|u,b,)
The likelihood distribution is a measure of the statistical properties of the data once reality is known. In our
case we assume that the real secular variation is at any time given by the FF equation such as 𝜸 = −A(bu). The
data being the COV-OBS.×1 Gaussian model for the secular variation, the likelihood distribution is therefore
given by the following:

p(�̄�o|u,b,) =  (
−A(bu),Σo

𝜸

)
. (41)

Figure 2. Prior characteristic timescale 𝜏(l) for the autoregressive process
of the flow, associated with the toroidal part of the velocity field (in black)
and its poloidal part (in gray).

The possible correlations in time of the errors associated with the
COV-OBS.x1 secular variation are neglected; therefore, Σo

𝜸
is a block diag-

onal matrix with Σo
𝛾

blocks (the covariance matrices of the COV-OBS.x1
secular variation at different epochs).
2.3.2.2. Prior Distribution of the Magnetic Field p(b)
This distribution is decomposed into two parts. The first one describes the
statistical properties of the large-scale, observable field b<, whereas the
second part expresses our prior knowledge on the small-scale field b>.
The large-scale magnetic field is characterized by the prior distribution:

p(b<) =  (b̄o,Σo
b) , (42)

where b̄o and Σo
b are, respectively, composed of the COV-OBS.x1 mag-

netic fields bo and covariance matrices Σo at different epochs. As for the
covariance of the COV-OBS.x1 secular variation, the correlations in time of
the magnetic field model errors are neglected and Σo

b is a block diagonal
matrix composed of Σo

b blocks.
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The small-scale magnetic field is chosen to be at any time isotropically distributed, with a 0 mean and a covari-
ance Σb> deriving from the extrapolation of the large-scale field spectrum Eb< (l). Here we use the formulation
proposed by Buffett and Christensen (2007) to characterize the magnetic field spectrum at the CMB. It reads

Eb> (l) = C1𝜒
l (43)

where𝜒 = 0.99. To determine the constant C1, we used the COV-OBS.x1 magnetic field sampled every 2 years
between 1900.0 and 2014.0 and performed a weighted least squares fit of the associated energy spectra
between SH degree l = 2 and l = 13. We obtained that C1 = 7.15×109 nT2. Another type of extrapolation has
also been tried, assuming an exponential decay of the magnetic field spectrum. Although we do not show
the results associated with this modeling, we observed that such an assumption would provide insufficient
levels of energy at small scales, leading to suboptimal predictions of the magnetic field evolution. From the
extrapolation given in equation (43) we construct the covariance of the small-scale magnetic field Σb> at a
given time through the relation:

b>l,mb>
l′ ,m′ =

Eb> (l)
(l + 1)(2l + 1)

𝛿ll′𝛿mm′ . (44)

Neglecting a priori the temporal correlations between the small scales of the magnetic field, the full covari-
ance Σb> is simply a block diagonal matrix where every block is identical and given by Σb> . The prior
distribution associated with the small-scale magnetic field is thus given by the following:

p(b>) =  (0,Σb> ) , (45)

and we have p(b) = p(b<)p(b>).
2.3.2.3. Prior Distribution of the AR1 Parameters p()
The parameters  depend on the magnitudes I’s, the slopes P’s, and the SH ranges Δ’s of the flow stationary
spectra and the AR1 memory terms. Whereas the rangesΔ’s will be a priori imposed and therefore considered
as known, the magnitudes and slopes are completely undetermined. To reflect this lack of knowledge, we
characterize them by uniform distributions such as the following:

p(I) =  (0,∞) (46)

p(P) =  (−∞,∞) . (47)

The full prior distribution of  is simply the product of the prior distributions of each individual AR1
parameter.
2.3.2.4. Prior Distribution of the Velocity Field Conditioned by the AR1 Parameters p(u|)
The dynamical evolution of the velocity field is prescribed the first-order autoregressive process described in
section 2.2. In its discrete form, we recall that the process can be written as follows:

u(t + Δt) = Γ(Δt,)u(t) + 𝜉(Δt,) . (48)

If the parameters  describing Γ and 𝜉 are known, and if we assume that the velocity field at the CMB is
in its stationary regime, the prior distribution of the velocity field on a given time window can be expressed
as follows:

p(u|) =  (0,Σu| ) (49)

where the covariance matrix Σu| is given by:

Σu| =

⎛⎜⎜⎜⎜⎜⎝

Σu|∞ Γ|Σu|∞ · · · Γ|(N−1)
 Σu|∞

Σu|∞Γ|T Σu|∞ · · · Γ|(N−2)
 Σu|∞

⋮ ⋮ ⋱ ⋮

Σu|∞Γ|(N−1)T

 Σu|∞Γ|(N−2)T

 · · · Σu|∞

⎞⎟⎟⎟⎟⎟⎠
. (50)

2.3.2.5. Mariginalization
Because of the nonlinear term entering the likelihood distribution in equation (40), the marginalization of
p(u,b,|�̄�o) with respect to B and u results in a complex distribution, which is hard to handle numerically.
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This is why, following the development of Baerenzung et al. (2016), the posterior distribution of the AR1
parameters given the secular variation p(|�̄�o) is approximated by the following distribution:

p(|�̄�o) =
exp

[
− 1

2
�̄�oTΣ−1|�̄�o

�̄�o
]

(2𝜋)
d𝛾
2 |𝚺|�̄�o | 1

2

×
p()
p(�̄�o)

, (51)

where d𝛾 is the dimension of the secular variation vector. To construct the matrix 𝚺|�̄�o , the covariance
between �̄�o at a time t𝛼 and �̄�o at a time t𝛽 , with respect to the distribution p(�̄�o|u,b,)p(b)p(u|) is cal-
culated for every combination of epochs considered. The component at a row index i and a column index j of
the resulting covariance matrix Σt𝛼 t𝛽

|�̄�o
reads

(
Σt𝛼 t𝛽
|�̄�o

)
ij
=
(
Σot𝛼 t𝛽

𝛾

)
ij
+
(

Ab̄o
(t𝛼)Σ

t𝛼 t𝛽
u|AT

b̄o
(t𝛽)

)
ij

+ Aimn

(
Σt𝛼 t𝛽

u|
)

mr

(
Σot𝛼 t𝛽

b

)
ns

Ajrs ,

(52)

where we recall that the third-order tensor A is defined such as Aijk(u)j(b)k =
(

Abu
)

i
=
(

Aub
)

i
, and where the

Einstein summation convention applies to the tensor indexes m, n, r, and s.

3. Geophysical Application
3.1. Numerical Setup
The data entering our EnKF assimilation scheme consist of magnetic field and secular variation SH coefficients
from the COV-OBS.x1 model of Gillet, Barrois, and Finlay (2015) spanning the time period between 1900 and
2014. The coefficients are taken within a 2-year sampling, corresponding to the knots of COV-OBS.x1 B-spline
temporal expansion. The magnetic and velocity fields simulations are performed through a pseudospectral
approach on the Gaussian-Legendre grid provided by Schaeffer (2013). Both the poloidal and toroidal parts
of the velocity field are expanded up to SH degree l = 26, and the radial component of the magnetic field is
expressed up to SH degree l = 39 in order for the field to possess a large enough diffusion range. Whereas
the COV-OBS.×1 magnetic field is always taken up to SH degree l = 13, the expansion of the COV-OBS.x1
secular variation depends on the variance level associated with each degree. If globally at a certain scale the
standard deviation of the secular variation is larger than the absolute value of the mean secular variation, the
total field is truncated at this scale. Under such a condition, the COV-OBS.x1 secular variation is taken up to
SH degrees l = 10, l = 11, l = 12, and l = 13 for the respective time windows [1900–1923], [1924–1943],
[1944–1963], and [1964–2014]. Finally, the state of the system is characterized by 40,000 pairs of magnetic
field and velocity field at the CMB.

3.2. Estimation of the Flow Optimal Autoregressive Parameters
To simulate the spatiotemporal evolution of the flow at the CMB, the parameters of the autoregressive process
have to be estimated. We recall that their posterior distribution, p(|�̄�o), is expressed in equation (51). By
maximizing this distribution, it is possible to get the optimal parameters for the AR1 process. However, instead
of estimating both temporal and spatial parameters simultaneously, we proceed in two steps. First, only the
spatial covariance of the velocity field is evaluated following the method proposed and tested by Baerenzung
et al. (2016). This approach consists in maximizing the distribution p(|�̄�o) in which only the block diagonal
part of the covariance matrix Σ|�̄�o is kept. Once the spatial covariance is determined, it is assumed to be
known, and the maximum of p(Γ|�̄�o,Σ) is calculated.

Following the developments of section 2.3.1, the AR parameters are decomposed into scale-dependent power
laws exhibiting different spectral ranges. Baerenzung et al. (2016) showed that if the stationary spectra of
the flow are decomposed into two spectral ranges, the optimal scales where transition in slope occurs are
l = 3 and l = 8 for, respectively, the toroidal and poloidal energy spectra. Here whereas we keep the same
decomposition for the spectrum associated with the poloidal field, more degrees of freedom are allowed
for the toroidal field spectrum. Since we wish to accurately determine the spatiotemporal evolution of the
eccentric gyre, toroidal field component at SH degree l = 1 and l = 2, the main components of the gyre, are
free to exhibit any variance level and characteristic time. Similarly, toroidal field components at SH degree
l = 3 are also assumed to be unconstrained by surrounding velocity field scales. This choice is motivated
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Table 1
Combined Optimal Covariance Parameters Σ of the Flow Autoregressive
Process, Within the 1970.0– 2014.0 and the 1900.0– 2014.0 Periods

Flow field Range index i Δi Ii Pi

Toroidal 1 1 5.41 0

2 2 4.56 0

3 3 1.71 0

4 [4 , 26] 2.05 5.8 × 10−2

Poloidal 1 [1 , 8] 1.52 0.54

2 [8 , 26] 663 6.4

Note. Ii corresponds to the magnitudes and Pi to the slopes of the prior
stationary spectra, within the spectral ranges Δi (see equations (29) and
(30), and (34) and (35)).

by the particular low level of energy that these scales are exhibiting over
recent epochs (see Baerenzung et al., 2016; Whaler et al., 2016). Finally, one
spectral range is used to characterize the toroidal field spatial variance and
memory effects between SH degrees l = 4 and l = 26. All in all, the AR1
parameters associated with the toroidal field exhibit the four respective
spectral ranges, Δ0 = [1], Δ1 = [2], Δ2 = [3], and Δ3 = [4, 26].

As mentioned in the beginning of the section, the estimation of the
stationary energy spectra parameters is performed between 1900.0 and
2014.0, taking the COV-OBS.x1 magnetic field and secular variation every
ΔtA = 2 years. In Figure 1 the resulting power law spectra are displayed with
crosses. As already observed in Baerenzung et al. (2016), the toroidal field
(in black), and in particular its large scales (SH degree l = 1 and l = 2),
exhibits a much larger energetic level than the poloidal field (in gray). The
toroidal energy spectrum also presents a strong increase of energy toward
its smallest scales. This contradiction with the results of Baerenzung et al.

(2016) is likely attributed to a slight underestimation of the COV-OBS.x1 secular variation uncertainties.
Indeed, secular variation components that are not consistent with the FF approximation can only be explained
by an artificial injection of small-scale velocity field. Therefore, in order to better estimate the small-scale
energy spectra of the velocity field, we performed different estimations of the stationary spectra parame-
ters by varying the time window in which the evaluation is computed. We found that the largest period
where the spectra did not exhibit an anomalous behavior was 1970.0–2014.0. The resulting prior spectra
are shown in Figure 1 with circles. Combining the small-scale spectra of the 1970.0–2014.0 evaluation to the
large-scale ones of the 1900.0–2014.0 estimation, we get the final prior spectra for both the toroidal and
poloidal field displayed in Figure 1 with solid lines. The values associated with the spectra parameters are given
in Table 1.

The spatial covariances of the AR1 process being characterized, the evaluation of the memory terms is now
performed by maximizing the distribution p(Γ|�̄�o,Σ)within the 1900.0–2014.0 time window. The results,
expressed through the scale-dependent characteristic time 𝜏(l) = − Δt

log(Γ(l))
, are shown in Figure 2, and the

parameters of the memory terms are given in Table 2. The most striking feature we observe is the very long
memory time of the order of thousand years, of degrees l = 1 and l = 2, associated with the main components
of the eccentric gyre. This indicates that this structure has to be very persistent over time in order to optimally
explain the observed secular variation. These values should nevertheless be taken with care since they are
evaluated on a comparatively short time window of 114 years. In contrast with the large-scale field, the toroidal
field components at SH degree varying from l = 3 to l = 26 exhibit much lower characteristic memory,
with decaying times of 𝜏(l = 3) ∼ 50 years and 𝜏(l = 26) ∼ 30 years. Note that this limiting time is similar
to the e-folding time of the geodynamo as calculated by Hulot et al. (2010) and Lhuillier et al. (2011). The
characteristic times associated with the poloidal field indicate a similar behavior but with 𝜏(l) varying from
𝜏(l = 1) ∼ 400 years to 𝜏(l = 8) ∼ 40 years.

Table 2
Optimal Parameters for the Memory Term of the Autoregressive Process Γ, Evaluated Within the 1900– 2014 Time Window

Flow field Range index i Δi 1 − Ii Pi 𝜏(Δi)
Toroidal 1 1 1.43 × 10−4 0 3495

2 2 5.03 × 10−4 0 994

3 3 8.53 × 10−3 0 58

4 [4 , 26] 5.42 × 10−3 5.72 × 10−3 [53 , 34]

Poloidal 1 [1 , 8] 1.24 × 10−3 1.13 × 10−3 [403 , 38]

2 [8 , 26] −1.47 × 10−2 2.65 × 10−2 [38 , 17]

Note. Ii and Pi are, respectively, the magnitudes and the slopes of the assumed power laws within the spectral ranges Δi .
Also given are the characteristic times of the AR1 process 𝜏 = − 1

log(Γ) expressed in years.
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Figure 3. Time series of some selected secular variation coefficients 𝛾l,m at the CMB. Black dots and gray lines
respectively correspond to �̄�A

l,m
(EnKF) and �̄�o

l,m
(COV-OBS.x1). Error bars and gray shaded areas provide the associated

standard deviations. EnKF = ensemble Kalman filter.

3.3. Implementation of the EnKF and Misfit to the Data
With the AR1 process parametrization in place, the estimation of the velocity and magnetic field at the CMB
are ready for the EnKF algorithm. To initialize the fields in 1900.0, we applied the Gibbs sampling algorithm
proposed by Baerenzung et al. (2016) and which is detailed in Appendix A. However, instead of sampling
the joint posterior distribution of the flow and the magnetic field at the 1900.0 epoch only, we sampled the
distribution characterizing simultaneously the fields in 1900.0, 1950.0, and 2000.0, in order to constrain the
initial state with recent observations.

Once the initial fields were obtained, the EnKF algorithm was numerically solved, alternating analysis every
ΔtA = 2 years and forecasts consisting of four successive predictions with a time step of Δtf = 0.5 year.
The consistency of the model with the data is evaluated through the prediction misfit proposed by Evensen
(2003). For respectively the magnetic field and the secular variation, this quantity reads

𝜒2
b =

⟨
1

db
(b̄o − Hb̄f )T

(
Σo

b + HΣf
bHT

)−1 (b̄o − Hb̄f )
⟩2014.0

1900.0

(53)

𝜒2
𝛾
=
⟨

1
d𝛾

(�̄�o − �̄� f )T
(
Σo
𝛾
+ Σf

𝛾

)−1
(�̄�o − �̄� f )

⟩2014.0

1900.0

, (54)

where the notation < …>T F

T0
is associated with the time averaging between T0 and TF of the quantity lying

within the brackets and where db and d𝛾 are the dimensions of, respectively, the observed magnetic field
and secular variation. We recall that 𝛾 f and bf correspond to the predictions of the secular variation and the
magnetic field at every analysis epochs. The value of 𝜒2

𝛾
= 1.08 indicates that globally, the predictions for

the secular variation are consistent with its observations. For the magnetic field, the mean prediction misfit
of 𝜒2

b = 0.58 suggests a slight overfit of the data. This effect is certainly due to the fact that 𝛾o directly derives
from the time series of bo and that therefore their respective uncertainties are correlated. Yet these correlations
are neglected in our model.

The ability of our model to reproduce the time evolution of the observed secular variation is illustrated in
Figure 3. Indeed, the time series of some selected secular variation coefficients �̄�A

l,m and associated standard
deviation (black dots with erros bars) compare well with their observed counter parts �̄�o

l,m, which are shown
with gray lines and shaded areas for the corresponding standard deviations.

3.4. General Properties of the Flow at the CMB
Because of the sequential nature of the EnKF algorithm, the accuracy of the estimated fields is not constant
over time but improves whenever new data are assimilated. This effect is well illustrated in Figure 4 displaying
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Figure 4. Toroidal (top) and poloidal (bottom) energy spectra associated
with the ensemble mean fields (thick lines) and standard deviation (circles),
for the 1900.0 (gray) and 2014.0 (black) epochs. Thin lines correspond to the
prior spectra.

at two different epochs, 1900.0 (gray) and 2000.0 (black), the energy spec-
tra of the toroidal (top) and poloidal (bottom) mean velocity fields (thick
solid lines) and uncertainty fields (circles). Whereas in 1900.0 the mean
toroidal field exhibits a level of energy larger or of the same order than the
variance of the field up to SH degree l = 3, in 2000.0 reliable information
becomes available up to SH degree l = 9, although some components
of the field at SH degree l = 3 and l = 8 remain uncertain. Above these
scales the posterior variance of the flow rapidly reaches its prior level. One
can also notice that the larger the scale, the stronger the variance reduc-
tion over time. The latter observation, which is also valid for the poloidal
field, is linked to the characteristic times 𝜏(l) associated with the different
flow scales (see Figure 2). Indeed, the fact that 𝜏(l) is a strictly decaying
function of l, implies that small-scale velocity field will exhibit a higher ran-
domization rate than large scales, and so between two analysis step, the
prior variance will increase faster at small scales.

In physical space, the gain of flow accuracy over time is particularly strik-
ing for the toroidal part of the velocity field as shown on Figure 5. In this
figure, the toroidal (left) and poloidal (right) mean velocity fields are dis-
played with black arrows for three different epochs, 1900.0 (top), 1950.0
(middle), and 2000.0 (bottom). Color maps, representing the 90% confi-
dence interval on the velocity field orientation, provide information on
locations where the mean flow direction can be reliably estimated (violet
and blue) or not (red). In 1900.0, very little of the eccentric gyre can be con-
fidently estimated. Only the westward flow below Africa and the Atlantic
Ocean, the southern branches of the gyre, and the northern circulation
around and partially inside the tangent cylinder (the cylinder tangent to
the inner core and aligned with the axis of rotation of the Earth), appear
as reliable patterns. At later times the gyre is better defined, and many
of its small-scale structures become visible. Globally, uncertainties on the
toroidal part of the flow are decreasing with time. This does not seem
to be the case for the poloidal field, for which in 1950.0 reliable patterns
are covering a larger surface of the CMB than in 2000.0. Nevertheless, the

root-mean-square (r.m.s.) velocity of the poloidal field and associated standard deviation of 3.49 ± 0.23
in 1950.0 and 2.49 ± 0.21 in 2000.0 indicate that the global uncertainty level of the poloidal field and its
magnitude have been decreasing between 1950.0 and 2000.0.

Contrary to flow models constrained to be geostrophic (see Amit & Paris, 2013; Bloxham & Jackson, 1991),
upwelling and downwelling fluid motions, associated with the poloidal field close to the CMB, are not particu-
larly located around the equator. Instead, a strong and persistent poloidal structure evolves below the Indian
Ocean and South Africa. According to Bloxham (1986), such a poloidal field could be at the source, through
the expulsion of magnetic flux from the outer core, of the intense reversed flux patch located there. Although
the FF equation cannot model the transport of magnetic structures between the core and its outer bound-
ary, the poloidal flow estimation hints at upwelling and downwelling connected to subsurface flow, which are
usually connected to spread or concentration of magnetic flux, respectively.

Other specific features of the velocity field are in apparent contradiction with a possible geostrophic state of
the outer core flow. This includes the reliable part of the toroidal field penetrating the tangent cylinder, or its
component crossing the equator below India and South America, as already reported in other studies (see
Barrois et al., 2017). Clearly visible is the violation by the eccentric gyre of the equatorial symmetry condition
imposed by quasi-geostrophy (see Amit & Olson, 2004). Indeed, the flow responsible for the westward drift,
together with the circulations around the tangent cylinder, exhibits different levels of intensity in the Northern
Hemisphere than in the Southern Hemisphere.

These visual observations are confirmed in Figure 6, where the r.m.s. velocity and associated standard devi-
ation of the toroidal part of the flow, are measured in different locations of the CMB. One can observe on
the top right of Figure 6 that the flow evolving below Africa and the Atlantic Ocean within the areas shown
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Figure 5. Toroidal (left column) and poloidal (right column) velocity fields in 1900.0 (top), 1950.0 (middle), and 2000.0
(bottom). Arrows correspond the mean fields (over the ensemble), and color maps are displaying the 90% confidence
interval on their orientation. Note that the scaling for the velocity field is different between the toroidal and poloidal
part of the flow.

on bottom right of the figure is at any time more intense in the south than in the north. For the circulations
around the tangent cylinder, both southern and northern part exhibit similar levels of energy between 1900.0
and 1960.0 as shown on the bottom left of Figure 6. However, in 1960.0 the flow below Alaska and the eastern
part of Siberia starts to accelerate and intensifies almost continuously over the last decades to reach a r.m.s.
velocity around 23 km/year in 2014.0. Although this acceleration has already been observed during the
satellite era by Livermore et al. (2017), here we notice that it has been persistent for many decades. We
can further note that although the toroidal part of the flow exhibits some clear deviation from geostrophy,
comparisons of its r.m.s. velocity over the entire CMB (black symbols on the top left of Figure 6) with the
r.m.s. velocity of its equatorial symmetric part (gray symbols) show that the latter component remains at any
time dominant.

3.5. Predictions
The ability of a model to successfully predict the system evolution not only suggests that the model correctly
captures the dynamics on the considered timescales but also points toward useful applications. We test our
model with so-called hindcast simulations, which means that the analysis steps in the assimilation are only
carried out until a time T0 and then integrated as a free model run up to a time TF . The free run corresponds to
the forecast, or prediction, which can be compared with the data. Here we use six different T0 values, 1940.0,
1960.0, 1980.0, 1990.0, 2000.0, and 2010.0, and compare predictions for TF = 2015 with the respective epoch
in the CHAOS-6 magnetic field model by Finlay et al. (2016). This means that we attempt predictions over
periods ranging from 5 to 55 years. As a measure to quantify the quality of our mean predictions, we calculated
the r.m.s. difference

√
dP, between the mean forecasted magnetic field b̄f and the CHAOS-6 field bc in 2015.0.

The latter reads √
dP =

(
l=13∑
l=1

(l + 1)
m=l∑

m=−l

(
b̄f

l,m − bc
l,m

)2
)0.5

. (55)
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Figure 6. Root-mean-square (r.m.s.) velocity of the toroidal part of the flow and associated standard deviation in
different locations of the core-mantle boundary (CMB). Colored curves correspond to the r.m.s. velocity within the areas
surrounded by the same colored contour on the bottom right of the figure. The black and gray symbols on the top left
corresponds to the r.m.s. velocity of, respectively, the toroidal flow and its equatorial symmetric part over the entire
surface of the CMB. The arrows on the bottom right are associated with the 1980.0–2014.0 time-averaged mean
toroidal field.

The values of
√

dP, which are evaluated at the Earth’s surface, are summarized in Table 3. As it can be
expected, the longer the forecast, the larger the discrepancies between predicted and observed magnetic
field. For short-term predictions our results are consistent with previous studies. In particular the 5-year
hindcast between 2010.0 and 2015.0, which leads to a r.m.s. difference of

√
dP = 66 nT, is equivalent to the

63-nT optimal value obtained by Whaler and Beggan (2015) for a hindcast between 2010.0 and 2014.5 (for
the same hindcast period we get

√
dP = 55 nT). Looking at longer term forecasts, one can observe that

the accuracy of the mean predicted field degrades rapidly with time. The AR1 process characterizing the
evolution of the flow is certainly responsible for this. Indeed, with such a process, the different components
of the mean velocity field are simply decaying over time. Therefore, over periods that do not exceed the
characteristic times of the dominant flow scales, our mean predicted magnetic field would not differ much
from a field, which would be advected by a static flow (SF). Nevertheless, the AR1 offers an important advan-
tage compared to the SF assumption: the possibility to simulate the randomization over time of the different
velocity field components. This additional feature indeed allows us to better estimate the growth rate of
errors associated with mean magnetic field forecasts and thus provide accurate measures of the reliability of
our predictions.

Table 3
Root-Mean-Square Difference at the Earth’s Surface (in nT), Between the
CHAOS-6 Magnetic Field in 2015.0 and the Mean Magnetic Field Predicted
From T0 to 2015.0

T0

√
dP

1940 2,875

1960 2,007

1980 1,220

1990 712

2000 328

2010 66

The last statement is well illustrated in Figure 7, which presents the hind-
cast tests in terms of energy spectra at the Earth’s CMB. These results are
compared with hindcasts where the flows are assumed to be static from T0

(SF model). In the figure, thick black lines and thin gray lines are the spectra
of, respectively, the CHAOS-6 reference field bc and the predicted ensem-
ble means b̄f in 2015.0. The spectra of the difference between predicted
and observed fields, which are referred to prediction errors, are displayed
with gray and black triangles for, respectively, the EnKF and SF forecasts.
The latter can be compared with the spectra of the predicted errors (the
spectra of the standard deviation of the magnetic predicted field) displayed
with thick gray lines (EnKF) and thin black lines (SF). One can first observe
that prediction errors are of the same order of magnitude for the EnKF
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Figure 7. Results of the hindcast tests from T0 to TF = 2015.0, expressed in terms of energy spectra at the core-mantle
boundary. Spectra of the observed magnetic field in 2015.0 (thick black lines), its mean prediction (thin gray lines),
the prediction error (gray triangles), and the predicted error (thick gray lines). The thin black lines and the black triangles
are associated with, respectively, the predicted and the prediction errors when the velocity field is assumed to be static
from T0. The circles and squares, respectively, correspond to the energy spectra of the linear extrapolation error and the
no cast error.

and for the SF approaches. However, whereas predicted errors are consistent with prediction errors for the
EnKF model, uncertainties derived from the SF model clearly underestimate the prediction errors. This shows
that modeling flow dispersion with time is mandatory to explain the loss of information in magnetic field
predictions.

The comparison with two other more trivial prediction methods further allows to judge the advantage of our
more sophisticated approach. “No cast” refers to the assumption that the field remains identical to the field
at T0. “Linear extrapolation” uses the secular variation at T0 to linearly extrapolate the field from T0 to 2015:
bl(2015) = bo(T0) + (2015− T0)𝛾o. The prediction errors of these two trivial methods are shown as circles and
squares in Figure 7. Linear extrapolation and assimilation prediction errors remain similar for the two shortest
prediction periods. However, for predictions beyond the 10-year horizon, our assimilation formalism starts to
pay off. For the longest prediction period of 55 years, the errors in the two trivial methods already exceed the
spectral energy at degree 6, while the assimilation predictions remains appropriate until degree 9.

Working with an ensemble also permits the evaluation of statistical properties of quantities like inclination
or declination that depend nonlinearly on the state variables. Figure 8 compares the inclination (left) and
declination (right) for 1990 (black lines) and 2015 (red lines) with the ensemble mean predictions using
T0 = 1990 (yellow lines). The prediction errors are quantified by the absolute local difference in degrees and
are shown as color maps in the top two panels. Color maps in the bottom two panels show the 90% confidence
interval of the ensemble prediction.

As expected, inclination errors are large for the small or vanishing values around the equator. This is illustrated
in the top panel of the left column and also well captured by the larger variance in the ensemble used to
predict the error shown in the lower left panel. We calculated the area where the prediction error remains
within the 90% confidence interval defined by the prediction ensemble, which amounts to 89.9% of the total
surface. This indicates that the inclination uncertainties provide a good estimate of the prediction error.
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Figure 8. The 1990.0–2015.0 hindcast. Isocontours of the observed inclination (left column) and declination
(right column), in 1990.0 (black) and 2015.0 (yellow), and their predictions in 2015.0 (red). Color maps correspond to the
absolute value of prediction error (top) and to the 90% confidence interval on the prediction (bottom). The white
symbols on the right are associated with the north magnetic dip pole, observed in 1990.0 (square) and in 2015.0
(circle) and predicted in 2015.0 (triangle).

Since the declination is undefined at the north and south dip poles, the surrounding regions show larger
prediction errors and ensemble variances, as is demonstrated in the right column of Figure 8. The area where
prediction errors remain within the 90% confidence interval amounts to only 81.1% of the surface, which
suggests a somewhat inferior error prediction likely related to the dip poles. The error prediction seems more
reliable in the Southern Hemisphere alone where the relative area increases to 92.2%.

Although not clearly visible in Figure 8 because the color has been saturated at 5∘, the prediction error for the
location of the north magnetic dip pole (NMDP) is also particularly large. Its real and predicted position for
2015 has been marked by a gray circle and triangle, respectively. According to Chulliat et al. (2010), the rapid
acceleration of the NMDP drift during the 1990s can be explained by the expulsion of magnetic flux below
the New Siberian Islands. This may be the reason for the larger prediction error, since such expulsions are not
modeled in the FF approximation used here. The NMDP drift is much better captured, however, when the
hindcast test starts at T0 ≥ 2000.0.

Finally, we note that our model accurately predicts the evolution of the inclination and declination associated
with South Atlantic Anomaly despite the significant changes between 1990.0 and 2015.0. This highlights the
potential usefulness of the method for forecasting core’s magnetic field features.

3.6. Predictability
In order to quantify the different sources of forecast errors, we analyze the secular variation, which is respon-
sible for advancing the field from T0 to TF : b(TF) = b(T0) + ∫ TF

T0
𝛾(s)ds. Under the FF approximation, 𝛾 depends

on the flow and the magnetic field, through the relation 𝛾 = −∇H(ub). When separating b into the observable
part b< and the nonobservable small-scale part b>, we can distinguish three error sources:

𝛾 ′ = −∇H(u′b) − ∇H(ub<′) − ∇H(ub> ′). (56)

Here the primed quantities on the right-hand side indicate deviations from the ensemble expectation value,
for example, u′ = u − ū.
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Figure 9. Sources of secular variation (secular variation) error in magnetic field predictions, at the initial time
T0 = 1990.0 (left) and at the forecast time TF = 2015.0 (right). Energy spectra at the Earth’s surface of the secular
variation (black lines) and of different types of error (symbols) generated when estimating the secular variation.
Triangles and circles correspond to the errors induced by, respectively, the large-scale and small-scale variable parts of
the magnetic field. Squares are associated with the uncertainties arising from the variable part of the velocity field.

Figure 9 compares the spectra of the different error contributions to the secular variation spectrum at the
Earth’s surface for T0 = 1990 (left) and TF = 2015 (right). The last analysis step performed at T0 directly con-
strains b< and leads to a small related variance and thus a small error contribution that lies about 2 orders
of magnitude below the u and b> related errors. At the end of the 2015 forecast, however, the b< errors
have grown significantly but remain the smallest contribution. Since b> is mostly constrained by the apriorily
assumed statistics at all times, its related errors change only mildly. While the u related error is smaller than
the b> error at 1990, it becomes the dominant contribution at 2015 due to the increase in flow dispersion.

Thus, neither the observational error in the large-scale magnetic field nor the lack of knowledge on the
small-scale contributions is the limiting factor for the predictions but rather the randomization of the different
velocity field scales over time.

We also tested the predictability range for the magnetic field. Starting a forecast in 2014, we let the system
evolve until the scale per scale variance of the magnetic field exceeds the mean predicted energy. Like in the
forecast from 1940 to 2015 illustrated in the upper left panel of Figure 7, after 75 years only, the variance in
contributions beyond degree l = 7 exceeds the mean energy. The predictability limit further decreases to
l = 5, l = 3, and l = 2 after 160, 400, and 640 years, respectively. After 1,950 years, even the dipole energy is
exceeded by the respective variance level.

3.7. Variations in the Length of Day
The rotation rate of the Earth, and therefore the length of day (LOD), varies with time. Many geophysical
phenomena are responsible for these variations, and over timescales larger than a decade, four of them are
expected to explain the departures of the LOD (Λ) from its typical time of T0 = 86,400 s . These mechanisms
are the following:

The tidal friction (TF). By deforming the Earth’s surface, tidal forces induce a dissipation of energy in the
Earth-Moon system. As a consequence, the rotation rate of the Earth decreases, and thus, the LOD increases
with a rate of Λ̇TF ∼ 2.4 ms/cy, as estimated by Williams and Boggs (2016).

The glacial isostatic adjustment (GIA). During the last glaciation period, a huge amount of ice accumulated over
the polar caps and compressed the mantle. When the ice melted, the mantle tended to regain its initial shape
at a rate, which depends on its viscosity profile. These mantle displacements are still generating a continuous
decay of the Earth’s oblateness J2. Since the total angular momentum of the Earth has to be conserved, a
decrease of J2 is necessarily accompanied by an increase of its rotation rate. Based on his GIA model, Peltier
(2015) has shown that the associated rate at which the LOD is shortened is of Λ̇GIA ∼ −0.6 ms/cy.
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The global sea level rise and ice melting (RSL-IM). Over the last century, the melting of glaciers and ice caps has
led to an augmentation of the sea level, as reported in Church and Whit (2011)and Hay et al. (2015). On a
global scale, this redistribution of mass at the Earth’s surface increases the oblateness of the Earth and there-
fore lengthens the LOD. Although the rate of this lengthening Λ̇RSL-IM remains uncertain, the analysis of the
variations of the Earth’s oblateness performed by Cheng et al. (2013) provides some constraints on it. Indeed,
Cheng et al. (2013) showed that between 1976 and the 1990s, J2 was decreasing but not sufficiently fast to be
only explained by the GIA. This means that during this period of time Λ̇GIA + Λ̇RSL-IM >−0.6 ms/cy. After the
1990s, the effects of the RSL-IM on the LOD are becoming more intense since they completely compensate
the variations of J2 induced by the GIA.

The core-mantle coupling. Jault et al. (1988) have shown that geostrophic motions of the liquid outer core
can modify the core angular momentum (CAM). Yet for the Earth to conserve its total angular momentum,
fluctuations of the CAM are compensated by variations of the Earth’s rotation rate. As shown by Jault and
Finlay (2015), the excess in LOD induced by the outer core flow ΛFLOW can be evaluated from the velocity field
at the Earth’s CMB through the following relation:

ΛFLOW = 1.232(𝜓1,0 + 1.776𝜓3,0 + 0.08𝜓5,0 + 0.002𝜓7,0) . (57)

Although it is well known that the outer core flow is responsible for decadal variations in the LOD (see Holme,
2015), possible long-term effects are not clear.

3.7.1. Observations and Contradictions
Using compilations of ancient and medieval eclipses and lunar occultations of stars, Stephenson et al. (2016)
reconstructed a time series of the excess in LOD between 720 BC and 2015. They highlight, in particular, two
main features of the variation in the LOD over the last millenia. First, the LOD exhibits very low frequency
fluctuations with a typical period of about 1,500 years. According to Dumberry and Bloxham (2006), these
variations are likely to be induced by the outer core flow. Second, Stephenson et al. (2016) could also observe
that the LOD was globally increasing at a rate of approximately 1.8 ms/cy. This latter value can be very well
explained by the joint effects of TF and GIA since Λ̇TF + Λ̇GIA ∼ 1.8 ms/cy.

However, over the last 200 years, the time series derived by Gross (2001) with a combination of accurate
astronomical techniques indicates that the LOD was globally increasing at a rate of ∼1.4 ms/cy. This value is
lower than the 1.8 ms/cy predicted by the GIA and TF, yet it should, at least over the last century, be larger
than 1.8 ms/cy because of the RSL-IM. If one does not consider a possible influence of the outer core flow,
this means that a mechanism increasing the rotation rate of the Earth is missing. This discrepancy between
expected and observed LOD constitutes the enigma formulated by Munk (2002).

3.7.2. Estimation of Possible Long-Term Effects of the Outer Core Flow on the LOD
Since the cumulative long-term effects of the GIA, the TF, and the RSL-IM on the LOD are uncertain, we eval-
uated the influence they should have according to our velocity field solution and to the observed LOD time
series (ΛOBS). To do so, the real excess in the LOD is assumed to be given by

Λ(t) = at + b + ΛFLOW, (58)

where the trend a = Λ̇TF + Λ̇GIA + Λ̇RSL-IM, b is a constant and ΛFLOW is given by equation (57). Assuming that a
and b are a priori unknown (uniform prior over infinite ranges), the posterior distribution of a can be expressed
as follows:

p(a|ΛOBS) ∼ ∫ p(ΛOBS|a, b,ΛFLOW)p(ΛFLOW)p(b)dbdΛFLOW . (59)

Because of the abrupt change in the Earth’s oblateness during the 1990s, we restrict the analysis to pre-1990
epochs. Observed LOD variations ΛOBS are taken from Gross (2001), who also provides uncertainty estimates
ΣΛOBS

. The likelihood distribution is approximated by a Gaussian distribution such as the following:

p(ΛOBS|a, b,ΛFLOW) =  (
ΛOBS − at − b − Λ̄FLOW,ΣΛOBS

)
. (60)

The prior distribution of ΛFLOW is also assumed to be Gaussian with a mean and a covariance deriving from
the ensemble of ΛFLOW time series calculated with equation (57). The distribution p(a|ΛOBS) is thus also a
Gaussian distribution. Our computation suggests a mean of ā = 2.2 ms/cy and a large standard deviation of
𝜎a = 1.8 ms/cy which embraces the values discussed above.
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Figure 10. Observed variations in length of day (LOD; black curve) taken
from Gross (2001) and extended after 1997.0 with a time series provided by
the Earth orientation center. A trend of 2.2 ms/cy estimated in section 3.7
has been removed from the observed time series. The variations in LOD
induced by the outer core flow and associated standard deviation are
shown with gray circles and error bars.

The mean estimated trend ā lies well between the 1.8 and 2.4 ms/cy inter-
val prescribed by tidal forces and by the measurements of the Earth’s
oblateness. Furthermore, once the optimal trend is removed from ΛOBS,
comparisons with the core flow contribution exhibit a good agreement on
decadal timescales as illustrated in Figure 10. Although the large uncer-
tainty levels associated with ā and Λ̄FLOW forbids any definitive conclusions
on the impact of the last century RSL-IM on the variations in the LOD,
our results suggest that the outer core flow could be compensating it
by globally inducing an increase of the Earth’s rotation rate. The equiva-
lent shortening of the LOD due to the global augmentation of the CAM
over the last century would be consistent with the oscillatory trend of the
LOD estimated by Stephenson et al. (2016), which is decaying between
approximately the years 1500 and 2200.

4. Conclusion

We have employed a sequential data assimilation framework to model
the dynamics of the geomagnetic field and the flow at the top of Earth’s
core in the twentieth century using the COV-OBS.x1 model of Gillet, Jault,
and Finlay (2015) as observations. The method extends the approach in
Baerenzung et al. (2016) to the time domain, as a sequential propagation
in time of flow and field inversions under weak prior constraints. The prior

is a dynamical model that combines the induction equation in the FF approximation with a simple AR1 pro-
cess describing the flow evolution. The latter comprises a memory term and stochastic forcing, which are both
constrained by the secular variation observations following the ideas presented in Baerenzung et al. (2016).

We use an ensemble approach, the EnKF (Evensen, 2003), where the dynamical model uncertainties are
characterized by statistically sound covariances. Using the AR1 process falls short of integrating a proper
Navier-Stokes equation but allows us to forward a large ensemble of 40,000 members in time in order to
characterize the errors and prior covariances.

The optimal parameters characterizing the flow prior spatial and temporal properties points to particularly
long timescales of several centuries to millennia for the toroidal field at SH degrees l = 1 and 2. This flow con-
tribution can be attributed to a large-scale slowly evolving gyre, which has also been identified in core flow
inversions (Gillet, Jault, & Finlay, 2015; Pais & Hulot, 2000) and numerical simulations (Aubert, 2013; Schaeffer
et al., 2017). The most prominent feature of the gyre is the well-documented pronounced westward drift at
low and middle latitudes of the Atlantic hemisphere. Smaller-scale flows have characteristic timescales in the
decadal range that are consistent with previous estimates (Christensen & Tilgner, 2004; Hulot et al., 2010).
Typical related features are local modifications of the gyre in the Southern Hemisphere or the acceleration
of the westward flow at and around the tangent cylinder underneath Alaska and the eastern part of Siberia,
which has already been reported by Livermore et al. (2017). This points to an important contribution of
ageostrophic motions to the dominantly geostrophic overall core flow.

We further tested the capability of our model to forecast the evolution of magnetic and flow fields through
hindcast experiments. Comparisons of the magnetic field evolution with linear extrapolations and no casts (in
which the field is assumed static) show that our more sophisticated model significantly improves predictions
beyond 10 or 15 years.

For predictions of a mean model, we could observe that the advection of the magnetic field by a SF or by
a velocity field controlled with a AR1 process does not differ much. Accounting for the flow acceleration,
through a second order autoregressive process, for example, would certainly improve the quality of the aver-
aged predicted magnetic field as shown by Whaler and Beggan (2015). Nevertheless, SFs do not allow the
proper propagation of uncertainties associated with the magnetic field, since the underlying mechanism for
flow dispersion over time is not considered. Within their incorporation in our AR1 model, predicted and pre-
diction errors become consistent. Such match also reveals that the characteristic times estimated for the AR1
process ensure a realistic randomization rate of the fields.
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However, it is the dispersion of the velocity field itself that seems to dominate the uncertainties in secular vari-
ation estimations, what limits therefore the predictability of the geomagnetic field. Within this limitation, the
scale-dependent predictability corresponds to 1950, 640, 400, 160, and 75 years for degrees l = 1, 2, 3, 5, and
7, respectively. A more realistic dynamical model such as a geodynamo simulation would possibly extend the
predictability horizon. Nevertheless, the enormous numerical power required to perform dynamo simulations
at more extreme parameters would preclude the type of EnKF approach followed here. Even with compro-
mises in dynamo model parameters and the ensemble size, the computational costs would still increase by
orders of magnitude. Moreover, since dynamo simulations are strongly nonlinear, the system bears an intrin-
sic sensitivity to initial perturbations. This amounts to an important e-folding time, which is estimated to be
about 30 years with a temporal rescaling within the secular variation timescale (Hulot et al., 2010; Lhuillier
et al., 2011). Since this characteristic time is not so different from the one associated with the small length
scales of our flow model, we expect that the rate at which information is lost in the system will be somewhat
equivalent in both modeling strategies.

Predictions of decadal LOD variations from changes in angular momentum of our core flow model yield good
resemblance to corresponding independent observations. Furthermore, we observe a global increase of the
CAM over the last century that we attribute to an acceleration of the geostrophic contribution of the gyre. The
resulting decrease in LOD could explain the difference between the recently observed trend in LOD changes
and the physically expected one as highlighted by Munk (2002). It would in addition be consistent with the
low-frequency oscillatory behavior of the LOD reported by Stephenson et al. (2016).

Appendix A: Gibbs Sampling

The Gibbs sampling algorithm permits to randomly draw an ensemble characterizing statistically a given joint
distribution, by recursively sampling conditional probability distributions deriving from it. In our case, the
joint distribution of interest is p(u,b|𝛾o). Therefore, at a step n, the algorithm samples alternatively the two
following distributions:

p(un|bn-1
, 𝛾o,) =  (

ūn,Σun

)
(A1)

p(bn|un, 𝛾o,) =  (
b̄

n
,Σbn

)
(A2)

with

ūn = ū + 𝚺u|AT
bn−1 R-1

un

(
�̄�o + Abn−1 ū

)
(A3)

𝚺un = 𝚺u| − 𝚺u|AT
bn−1 R-1

un Abn−1𝚺u| (A4)

b̄
n = b̄+ = 𝚺bAT

un R−1
bn

(
�̄�o + Aun b̄

)
(A5)

𝚺bn = 𝚺b − 𝚺bAT
un R−1

bn Aun𝚺b . (A6)

and where

Run =
(

Abn-1𝚺u|Abn−1
T + 𝚺o

𝛾

)
(A7)

Rbn =
(

Aun𝚺bAT
un + 𝚺o

𝛾

)
. (A8)

We recall that the matrices Ab and Au allow us to evaluate the secular variation 𝜸 when they are, respectively,
applied to u and b.

In this study, three epochs were considered simultaneously, 1900.0, 1950.0, and 2000.0. Since over long peri-
ods of time the real temporal correlations of the slow varying components of the flow probably differ from
the one induced by the autoregressive process, the characteristic times associated with the degree l = 1 and
l = 2 of the toroidal field and l = 1 of the poloidal field were reestimated with a 50-year time step.
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