

Originally published as:

Ben-Israel, M., Matmon, A., Haviv, I., Niedermann, S. (2018): Applying stable cosmogenic 21 Ne to understand surface processes in deep geological time (10 7 –10 8 yr). - *Earth and Planetary Science Letters*, 498, pp. 266—274.

DOI: http://doi.org/10.1016/j.epsl.2018.07.002

1	Applying stable cosmogenic ²¹ Ne to understand surface processes in
2	deep geological time (10 ⁷ -10 ⁸ yr)
3	Michal Ben-Israel ^{1*} , Ari Matmon ¹ , Itai Haviv ² and Samuel Niedermann ³
4	¹ The Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
5	² Department of Geological and Environmental Sciences, Ben Gurion University, Beer Sheva 84105, Israel
6	³ Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, D-14473 Potsdam, Germany
7	*Corresponding author. Email: michal.benisrael@mail.huji.ac.il
8	ABSTRACT
9	This work sets out to test the applicability of stable cosmogenic ²¹ Ne for quantifying the rates of
10	surface processes over time scales of 10^7 - 10^8 years and the potential limitations and pitfalls
11	associated with such time spans. First, we examine several processes in addition to in-situ
12	production during exposure that affect the final measured concentration of ²¹ Ne. We calculate
13	the magnitude of ²¹ Ne produced by interaction with secondary cosmic ray particles after burial
14	(muogenic Ne) and by non-cosmogenic sources (nucleogenic Ne). We also evaluate the fraction
15	of ²¹ Ne lost through diffusion out of the quartz crystal as a function of time and temperature
16	(depth). We then apply our calculations to ²¹ Ne concentrations measured in sediments that were
17	deposited along the northern passive margin of Gondwana during the late Precambrian,
18	Cambrian, and Lower Cretaceous. In light of the measured concentrations in the sediment
19	samples, we discuss the limitations imposed by our calculations and show that $^{21}\mathrm{Ne}$
20	concentrations measured in Lower Cretaceous samples can be interpreted in terms of surface

exposure times or average erosion rates during the time of erosion and transport. In contrast, concentrations measured in Cambrian and Precambrian samples are limited in their use as surface process indicators although they still yield valuable geological information. We conclude that this novel application of in situ stable cosmogenic nuclides holds the potential as a tool for quantifying surface processes and understanding landscape evolution during the deep geological past and provides insight into macro-scale processes that have shaped Earth over the past hundreds of millions of years.

28 **1. INTRODUCTION**

29 The most commonly used *in-situ* stable cosmogenic nuclides in the study of surface processes are the noble gas isotopes ³He and ²¹Ne. Cosmogenic ²¹Ne in quartz is produced mainly from 30 neutron spallation through the reaction ${}^{28}Si(n,2\alpha){}^{21}Ne$ (Dunai, 2010; Gosse and Phillips, 2001; 31 32 Niedermann, 2002). Noble gas isotopes are a useful tool in quantitative geomorphology due to 33 the fact that they are highly incompatible elements with low geological background 34 concentrations (Dunai, 2010). Furthermore, stable nuclides record cosmic ray irradiation for a potentially infinite length of time, meaning it is possible to investigate exposure histories 35 significantly longer than those imposed by the half-life of radiogenic nuclides (Niedermann, 36 2002). 37

The quantitative retention of cosmogenic ²¹Ne in quartz over geologic time at Earth surface temperatures has been verified by consistent ages of exposure calculated from ¹⁰Be, ²⁶Al, and ²¹Ne (Hetzel et al., 2002; Kober et al., 2011). In this study, we focus on ²¹Ne in quartz and test the applicability and limitations of using it for quantifying the rates of surface processes over time scales of 10⁷-10⁸ years. We apply our results to ²¹Ne concentrations measured in sediments deposited along the northern passive margin of Gondwana during the late Precambrian,
Cambrian, and Lower Cretaceous and conclude that the ²¹Ne signal in the Lower Cretaceous
samples (~140 Ma) can be interpreted in terms of paleo surface exposure ages and erosion rates.
In contrast, the use of ²¹Ne in the Cambrian and Precambrian samples is limited as a tool for
quantifying paleo rates. However, combined with independent geological evidence, still could
yield valuable information.

49

2. LIMITATIONS IN EVALUATING IN SITU PRODUCED COSMOGENIC ²¹Ne

To utilize ²¹Ne in the study of surface processes, we must determine the amount of cosmogenic ²¹Ne produced during exposure. Several processes other than in situ production during exposure affect the total ²¹Ne concentration measured in quartz: 1) trapped ²¹Ne from atmospheric, mantle, or crustal sources, 2) post-burial production of cosmogenic ²¹Ne by muons, 3) noncosmogenic (nucleogenic) ²¹Ne produced in the quartz lattice, and 4) ²¹Ne diffusion out of the quartz lattice.

56 The total ²¹Ne concentration measured in each sample is, therefore, the sum of several 57 components:

58 ${}^{21}Ne_{measured} = {}^{21}Ne_{surface} + {}^{21}Ne_{post-burial} + {}^{21}Ne_{trapped} + {}^{21}Ne_{nucleogenic} - {}^{21}Ne_{diffused}$ (1)

where ${}^{21}Ne_{surface}$ is the cosmogenic ${}^{21}Ne$ produced by neutrons at or near the surface during sediment exposure. ${}^{21}Ne_{surface}$ is the value of interest as it can be used to calculate rates of surface processes. ${}^{21}Ne_{post-burial}$ is a cosmogenic component produced at depth by muons after the sediment's burial and so cannot record rates of surface processes. ${}^{21}Ne_{trapped}$ is the noncosmogenic trapped atmospheric, mantle, or crustal ${}^{21}Ne$ residing in the crystal lattice or inclusions. ²¹Ne_{nucleogenic} is the non-cosmogenic ²¹Ne produced within the crystal lattice by natural
 nuclear reactions related to U and Th decay. Lastly, ²¹Ne_{diffused} is the fraction of Ne diffused out
 of the crystal.

We follow the ²¹Ne evaluation scheme suggested by Niedermann (2002), using an approximation for cosmogenic ²¹Ne determined after subtracting of ²¹Ne_{trapped} and ²¹Ne_{nucleogenic} from the total measured ²¹Ne. We present here additional calculations and modifications to this scheme for extremely old samples. Such cases, where ²¹Ne_{surface} is observed (or expected) to be similar or smaller compared to ²¹Ne from other components, must withstand rigorous scrutiny.

72 **2.1 Trapped**²¹Ne

Trapped Ne (Ne_{trapped}) originates from crustal, mantle or atmospheric sources, incorporated in 73 the crystal lattice or fluid inclusions during crystallization or metamorphism (Farley and Poreda, 74 1993; Kennedy et al., 1990). To minimize the interferences of such Ne, the quartz grains selected 75 for analysis should contain little to no visible inclusions. To further reduce the trapped Ne 76 concentration, quartz grains are crushed to $<\sim$ 100µm grain size before stepwise heating. The 77 ²¹Ne_{trapped} component that cannot be avoided through sample selection and preparation must be 78 79 corrected for. This is done by subtracting the Netropped component from the measured composition of Ne. In cases where the Netrapped composition is significantly different from 80 atmospheric, it can be determined by mechanical crushing in vacuum of aliquots from the same 81 or representative samples (e.g., Hetzel et al., 2002). Since only a fraction of the trapped Ne is 82 83 released during crushing, the sum of the non-trapped components (the excess ²¹Ne, abbreviated as ${}^{21}Ne_{ex}$) is determined by the subtraction of the $({}^{21}Ne/{}^{20}Ne)_{trapped}$ ratio from the ${}^{21}Ne/{}^{20}Ne$ ratio 84 determined during stepwise heating (Niedermann, 2002; see section 2.3): 85

86 ${}^{21}Ne_{ex} = ({}^{21}Ne/{}^{20}Ne_{heating} {}^{21}Ne/{}^{20}Ne_{trapped}) {}^{*20}Ne_{heating}$ (2).

87 2.2 Cosmogenic ²¹Ne produced at the surface (²¹Ne_{surface}) and at depth (²¹Ne_{post-burial})

Both ²¹*Ne*_{surface} and ²¹*Ne*_{post-burial} are two cosmogenic components produced in situ within the quartz grain and therefore cannot be distinguished analytically (however, the post-burial component could be corrected for by using depth profile measurements as it changes with depth unlike ²¹*Ne*_{surface}). We present the following evaluations for muogenic ²¹Ne production in quartz over extended periods, to achieve as accurate an approximation as possible so that ²¹*Ne*_{post-burial} can be calculated and corrected for.

The near-surface contribution of ²¹Ne production by fast muon interactions and negative muon 94 capture may account for up to ~3.6% of the total production rate at sea level and high latitudes 95 (SLHL; Balco and Shuster, 2009). As depth increases, the relative contribution of ²¹Ne production 96 by muons also increases until fast muon interactions become the major pathway for ²¹Ne 97 production. Therefore, the contribution of fast muon interactions at depth can be significant 98 when integrated over long periods of time. Ignoring this contribution may lead to overestimation 99 of sediment exposure ages or underestimation of erosion rates. Unlike fast muons, it is unclear 100 whether negative muon capture reactions in Si can produce ²¹Ne to a significant extent (Heisinger 101 et al., 2002a; Heisinger et al., 2002b; Fernandez-Mosquera et al., 2010). However, following the 102 scheme presented by Heisinger et al. (2002a,b), MATLAB implementation from Balco et al. 103 (2008), and using the calculated probability for particle emission (f^*) presented by Fernandez-104 105 Mosquera et al. (2010), we calculate the post-burial muogenic Ne production in quartz integrated 106 over extended periods (complete calculation is available in the supplementary material A1).

We performed calculations for depths up to 1000 meters below the surface, at sea level, and 107 108 integrated them over periods of $1 \cdot 10^7$ to $1 \cdot 10^9$ years (Fig. 1). ²¹Ne concentrations < $1 \cdot 10^5$ atoms/g quartz are in the same order of magnitude as the typical uncertainty of cosmogenic ²¹Ne 109 concentrations measurable in quartz (Niedermann, 2002), and can, therefore, be ignored. We 110 find that production of ²¹Ne by negative muons over periods of up to 1.10⁹ years is too low to be 111 computed at depths exceeding 730 meters and does not exceed $1 \cdot 10^5$ atoms/g quartz at depths 112 greater than 60 meters (Fig. 1b). We consider this a maximum calculation as it is unclear whether 113 114 such production occurs. Production rates due to higher energy fast muon interactions do not 115 decrease as rapidly with depth. The minimum burial depth below which post-burial production of ²¹Ne can be considered insignificant ($<1.10^5$ atoms/g or smaller) is 920 meters for periods of 116 1.10⁹, 770 meters for 5.10⁸, 480 meters for 1.10⁸, 380 meters for 5.10⁷, and 200 meters for 1.10⁷ 117 years. While production by negative muon capture can be ignored below depths of 60 meters, 118 119 ²¹Ne produced post-burial in quartz by fast muons should be accounted for quartz grains that have been buried continuously over extended periods. ²¹Ne_{post-burial} can be minimized by sample 120 121 collection from sufficient depths and if needed calculated and corrected for.

122 **2.3 Nucleogenic ²¹Ne**

Nucleogenic ²¹Ne is produced through the α-capture reaction ¹⁸O(α ,n)²¹Ne (Yatsevich and Honda, 1997). These reactions are triggered by the nuclear decay of U and Th found either in minerals surrounding the quartz or concentrated in inclusions within the crystal lattice (Niedermann, 2002). The contribution of nucleogenic ²¹Ne may be significant and must be considered, especially when dealing with samples with extensive geological histories.

In quartz, ²¹Ne is often measured over several temperature steps, such as 400, 600, 800, and 128 129 1200°C, allowing for a more accurate discrimination between the cosmogenic and noncosmogenic Ne components, based on their distinct ²¹Ne/²⁰Ne and ²²Ne/²⁰Ne ratios 130 (Niedermann, 2002). If quartz grains have been crushed to ~100 µm grain size or smaller prior to 131 stepwise heating, nearly all of the cosmogenic ²¹Ne is released in the \leq 800°C heating steps 132 (Niedermann, 2002). The ²¹Ne released in the higher temperature steps consists essentially of 133 *Ne_{trapped}* and the nucleogenic Ne remaining after careful sample selection and preparation 134 135 (Nenucleogenic).

136 Further understanding of the different components of Ne can be extracted using Ne threeisotope systematics, where the three stable isotopes of Ne are plotted as ²¹Ne/²⁰Ne versus 137 ²²Ne/²⁰Ne (Niedermann, 2002; Niedermann et al., 1993). The three-isotope plot presents the 138 139 signatures of Ne components and their mixing lines. Cosmogenic Ne will fall on a mixing line 140 between atmospheric Ne (or some other kind of trapped Ne) and the cosmogenic end member - the spallation line. Enrichment of nucleogenic ²¹Ne will cause a horizontal shift, while 141 nucleogenic ²²Ne (produced by the reaction ${}^{19}F(\alpha,n){}^{22}Na(\beta^+){}^{22}Ne)$, if present, would cause a 142 vertical shift. To some extent, deviations from the spallation line can also be the result of isotopic 143 mass fractionation processes (Niedermann et al., 1994). 144

145 In cases where nucleogenic ²¹Ne accounts for a significant component of the total ²¹Ne measured 146 in quartz samples, we suggest computing the nucleogenic ²¹Ne formed within the crystal. The 147 total nucleogenic Ne produced in quartz can be calculated using the measured U and Th 148 concentrations (Yatsevich and Honda, 1997). We approximated the nucleogenic ²¹Ne 149 contribution using the (U–Th)/Ne system based on Gautheron et al. (2006):

150
21
Ne= 2.59 \cdot 10⁹ \cdot [*U*]((8 \cdot 4.04 \cdot 10⁻⁸($e^{\lambda_{238U} \cdot t}$ - 1)) + (7 \cdot 7.20 \cdot 10⁻³ \cdot 5.62 \cdot 10⁻⁸ \cdot

151
$$(e^{\lambda_{235U}\cdot t} - 1)) + (6 \cdot 6.08 \cdot 10^{-8} \cdot (e^{\lambda_{232Th}\cdot t} - 1) \cdot \frac{[Th]}{[U]}))$$
 (3)

152 where λ_i are the decay constants, t is the duration of production, U and Th concentrations are in ppm and ²¹Ne is in 10⁶ atoms. The amount of nucleogenic ²¹Ne produced in quartz grains has 153 154 been calculated for U and Th concentrations ranging between 0 and 2 ppm, which are close to the ranges for measured samples. Ejection or implantation corrections were not performed as 155 156 the outer rims of the grains were removed by chemical etching. The production rate factors for each decay chain in eq. 3 were taken from Cox et al. (2015). Nucleogenic ²¹Ne produced in quartz 157 158 over 1.4·10⁸, 4.2·10⁸, and 6·10⁸ years (the age of the oldest samples) varies between 0 and \sim 230·10⁶ atoms/g quartz (Fig. 2). It is important to note that this calculation represents the 159 160 maximal nucleogenic ²¹Ne concentrations produced as it does not take into account the ²¹Ne_{nucleogenic} lost by diffusion (see 2.4). 161

162

2.4 Diffusion of Ne from the quartz lattice

The quantitative retention of cosmogenic Ne in quartz over geologic time at Earth surface temperatures has been verified by comparing ages of exposure calculated from ¹⁰Be, ²⁶Al, and ²¹Ne (e.g., Hetzel et al., 2002; Niedermann, 2002). Thermally activated diffusion from quartz grains is dependent on time and grain radius (Shuster and Farley, 2005). Previous work on noble gas diffusion in quartz revealed a linear Arrhenius diffusion curve at low-temperatures (<200°C). Ne diffusion displays a linear behavior (Tremblay et al., 2014a) and can, therefore, be modeled using given kinetic parameters (Shuster and Farley, 2005). When considering burial over geological timescales at depths of 1-2 km, where temperatures increase to 50°C and more,
underestimation of the real exposure age due to diffusion presents a considerable concern.

We calculated the fractional loss of Ne over time for grain diameters of 100, 250, 400, and 850μm
at temperatures of 40, 50 and 60°C, using the equations of Fechtig and Kalbitzer (1966) and
diffusion kinetic coefficients presented by Tremblay et al. (2014a):

175
$$D = D_0 e^{\frac{-E_a}{R \cdot T}}$$
 (4)

where E_a is the activation energy (ranging from 95.7 to 153.8 kJ/mol), D_0 is the Frequency Factor (ranging from $6.6 \cdot 10^{-5}$ to $3.2 \cdot 10^{-1} \text{ m}^2/\text{s}$), T is the temperature in K and R is the gas constant. Our calculations of fractional loss of Ne at constant temperatures of 40, 50 and 60°C correspond to a geothermal gradient of 20 K/km, a temperature of 20°C at the surface and depths of 1000, 1500 and 2000m and were performed over a time range of 0-600 Myr of constant burial (Fig. 3). For the maximal burial period of 600 Myr, the fractional Ne loss is 19-95% at 40°C (a), 44-100% at 50°C (b), and 82-100% at 60°C (c), depending on grain size (100-850µm).

183 Loss of Ne through diffusion over extended periods can lead to underestimating the correct 184 surface age. Correcting for diffusion is theoretically possible using the sample's grain size distribution and burial depth. However, while grain size distribution can be measured and 185 accounted for, the thermal history of quartz grains depends on the regional thermal history, which 186 187 is controlled by regional tectonic activity, heating events triggered by magmatic and hydrothermal 188 processes, and of course the burial depth of the sample which is subject to changes with loading/unloading at the sampling site. It is therefore extremely difficult to accurately correct for 189 190 the Ne lost by diffusion, especially when considering samples of pre-Mesozoic age. In order to best approximate the effect of Ne diffusion from the quartz grains, sampling sites must becarefully selected, taking into account the geological history of the area.

193

3. TESTING APPLICABILITY FOR NATURAL SAMPLES

In light of the theoretical modeling presented above, we test the applicability of cosmogenic in situ produced ²¹Ne as an indicator for surface process characteristics on three sets of samples: Precambrian, Cambrian, and Lower Cretaceous sandstones. We present an approximation for in situ cosmogenic ²¹Ne produced during transport and exposure of the investigated sediments and evaluate the effect of the various production paths of Ne on this approximation. We then discuss whether the samples presented can be used to interpret in terms of surface residence time or erosion rates.

201 **3.1 Geological background**

In the late Neoproterozoic (~600Ma), the Pan-African orogenic cycle that amalgamated east and 202 203 west Gondwana abated. Throughout most of the Phanerozoic, cratonic conditions prevailed along the northern passive margin of Gondwana, punctuated by several episodes of epeirogenic 204 205 vertical movements, between which sedimentation occurred (Garfunkel, 1999). The sedimentary 206 cover includes a thick sequence of quartz-rich sediments that extend from Morocco in the west 207 to Jordan in the east (Avigad et al., 2003). This relative tectonic stability was only interrupted in the mid-Cenozoic (~20Ma) by continental breakup of the Arabo-African continent and rifting of 208 209 the Red Sea and Suez (Garfunkel, 1980). During the ~550 million years of tectonic stability in the 210 area, the mature platformal sediment cover was never thick enough to trigger metamorphism. 211 These unique conditions allowed for the burial of sediments at optimum depths, shallow enough,

where no significant heating occurred, with respect to ²¹Ne retention in quartz, and deep enough
for post-burial production to be minimal.

3.2 Sample collection and preparation for analytical procedure

To assure that the cosmogenic ²¹Ne measured was produced during the sediment's original exposure, we collected sediment samples from boreholes drilled across Israel (Fig. 4). This depth range ensures that samples have been buried continuously at optimum depths. A total of 10 samples are presented in this study (Table 1). Four samples of late Precambrian age were collected from the Sinaf1 and Ramon1 boreholes (Fig. 4, Table 1). Three samples of Cambrian age were collected from the Sinaf1 borehole (Fig. 4, Table 1). Three samples of Lower Cretaceous age were collected from the Sinaf1, Jericho1 Deep, and Ramim Ridge boreholes (Fig. 4, Table 1).

Samples were processed to separate clean quartz at the Institute of Earth Sciences Cosmogenic Isotope Laboratory, Hebrew University of Jerusalem, Israel, following standard procedures (Kohl and Nishiizumi, 1992; Hetzel et al., 2002). The samples were first leached in HCl/HNO₃ mixture (3:1) at a temperature of 150°C for 1.5h dissolving carbonates and iron oxides. This procedure was followed by magnetic separation to isolate quartz further. Samples were then treated by a series of three leachings in 1% HF/HNO₃ mixture for 7, 12 and 24h at 70°C, removing the outer rims of the quartz grains.

He and Ne concentrations and isotopic ratios were determined in the $63-250\mu m$ size fraction (crushed to ~100 μm maximum before loading) at the noble gas laboratory at GFZ Potsdam, Germany, following procedures described in Niedermann et al. (1997). Gas extraction was accomplished by stepwise heating at 400, 600, 800 and 1,200°C. The isotopic composition of trapped Ne was determined by mechanical crushing in vacuum of aliquots from representativesamples.

3.3 Determining ²¹Ne_{surface} in natural samples

236 Considering the Ne_{postburial} fraction of the cosmogenic Ne, all depths presented are greater than 237 260 meters (Table 1), and thus the contribution by post-burial production is similar to the 238 analytical uncertainties or smaller and was therefore ignored (Fig. 1). Consequently, and by 239 following Niedermann's (2002) scheme, the ²¹Ne_{ex}, calculated compared to the crushed aliquot 240 isotopic composition, of the 400-800°C steps approximate ²¹Ne_{surface} if nucleogenic Ne can be 241 neglected or accounted for in these steps.

In the Precambrian and Cambrian samples, comparison of the combined ²¹Ne_{ex} measured in the 242 400-800°C steps with that measured in the 1200°C step, where no cosmogenic Ne is expected 243 (Niedermann, 2002), shows that the latter are similar and often even higher (Fig. 5a). The ²¹Ne_{ex} 244 in the 1200°C step is accompanied by a corresponding excess in ²²Ne and must be interpreted as 245 nucleogenic Ne. Because of the large contribution of that component, the question arises 246 whether the ²¹Ne_{ex} measured in the 400-800°C steps is indeed purely cosmogenic or whether it 247 248 includes a significant contribution of nucleogenic Ne as well. The three-isotope plots are not conclusive in that respect, as most 400-800°C data plot below the spallation line (Niedermann et 249 al., 1993) and close to the atmospheric composition (as shown in the supplementary materials 250 A3, Figs. S1-S8), indicating a substantial isotope fractionation effect superimposed on a multi-251 252 component mixture of trapped Ne, cosmogenic Ne, and perhaps several different kinds of nucleogenic Ne. Lower Cretaceous samples CSN2 and CRR1 present slightly higher concentrations 253 of ²¹Ne_{ex} in the 400-800°C compared to that measured in the 1200°C step (Fig. 5a). Yet in contrast 254

to the Precambrian and Cambrian samples, the ²¹Ne/²⁰Ne and ²²Ne/²⁰Ne ratios fall within error
on the spallation line (Figs. S1-S8), suggesting that the ²¹Ne_{ex} measured in the 400-800°C steps is
more likely to be cosmogenic.

To help evaluate the maximal nucleogenic ²¹Ne contribution, we calculated its expected 258 259 production using the U and Th concentrations measured in the clean quartz samples and the duration of burial of the samples (580, 430 and 130 Ma for the Precambrian, Cambrian and Lower 260 Cretaceous samples, respectively; Table 3). The age of sedimentation represents the known age 261 262 under which the quartz has experienced thermal stability. While this might cause an 263 underestimation of Ne_{nucleogenic}, the history of the quartz grains prior to deposition is unknown, and may have included periods of heating (i.e.: during exhumation from bedrock, due to periods 264 265 of burial, and by hydrothermal activity). Therefore, this calculation, while not exact, is a reasonable estimation of Nenucleogenic. 266

We assumed the ²¹Ne_{ex} in the 1200°C stage to essentially correspond to total nucleogenic ²¹Ne measured. This is a reasonable approximation, though it might be an underestimate of nucleogenic ²¹Ne (Niedermann et al., 1994). A comparison between the calculated and measured nucleogenic ²¹Ne shows, as expected, considerably lower concentrations of measured nucleogenic ²¹Ne, caused by Ne loss due to diffusion from the quartz grains during burial (Fig. 5b).

273 If we assume that the ²¹Ne_{ex} measured in the 1200°C step represents most of the nucleogenic 274 21 Ne released in the heating steps (this assumption is justified as ²¹Ne_{ex}(1200°C) is >40% of the 275 total ²¹Ne_{ex} released), we can further propose that measured nucleogenic ²¹Ne to calculated

nucleogenic ²¹Ne represents the fraction of ²¹Ne retained after diffusion. If so, this ratio is valid 276 277 for both the nucleogenic and the cosmogenic components. Comparing the ²¹Ne loss calculated directly by the diffusion equation (eq. 4) to the fraction of nucleogenic ²¹Ne retained (indicated 278 279 by the ratio of measured to calculated nucleogenic Ne), we can see that in most cases the two 280 calculations agree within error (Table 3). The Lower Cretaceous sample from the Jericho1 borehole (CJR1) is the only one showing significantly higher calculated diffusion compared to 281 nucleogenic Ne retention (for the $<250\mu m$ grain size measured). This observation is not easily 282 283 explained, but it is possible that the diffusion calculation is an overestimate. Previous work on 284 noble gas diffusion shows variability in diffusion kinetics for different quartz samples (Tremblay 285 et al., 2014b). Furthermore, it has been suggested that radiation damage and inclusions in the 286 crystal increase overall noble gas retentivity in a solid material and may affect some crystals (Shuster and Farley, 2005). 287

288 The overall calculated ²¹Ne loss by diffusion depends on temperature (burial depth) and grain 289 size, both of which are approximated values. In the Precambrian and Cambrian samples, the evaluated overall ²¹Ne diffused out of the quartz for a grain size of 250µm is significant (~100% 290 in the Precambrian samples and 42-49% in the Cambrian samples). Such a significant loss makes 291 it hard to correct for. However, Ne loss in the Lower Cretaceous samples is considerably lower. 292 293 In samples CSN2 and CRR1, diffusion for a grain size of 250µm is below 23% and might even be 294 as low as 12% in CRR1. Due to its burial depth (1441 m), the calculated ²¹Ne loss by diffusion in sample CJR1 is close to 80% (Table 3, Fig. 5b). We can see here that for sediments buried for ~130 295 Myr, at burial depths shallower than 1000m, ²¹Ne loss due to diffusion, while not negligible, could 296 297 be corrected. Combining the diffusion with nucleogenic Ne retention, a relatively good correction 298 can be made for ${}^{21}Ne_{surface}$, given that the sediments did not lose the majority of their original 299 ${}^{21}Ne$.

300 If we consider the 400-800°C ²¹Ne_{ex} of the Lower Cretaceous samples CSN2 and CRR1 to be 301 cosmogenic, we can make a first-order evaluation of exposure ages at or near the surface of these samples using a known production rate of ²¹Ne. We can correct the 400-800°C ²¹Ne_{ex} measured 302 in these samples based on diffusional loss calculated for 250µm grain and the nucleogenic Ne 303 retention and get a range of 3.3-4.2·10⁶ atoms/g quartz for CRR1 and 9.1-10.4·10⁶ atoms/g quartz 304 for CSN2. Given a known latitude and elevation, we can translate these values into sediment 305 306 transport rates to get a better understanding of this paleo-river. However, when we consider the Ne_{surface} concentration deduced we must take into consideration that the cosmogenic ²¹Ne 307 measured may not only represent the cosmogenic ²¹Ne produced during Lower Cretaceous 308 exposure and transport but also the inherited cosmogenic ²¹Ne produced during previous 309 310 sedimentary cycles. Therefore, for us to make such suppositions we need additional sampling and data analysis that is beyond the scope of this current work. 311

312

4. CONCLUSIONS AND SUMMARY

The results presented raise the question whether we can consider *in situ* stable cosmogenic ²¹Ne measured in extremely old sediments as a tool to understand rates of surface processes in the deep geological past. For Precambrian and Cambrian sediments, the simple answer is no. High nucleogenic ²¹Ne measured in the 1200°C step compared to the 400-800°C steps makes it hard to interpret the 400-800°C ²¹Ne_{ex} as ²¹Ne_{surface}. Furthermore, a significant loss of Ne by diffusion as estimated both by nucleogenic Ne retention and diffusion calculations does not allow meaningful correction of ²¹Ne_{surface}. However, Lower Cretaceous sediments show a great promise for surface process calculations. ²¹Ne_{ex} measured in the 400-800°C steps can be interpreted as ²¹Ne_{surface}, and for the two samples buried above 1000m depth, we can rule out the complete loss of Ne due to diffusion. The relatively young age of these sediments (~130 Myr) is still significantly older than the oldest samples analyzed so far for studies of surface processes using cosmogenic nuclides (28 Myr; Libarkin et al., 2002), opening a large window of opportunities for paleogeomorphological research.

We described here the pitfalls, solutions, and limitations of using stable cosmogenic in situ²¹Ne 326 327 to study rates of surface processes in the deep geological past. Even though we could only 328 confidently use a few of the samples for geomorphological study, we suggest that in situ cosmogenic ²¹Ne can be used as a tool to help understand geomorphic processes in the deep 329 geological past (>10⁷ yr). We are confident that the tools offered in this work can help expand 330 the present boundaries of this method. Applying this method is not without difficulties. 331 332 Nonetheless, a better understanding of its limitations allows quantitative understanding of 333 surface processes and identification of different depositional environments. It is crucial for this application (as for many others used in geological research) that it is not implemented without 334 considering the geological context. 335

336

337 ACKNOWLEDGEMENTS

This research is funded by the Israel Science Foundation (ISF grant 385/14 to AM) and was further supported by Minerva Stiftung, DAAD travel grants, and GFZ Potsdam. Many thanks to E.

- 340 Schnabel, Y. Geller, and O. Tirosh for laboratory assistance. We thank the two anonymous
- 341 reviewers for the insightful and helpful comments, which significantly improved this manuscript.

342 APPENDIX A. SUPPLEMENTARY DATA

343 Supplementary data associated with this article can be found, in the online version, at: xxxx.

344 **REFERENCES**

- Avigad, D., Kolodner, K., McWilliams, M., Persing, H., Weissbrod, T., 2003. Origin of northern Gondwana
 Cambrian sandstone revealed by detrital zircon SHRIMP dating. Geology 31, 227–230.
 doi:10.1130/0091-7613(2003)031<0227:OONGCS>2.0.CO;2
- Balco, G., Shuster, D.L., 2009. Production rate of cosmogenic 21Ne in quartz estimated from 10Be, 26Al,
 and 21Ne concentrations in slowly eroding Antarctic bedrock surfaces. Earth Planet. Sci. Lett. 281,
 48–58. doi:10.1016/j.epsl.2009.02.006
- Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means of
 calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat.
 Geochronol. 3, 174–195. doi:10.1016/j.quageo.2007.12.001
- Cox, S.E., Farley, K.A., Cherniak, D.J., 2015. Direct measurement of neon production rates by (α,n)
 reactions in minerals. Geochim. Cosmochim. Acta 148, 130–144. doi:10.1016/j.gca.2014.08.036
- Dunai, T.J., 2010. Cosmogenic nuclides: principles, concepts and applications in the earth surface
 sciences. Cambridge University Press, Cambridge. doi: 10.1017/cbo9780511804519
- Farley, K.A., Poreda, R.J., 1993. Mantle neon and atmospheric contamination. Earth Planet. Sci. Lett.
 114, 325–339. doi:10.1016/0012-821X(93)90034-7
- Fechtig, H., Kalbitzer, S., 1966. The Diffusion of Argon in Potassium-Bearing Solids, in: Potassium Argon
 Dating. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 68–107. doi:10.1007/978-3-642-87895 4_4
- Fernandez-Mosquera, D., Hahm, D., Marti, K., 2010. Calculated rates of cosmic ray muon-produced Ne in
 subsurface quartz. Geophys. Res. Lett. 37. doi:10.1029/2010GL044106
- Garfunkel, Z., 1999. History and paleogeography during the Pan-African orogen to stable platform
 transition: reappraisal of the evidence from the Elat area and the northern. Isr. J. Earth Sci. 48,
 135–157.
- Garfunkel, Z., 1980. Contribution to the geology of the Precambrian of the Eilat area. Isr. J. Earth Sci. 29,
 25–40.
- Gautheron, C.E., Tassan-Got, L., Farley, K.A., 2006. (U-Th)/Ne chronometry. Earth Planet. Sci. Lett. 243,
 520–535. doi:10.1016/j.epsl.2006.01.025
- 372 Gosse, J.C., Phillips, F.M., 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quat. Sci.

- 373 Rev. 20, 1475–1560. doi:10.1016/S0277-3791(00)00171-2
- Heisinger, B., Lal, D., Jull, a. J.T., Kubik, P., Ivy-Ochs, S., Knie, K., Nolte, E., 2002a. Production of selected
 cosmogenic radionuclides by muons: 1. Fast Muons. Earth Planet. Sci. Lett. 200, 357–369.
 doi:10.1016/S0012-821X(02)00641-6
- Heisinger, B., Lal, D., Jull, a. J.T., Kubik, P., Ivy-Ochs, S., Knie, K., Nolte, E., 2002b. Production of selected
 cosmogenic radionuclides by muons: 2. Capture of negative muons. Earth Planet. Sci. Lett. 200,
 357–369. doi:10.1016/S0012-821X(02)00641-6
- Hetzel, R., Niedermann, S., Ivy-Ochs, S., Kubik, P.W., Tao, M., Gao, B., 2002. 21Ne versus 10Be and 26Al
 exposure ages of fluvial terraces: the influence of crustal Ne in quartz. Earth Planet. Sci. Lett. 201,
 575–591. doi: 10.1016/S0012-821X(02)00748-3
- Kennedy, B.M., Hiyagon, H., Reynolds, J.H., 1990. Crustal neon: a striking uniformity. Earth Planet. Sci.
 Lett. 98, 277–286. doi: 10.1016/0012-821X(90)90030-2
- Kober, F., Alfimov, V., Ivy-Ochs, S., Kubik, P.W., Wieler, R., 2011. The cosmogenic 21Ne production rate
 in quartz evaluated on a large set of existing 21Ne-10Be data. Earth Planet. Sci. Lett. 302, 163–171.
 doi:10.1016/j.epsl.2010.12.008
- Kohl, C.P., Nishiizumi, K., 1992. Chemical isolation of quartz for measurement of in-situ -produced
 cosmogenic nuclides. Geochim. Cosmochim. Acta 56, 3583–3587. doi:10.1016/0016 7037(92)90401-4
- Libarkin, J.C., Quade, J., Chase, C.G., Poths, J., McIntosh, W., 2002. Measurement of ancient cosmogenic
 21Ne in quartz from the 28 Ma Fish Canyon Tuff, Colorado. Chem. Geol. 186, 199–213.
 doi:10.1016/S0009-2541(01)00411-9
- Niedermann, S., 2002. Cosmic-Ray-Produced Noble Gases in Terrestrial Rocks: Dating Tools for Surface
 Processes. Rev. Mineral. Geochemistry 47, 731–784. doi:10.2138/rmg.2002.47.16
- Niedermann, S., Bach, W., Erzinger, J., 1997. Noble gas evidence for a lower mantle component in
 MORBs from the southern East Pacific Rise: Decoupling of helium and neon isotope systematics.
 Geochim. Cosmochim. Acta 61, 2697–2715. doi:10.1016/S0016-7037(97)00102-6
- Niedermann, S., Graf, T., Kim, J., Kohl, C., 1994. Cosmic-ray-produced 21Ne in terrestrial quartz: the
 neon inventory of Sierra Nevada quartz separates. Earth Planet. Sci. Lett. 125, 341–355.
 doi:10.1016/0012-821X(94)90225-9
- 402 Niedermann, S., Graf, T., Marti, K., 1993. Mass spectrometric identification of cosmic-ray-produced neon
 403 in terrestrial rocks with multiple neon components. Earth Planet. Sci. Lett. 118, 65–73.
 404 doi:10.1016/0012-821X(93)90159-7
- Shuster, D.L., Farley, K.A., 2005. Diffusion kinetics of proton-induced 21Ne, 3He, and 4He in quartz.
 Geochim. Cosmochim. Acta 69, 2349–2359. doi:10.1016/j.gca.2004.11.002
- Tremblay, M.M., Shuster, D.L., Balco, G., 2014a. Cosmogenic noble gas paleothermometry. Earth Planet.
 Sci. Lett. 400, 195–205. doi:10.1016/j.epsl.2014.05.040
- Tremblay, M.M., Shuster, D.L., Balco, G., 2014b. Diffusion kinetics of 3He and 21Ne in quartz and
 implications for cosmogenic noble gas paleothermometry. Geochim. Cosmochim. Acta 142, 186–
 204. doi:10.1016/j.gca.2014.08.010

- Yatsevich, I., Honda, M., 1997. Production of nucleogenic neon in the Earth from natural radioactive
 decay. J. Geophys. Res. 102, 10291–10298. doi:10.1029/97JB00395
- Zulauf, G., Romano, S.S., Dörr, W., Fiala, J., 2007. Crete and the Minoan terranes: Age constraints from
 U-Pb dating of detrital zircons. Geol. Soc. Am. Spec. Pap. 423, 401–411. doi:10.1130/978-0-81372423-2
- 417

418 FIGURE CAPTIONS

- Figure 1. ²¹Ne concentration produced by fast (a) and negative (b) muons at depth below surface over time spans of $1 \cdot 10^7 - 5 \cdot 10^8$ years (shown by different colors). As discussed in section 2.2, postburial production rates of ²¹Ne are calculated for depths ranging 0-800m and integrated over timespans of 10, 50, 100, 500 Myr, and 1Gyr. For the detailed calculations of muon fluxes and the expected rates of ²¹Ne production see supplementary materials A2.
- Figure 2. Nucleogenic ²¹Ne produced in quartz crystal lattice over a period of 600 Myr as a
 function of eU (effective uranium, a parameter that weights the decay of the U and Th parents
 for their alpha productivity, computed as [U]+0.235·[Th]) and U/Th concentration ratio. Colors
 indicate U/Th ratios, as shown by the color bar on the right side.
- Figure 3. Ne diffusion for different sized quartz grains (shown by different colors) over 600 Myr.
 Diffusion calculations (see text for details) were performed for constant temperatures of 40, 50
 and 60°C and do not account for complex thermal histories.
- Figure 4. (a) General location map of the area (marked by a black frame in the inset) and locations
 of sampling sites used in this study (marked by open circles). The samples were all deposited on
 the passive northern margin of Gondwana. (b) The modern work area is marked by a black square
 on a reconstructed map of Gondwana (Zulauf et al., 2007).
- Figure 5. (a) ²¹Ne_{ex} extracted in the 400-800°C and 1200°C steps, respectively. ²¹Ne_{ex} concentrations in the 1200°C step are similar or higher than those in the 400-800°C steps, pointing to a considerable nucleogenic ²¹Ne component. (b) The ratio of ²¹Ne_{ex} released in the 1200°C temperature step (assumed to correspond to measured nucleogenic ²¹Ne) to calculated nucleogenic ²¹Ne plotted versus depth. The nucleogenic ²¹Ne was calculated for 580 Myr of

- 440 production for the Precambrian samples, 340 Myr for the Cambrian samples and 130 Myr for the
- 441 Lower Cretaceous samples according to burial times (see text for justification).

442

Table 1 Information on samples and sampling locations

Sample	Sampling Site ^a	Era	Formation	Depth ^b	
				(m)	
CSN2	Sinaf01	Lower Cretaceous	Lower Amir	590	
CJR1	Jericho01	Lower Cretaceous	Zewiera	1441	
CRR1	Mt. Ramim	Lower Cretaceous	Zewiera	268	
YMS02	Sinaf01	Cambrian	Shehoret	648	
YMS07	Sinaf01	Cambrian	Shehoret	640	
YMS06	Sinaf01	Cambrian	Amudei Shelomo	730	
ZNF02	Sinaf01	Precambrian	Zenifim	1198	
ZNF04	Sinaf01	Precambrian	Zenifim	1500	
ZNF08	Ramon	Precambrian	Zenifim	2079	
ZNF09	Ramon	Precambrian	Zenifim	1572	

^a All samples were taken from borehole material kept at the Geological Survey of Israel core repository.

^b Depth is measured from the top of the core drilled (Fleischer and Varsahvsky, 2002).

Table 2. Results of Ne analyses of quartz separates from samples from Precambrian, Cambrian, and Lower Cretaceous sediments

Sample	Т	²⁰ Ne	±	²² Ne/ ²⁰ Ne	±	²¹ Ne/ ²⁰ Ne	±
•	(°C)	(10 ⁻¹² cm ³ /g)		-		-	
ZNF1-3	Crushed	737	40	0.10128	0.00028	0.002959	0.000046
ZNF4	Crushed	658	34	0.10175	0.00025	0.002972	0.000045
YMS4	Crushed	2150	110	0.10172	0.00026	0.002964	0.000037
YMS5	Crushed	861	44	0.1015	0.0014	0.002993	0.000039
CSN1	Crushed	443	27	0.10222	0.00050	0.002939	0.000048
CJR1	Crushed	663	35	0.10213	0.00032	0.002947	0.000044
CRR1	Crushed	322	23	0.10243	0.00046	0.002960	0.000063
CSN1	400°C	188	14	0.1025	0.0014	0.003003	0.000066
	600°C	882	63	0.10179	0.00053	0.003021	0.000044
	800°C	427	31	0.10255	0.00060	0.003037	0.000081
	1200°C	17.7	1.5	0.1054	0.0023	0.00886	0.00046
CJR1	400°C	221	16	0.10234	0.00090	0.002956	0.000095
	600°C	414	29	0.10179	0.00031	0.002994	0.000046
	800°C	213	15	0.10244	0.00046	0.00311	0.00011
CDD1	1200°C	10.0	1.0	0.1041	0.0041	0.01035	0.00057
CKRI	400 C	3.1	0.4	0.088	0.010	0.00309	0.00059
	800°C	201	22 14	0.10208	0.00099	0.003114	0.000005
	1200°C	6.2	14	0.10208	0.00038	0.003133	0.000093
YMS2	400°C	102 /	5.0	0.1111	0.0071	0.0140	0.0016
	600°C	105.4	J.5 4F	0.1019	0.0012	0.00299	0.00010
	800°C	000	45	0.10136	0.00041	0.003005	0.000054
	120000	1125	57	0.10118	0.00029	0.003021	0.000040
VACC	1200 C	223	11	0.10270	0.00015	0.003281	0.000077
YIVIS6	400°C	74.1	4.0	0.1016	0.0013	0.00304	0.00013
	600°C	937	49	0.10114	0.00032	0.003058	0.000048
	800°C	1133	59	0.10181	0.00027	0.003052	0.000032
	1200°C	49.3	2.7	0.1049	0.0019	0.006117	0.000099
YMS7	400°C	135.3	8.5	0.1012	0.0020	0.00296	0.00015
	600°C	389	24	0.1017	0.0010	0.003060	0.000097
	800°C	524	32	0.10216	0.00089	0.002995	0.000085
	1200°C	82.6	5.1	0.10409	0.00071	0.00357	0.00013
ZNF2	400°C	354	19	0.10186	0.00069	0.002977	0.000049
	600°C	524	29	0.10148	0.00061	0.002991	0.000075
	800°C	469	26	0.10159	0.00021	0.003010	0.000080
	1200°C	17.1	1.2	0.1041	0.0024	0.00607	0.00030
ZNF4	400°C	830	42	0.10121	0.00050	0.002960	0.000043
	600°C	782	40	0.10125	0.00027	0.002984	0.000068
	800°C	1138	58	0.10183	0.00026	0.002983	0.000054
	1200°C	73.1	3.8	0.10439	0.00097	0.00347	0.00011
ZNF8	400°C	163.7	8.4	0.1017	0.0014	0.003062	0.000046
	600°C	329	17	0.10107	0.00060	0.003171	0.000072
	800°C	279	14	0.10088	0.00038	0.003196	0.000076
71150	1200°C	26.0	1.5	0.1025	0.0025	0.00508	0.00016
ZNF9	400°C	52.5	2.8	0.1019	0.0013	0.002979	0.000170
	800°C	419	21	0.10121	0.00044	0.003225	0.000059
	800 L 1200°C	283	14	0.10118	0.00095	0.003257	0.000077
	1200 C	10.3	0.9	0.1027	0.0027	0.0131	0.0011

For samples ZNF2 and ZNF4 the crusher aliquot used for ${}^{21}Ne_{ex}$ calculations is ZNF1-3, for sample ZNF9 crusher aliquot used is ZNF8, for sample YMS2 crusher aliquot used is YMS4 and for sample YMS6 crusher aliquot used is YMS5. All measurement uncertainties are 2σ .

Table 3

	Com	oarison between	measured and	calculated nucleoge	enic ²¹ Ne and los	by diffusion con	npared to nucleog	enic Ne retention
--	-----	-----------------	--------------	---------------------	-------------------------------	------------------	-------------------	-------------------

Sample	Depth	Uª	Th ^a	²¹ Ne _{ex} 400-800°C	²¹ Ne _{ex} 1200°c	Calculated	Fraction loss from diffusion ^c		²¹ Ne _{nucleogenic} measured/calculated	
	(m)	(ppb)	(ppb)	(10 ⁶ at/g)	(10 ⁶ at/g)	(10 ⁶ at/g)	250µm	850µm	Mean	
CSN01	590	593	154	3.4±1.9	2.81±0.29	11	0.23	0.07	0.12	0.33
CJR01	1441	484	106	1.5±1.2	1.98±0.19	9	0.78	0.30	0.47	0.69
CRR01	269	333	107	2.6±1.1	1.94±0.24	6	0.12	0.04	0.06	0.63
YMS02	648	552	1153	$2.7^{+2.3}_{-1.9}$	1.89±0.52	42	0.42	0.14	0.23	0.04
YMS07	640	212	414	$1.4^{+1.8}_{-1.1}$	1.35±0.31	21	0.42	0.13	0.22	0.07
YMS06	730	492	1430	3.2±2.2	4.13±0.25	44	0.48	0.16	0.25	0.07
ZNF02	1198	275	643	$1.3^{+1.8}_{-0.8}$	1.43±0.13	40	0.92	0.40	0.60	0.04
ZNF04	1500	224	353	$0.6^{+3.0}_{-0.4}$	0.98±0.23	68	1.00	0.61	0.82	0.04
ZNF08	2079	476	838	$1.8^{+1.5}_{-1.3}$	1.41±0.14	21	1.00	0.98	1.00	0.02
ZNF09	1572	877	2780	3.2±1.1	2.77±0.25	147	1.00	0.67	0.86	0.02

^a Measurement uncertainties for U and Th are ~5%.

^b Uncertainties for nucleogenic Ne calculations are not presented due to unknown random errors.

^c Diffusion is calculated using a normal geothermal gradient of 20 K/km and 25°C at the surface and given depths for all samples. The calculated uncertainties based on the kinetic coefficient uncertainties reported by Tremblay et al. (2014a) add up to ~2%. The actual uncertainties for these calculations correspond to burial depth and grain size and are largely unknown.