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Abstract Imaging spectroscopy (IS), also commonly known as hyperspectral remote sensing, is a powerful13

remote sensing technique for the monitoring of the Earth’s surface and atmosphere. Pixels in optical hyper-14

spectral images consist of continuous reflectance spectra formed by hundreds of narrow spectral channels,15

allowing an accurate representation of the surface composition through spectroscopic techniques. However,16

technical constraints in the definition of imaging spectrometers make spectral coverage and resolution to17

be usually traded by spatial resolution and swath width, as opposed to optical multispectral (MS) systems18

typically designed to maximize spatial and/or temporal resolution. This complementarity suggests that a19

synergistic exploitation of spaceborne IS and MS data would be an optimal way to fulfill those remote20

sensing applications requiring not only high spatial and temporal resolution data, but also rich spectral in-21

formation. On the other hand, IS has been shown to yield a strong synergistic potential with non-optical22

remote sensing methods, such as thermal infrared (TIR) and light detection and ranging (LiDAR). In this23

contribution we review theoretical and methodological aspects of potential synergies between optical IS24

and other remote sensing techniques. The focus is put on the evaluation of synergies between spaceborne25

optical IS and MS systems because of the expected availability of the two types of data in the next years.26

Short reviews of potential synergies of IS with TIR and LiDAR measurements are also provided.27

Keywords Imaging spectroscopy · multispectral remote sensing · synergy · data fusion · spatial28

enhancement · thermal infrared · LiDAR29

1 Introduction30

Imaging spectroscopy (IS) in the optical domain, also known as hyperspectral remote sensing, is an Earth31

observation technique based on spectrally-contiguous measurements of the solar light reflected by the32
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Earth’s surface and atmosphere (Goetz et al., 1985). Each pixel in the resulting hyperspectral images con-33

tains a continuous spectrum sampling absorption features which can be linked to the pixel composition.34

Due to this generic measurement principle, IS provides an accurate representation of geobiophysical pa-35

rameters, which can be used to infer quantitative information on a wide range of Earth’s surface parameters36

and processes.37

The raise and consolidation of IS as a powerful remote sensing technique for land monitoring over38

the last three decades has mostly relied on airborne spectrometers. In particular, the NASA Jet Propulsion39

Laboratory’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (Green et al., 1998), covering the40

400–2500 nm spectral range (visible to shortwave infrared, VSWIR) with 10-nm wide spectral channels,41

has been used in a large number of campaigns across different continents and ecosystems (e.g. Thompson42

et al., 2017). From a satellite perspective, the Hyperion spectrometer onboard NASA’s Earth Observing One43

(EO-1) spacecraft was a technology demonstration project which operated between 2001 and 2017 (Ungar44

et al., 2003). Hyperion acquired hyperspectral images with a 30 m ground sampling distance (GSD), a 7 km45

horizontal swath and a spectral coverage and sampling similar to that of AVIRIS, although with a much46

lower radiometric performance and overall data quality. Other satellite IS projects, in this case restricted to47

the visible near-infrared (VNIR, 400–1000 nm) spectral region, are the Compact High Resolution Imaging48

Spectrometer (CHRIS) on ESA’s Proba-1 microsatellite (Barnsley et al., 2004), which has been operating49

since 2001, and the Hyperspectral Imager for the Coastal Ocean (HICO) (Lucke et al., 2011), developed by50

NASA and the US Office of Naval Research and operating onboard the International Space Station (ISS)51

between 2009 and 2015.52

After those technology demonstration projects, several scientific missions expected to deliver accurate53

spectroscopic measurements are scheduled for the next years. In particular, the Environmental Mapping and54

Analysis Program (EnMAP) is a German mission which will measure in the VSWIR spectral range with an55

average spectral sampling of 10 nm, a 30 m GSD, a 30 km swath width and a revisit time under quasi-nadir56

observation of less than 4 weeks (Guanter et al., 2015). These characteristics are shared by the Italian Space57

Agency’s PRISMA (Hyperspectral Precursor of the Application Mission) (Candela et al., 2016), which in58

addition presents a panchromatic channel with a 5 m GSD. Other projects, such as NASA’s Hyperspectral59

Infrared Imager (HyspIRI) (Lee et al., 2015), and the Italian-Israeli SHALOM (Spaceborne Hyperspectral60

Applicative Land and Ocean Mission), currently awaiting the final decision for implementation, could61

follow EnMAP and PRISMA by mid 2020s.62

In general, upcoming space-based VSWIR IS missions such as EnMAP and PRISMA are expected63

to provide hyperspectral data in a higher data-rate and radiometric and spectral quality than their prede-64

cessor Hyperion. However, due to trade-offs in spectrometer design between spatial resolution, spectral65

resolution, swath width, and signal-to-noise ratio (SNR), spaceborne IS missions are usually designed to66

acquire data with a moderate GSD (typically 30 m) as well as with a small across-track swath, which results67

in a nadir revisit time of up to 4 weeks. It must also be mentioned that EnMAP and PRISMA are “site-68

oriented” missions, which means that they are tasked on a daily basis to acquire images over selected sites,69

as opposed to “wall-to-wall” mapping missions with systematic full global coverage. Temporal resolution70

will be improved by EnMAP and PRISMA through across-track pointing, but this can only happen over a71

limited number of sites per day due to the high impact of platform pointing maneuvers on mission opera-72

tions. Those sampling limitations will hamper the use of EnMAP, PRISMA and similar missions for those73

applications requiring high temporal resolution (e.g. those dealing with water and vegetation) or spatial74

resolution (e.g. land cover mapping or mineral exploration).75

The EnMAP and PRISMA spaceborne IS missions are expected to co-exist with a number of other76

satellite missions based on different measurement principles, and especially with optical multispectral (MS)77

missions. An overview of some operating and upcoming satellite missions mentioned in this paper is pro-78

vided in Table 1. For example, the ESA/Copernicus Sentinel-2 mission (Drusch et al., 2012), which has an79

optical multispectral imager (MSI) as main payload, is planned for long-term operations and will coexist80

with EnMAP, PRISMA and other future IS missions. Sentinel-2 MSI has a wide spatial coverage (290 km81
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Fig. 1 First image from Sentinel-2A covering parts of Italy and France in June 2015. The spatial coverage of Sentinel-2 is
compared to that of the EnMAP imaging spectroscopy mission. Panels on the right hand side compare surface reflectance
spectra as acquired by an imaging spectrometer and the 10–20 m channels in the multispectral imager (MSI) on Sentinel-2.
GSD stands for ground sampling distance.

swath), VSWIR spectral coverage (13 spectral channels between 440 and 2200 nm), high spatial resolution82

(10 spectral channels at 10 or 20 m ground sampling distance), high temporal resolution (5-day revisit time)83

and open data policy. Also Landsat-8/9 missions (Roy et al., 2014) offer spatially continuous VSWIR MS84

data and will co-exist with EnMAP and PRISMA. Optical MS missions such as Sentinel-2 and Landsat85

hold a strong potential for synergistic use with EnMAP-like IS missions, since the poorer spectral infor-86

mation of the multispectral data is compensated by their improved spatial coverage, temporal resolution,87

and (in the case of Sentinel-2) spatial resolution. This is illustrated in Fig. 1. The combination of optical88

IS and MS missions can thus be used for a temporal and/or spatial enhancement of the rich spectral infor-89

mation provided by the IS data set. This is also the rationale for the inclusion of a panchromatic channel90

in the PRISMA mission concept (Candela et al., 2016) and for the joint deployment of Hyperion and the91

Advanced Land Imager (ALI) onboard the EO-1 platform.92

A different type of synergy with IS data would be the one consisting in the combination of IS mea-93

surements with those derived from non-optical instruments carrying fundamentally different information.94

This would be, for instance, the combination of IS and light detection and ranging (LiDAR) data, which95

can be very useful for e.g. the classification of urban objects or the chracterization of vegetation covers.96

The latter is main purpose of the Carnegie Airborne Observatory intended for ecological research, which97

combines airborne spectroscopy and a dual-laser waveform LiDAR scanner (Asner et al., 2012). Regarding98

other spectral ranges, the HyspIRI mission concept relies on the combination of spaceborne hyperspectral99
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Fig. 2 Schematic view of how synergies between imaging spectroscopy and other remote sensing techniques can be used to
improve spectral, spatial and temporal sampling in the resulting data set. IS stands for imaging spectroscopy, MS for optical
multispectral data and TIR for thermal infrared.

VSWIR and thermal infrared (TIR) measurements in order to address a number of scientific questions re-100

lated to the Earth’s ecosystems (Lee et al., 2015). Synergies between IS and TIR measurements are also101

considered for the ESA FLuorescence EXplorer (FLEX) mission (Drusch et al., 2017). FLEX will provide102

spectroscopic measurements in the 500–800 nm spectral window at high spectral resolution (<3 nm) and103

low spatial resolution (GSD=300 m) for the retrieval of chlorophyll fluorescence and other plant biochem-104

ical parameters. FLEX will fly in tandem with the Sentinel-3 mission adding TIR measurements necessary105

for the interpretation of the fluorescence measurements from FLEX. On the other hand, an exceptional106

wealth of information for ecosystem research will become available from the combined operation of a se-107

ries of remote sensing instruments to be deployed at the ISS in 2018. This will include the Global Ecosystem108

Dynamics Investigation (GEDI) LiDAR, the Ecosystem Spaceborne Thermal Radiometer Experiment on109

Space Station (ECOSTRESS), and the Orbiting Carbon Observatory 3 (OCO-3), all three from NASA,110

and the VSWIR Hysperspectral Imager Suite (HISUI) from the Japanese Ministry of Economy, Trade,111

and Industry (METI). The combination of those four instruments will provide key information on canopy112

structure (GEDI), evapotranspiration and stress (ECOSTRESS), chlorophyll fluorescence (OCO-3) and113

ecosystem composition and plant traits (HISUI), which will be used to investigate vegetation functioning114

at the ecosystem scale during the time period in which the 4 instruments will be operated (Stavros et al.,115

2017).116

This contribution reviews potential synergies between IS data and other remote sensing techniques. The117

focus is on the discussion of theoretical aspects and methodological issues, rather than on a comprehensive118
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Table 1 Observation parameters of some of the satellite missions mentioned in this paper. IS stands for imaging spectrometer,
MS for multispectral instrument, VSWIR for visible to shortwave infrared, VNIR for visible near-infrared, SWIR for shortwave
infrared, TIR for thermal infrared, GSD for ground sampling distance, PAN for panchromatic channel, and ALI for advance
land imager.

Spectral Spectral GSD Revisit Status Note
sampling coverage (optical) time

EnMAP IS VSWIR 30 m 27 d nadir, ∼4 d
with 30◦ pointing

Launch
∼2020

Acquisitions on re-
quest

PRISMA IS VSWIR 30 m 29 d nadir, ∼7 d
with 15◦ pointing

Launch
∼2018

Acquisitions on re-
quest; 5 m PAN

HyspIRI IS VSWIR & TIR 30 m 5–16 d Under
evaluation

Global mapper
with 185 km swath

Hyperion IS VSWIR 30 m ∼6 d with 22◦

pointing
End in
2017

Flight with MS
ALI

CHRIS-Proba IS VNIR 17–34 m ∼6 d with 30◦

pointing
Operating Multiangular capa-

bilities

Landsat MS VSWIR & TIR 30 m 16 d Operating Long data record

Sentinel-2 MS VSWIR 10–20 m 5 d Operating High spatio-
temporal resolution

Sentinel-3 MS VNIR & TIR 300 m 1 d Operating Focus on ocean
monitoring

ASTER MS VSWIR & TIR 15–30 m 16 d Operating Good SWIR sam-
pling (until 2008)

review of single examples in the literature. Special attention is put on the assessment of synergies between119

spacebased IS and optical MS missions because of the open and large scale data availability expected for the120

next years, thanks in particular to the co-existance of EnMAP, PRISMA, Sentinel-2 and Landsat missions.121

Theoretical considerations and some examples of those synergies between IS and optical MS missions are122

presented in Section 2. Potential synergies of IS with TIR and LiDAR measurements will be discussed in123

Section 3. A summary of key points and a discussion of the implications of synergistic approaches for the124

design and exploitation of future IS missions will be finally provided in Section 4.125

2 Synergies of imaging spectroscopy with optical MS data126

2.1 Approaches for synergistic use of optical IS and MS data127

Synergies between spaceborne IS and optical MS measurements, e.g. from EnMAP/PRISMA and Sentinel-128

2, respectively, could be developed in at least two different directions:129

– Enhancement of the spatial resolution of the IS data through fusion with higher resolution MS data130

– Improvement of mapping capabilities through the joint exploitation of MS and IS data sets131

The fundamental basis for these two types of synergistic approaches and some examples are discussed132

hereinafter in this section.133
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2.1.1 Enhancement of spatial resolution of IS data through fusion with MS data134

Recently, considerable attention has been paid to the development of resolution enhancement techniques for135

IS imagery via IS and MS data fusion (Yokoya et al., 2017). The resolution enhancement of IS imagery can136

be performed by fusing a low-resolution IS image with a higher-resolution MS image, where both images137

are acquired over the same Earth’s surface in the same season under similar atmospheric and illumination138

conditions. The resolution-enhanced IS data have the high spatial resolution of the MS sensor and the139

high spectral resolution of the IS sensor. Such high-order image products, which can be generated by140

using operational satellites (e.g., EnMAP and Sentinel-2), have the potential to enable a variety of new IS141

applications on a global scale, including high-resolution mapping of minerals, urban surface materials, and142

plant species.143

The final goal for the sharpening of IS data would be the accurate reconstruction at high spatial resolu-144

tion of not only the broadband spectral shape, but also the single absorption features present in the spectrum.145

From a theoretical point of view, an absorption feature in the IS data can only be spatially-sharpened with146

higher resolution MS data if (and only if) the IS spectra represent pure spectra at the MS resolution, and at147

least one of the following conditions holds:148

1. the absorption feature is wide enough to be sampled by the MS instrument (e.g. chlorophyll or iron, see149

Fig. 3a)150

2. the material causing the absorption feature of interest also presents absorption features in other parts151

of the spectrum which are wide enough to be sampled by the MS instrument (e.g. liquid water presents152

absorption features with varying depth within the entire 950–2500 nm window, see Fig. 3b)153

3. the material causing the absorption feature of interest tends to co-exist with other materials presenting154

absorption features in parts of the spectrum sampled by the MS instrument (e.g. chlorophyll and liquid155

water contents tend to covary in healthy vegetation)156

The increase of information content of the spatially-enhanced IS data would depend on which of those157

three conditions applies. In the case of (1), the absorption feature is already sampled at high spatial res-158

olution in the MS data, but the spatially-enhanced IS data set would allow the application of band fitting159

retrieval algorithms, which can lead to more robust retrievals. Concerning (2), weaker absorption features160

can be spatially-enhanced through leverage with other parts of the spectrum at which the same material161

presents absorption features, the advantage of this being that the sharpened narrow features may be less162

affected by confounding factors than the wider ones sampled by the MS spectrum. As for (3), the spa-163

tial enhancement of absorption features would only map the statistical coexistence of different materials164

represented in the spectrum, and the resulting sharpened features would not represent actual changes in165

the surface composition or condition for those pixels in which the co-existence between the two materials166

deviates from the expectation.167

To solve the IS and MS data fusion problem, researchers have proposed various methods in the last168

decade. The existing literature can be categorized into two groups. The first group of methods is based on169

pan-sharpening. Pan-sharpening is a technique that fuses low-resolution MS and higher-resolution panchro-170

matic images to create a high-resolution MS image. Since pan-sharpening can be regarded as a special case171

of IS and MS data fusion, significant effort has been devoted to extending and generalizing existing pan-172

sharpening techniques for IS and MS data fusion. Representative methods include component substitution173

(Chen et al., 2014), multiresolution analysis (Selva et al., 2015), and patch-wise sparse representation meth-174

ods (Grohnfeldt et al., 2013).175

The second group of methods solves the problem through the analysis of the latent spectral character-176

istics of the observed scene based on a subspace spanned by a set of basis vectors or spectral signatures177

of underlying materials (so-called endmembers). This approach includes various methods based on matrix178

factorization (Yokoya et al., 2012), spectral unmixing (Lanaras et al., 2015), and Bayesian probability (Wei179

et al., 2015). For instance, unmixing-based methods reconstruct a high-resolution IS image by estimating180
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Fig. 3 Top-of-canopy reflectance spectra at full spectral resolution and resampled to the 10–20 m channels of Sentinel-2 MSI
for (a) different values of leaf chlorophyll content, and (b) different values of leaf water content.

spectral signatures of endmembers and high-resolution fractional abundances from the input IS and MS181

images, respectively.182

Methods above have been recently compared with extensive experiments in a review paper by Yokoya183

et al. (2017). Multiresolution analysis based methods and unmixing based methods demonstrated good and184

stable performance with different fusion scenarios. Current research on the development of algorithms for185

IS and MS data fusion is focused on combining different approaches to further improve the reconstruction186

performance.187

Fig. 4 presents an example of IS and MS data fusion using simulated EnMAP and Sentinel-2 images188

over an urban area of Brussels, Belgium. The fusion procedure is composed of two steps: 1) self-sharpening189

of Sentinel-2 data that sharpens the 20-m-GSD bands by the 10-m-GSD bands, and 2) the fusion of En-190

MAP and 10-m-GSD Sentinel-2 data. The multiresolution analysis based fusion technique presented in191

Selva et al. (2015) was used for both steps. As shown in the color composite images in Fig. 4, the spatial192

information content is significantly improved. On the other hand, the spectral profiles in Fig. 4 indicate that193

the spectral quality is variable particularly in the SWIR range where the spectral coverage of Sentinel-2194

is limited with only two bands. The importance of the overlap of spectral response functions between two195

sensors is discussed in Yokoya et al. (2017).196

Some publications have appeared in recent years reporting the impact of resolution enhancement of197

IS imagery on spectral unmixing (Yokoya et al., 2016) and land-cover classification (Chan and Yokoya,198

2016). Due to inevitable spectral distortions in the resolution-enhanced data, the use of external spectral199

libraries does not always work for classification or spectral unmixing. In contrast, it has been shown that200

good results can be obtained in classification or spectral unmixing by using reference spectra acquired from201

each fused image (Yokoya et al., 2017, 2016).202

Research on quality assessment of resolution-enhanced products is also important from a practical203

viewpoint; however, very few publications can be found compared to those dealing with algorithm devel-204

opment. Quantitative evaluation of resolution-enhanced data is usually performed within simulation studies205

because reference data are necessary to quantify reconstruction performance. When resolution-enhanced IS206

image products are generated from operational satellites (e.g., EnMAP and Sentinel-2), quantitative quality207

assessment without reference is required to provide spectral quality at each pixel so that users can identify208

and select reliable pixel spectra. The standard technique for this purpose is to examine consistency between209

the input images and degraded versions of the fused image using quality measures (Palsson et al., 2016).210
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important from a practical viewpoint; however, very few publications can be 
found compared to those of the algorithm development. Quantitative evaluation 
of resolution-enhanced data is usually performed within a simulation study 
because reference data are necessary to quantify reconstruction performance. 
When resolution-enhanced hyperspectral image products are generated from 
operational satellites (e.g., EnMAP and Sentinel-2), quantitative quality 
assessment without reference is required to provide spectral quality at each 
pixel so that users can identify and select reliable pixel spectra. The standard 
technique for this purpose is to examine consistency between the input images 
and degraded versions of the fused image using quality measures [10]. There is 
still room for investigation on how to integrate the consistency information 
obtained for each of the two input images. 

 

Figure 1. (Left) Color composite images of simulated EnMAP, EnMAP-Sentinel-2 fused, and 
reference data over an urban area of Brussels, Belgium. (Right) Spectral signatures at two locations. 

 

 
 

ii. Extrapolation of HS information to the full MS scene (Luis, 
Karl) 

Fig. 4 Example of spatial enhancement of IS data. Color composite images of simulated EnMAP, EnMAP-Sentinel-2 fused,
and reference data over an urban area of Brussels (Belgium) are shown together with spectral signatures for two locations.

There is still room for investigation on how to integrate the consistency information obtained for each of211

the two input images.212

2.1.2 Improvement of mapping capabilities through the joint exploitation of MS and IS data sets213

The high spectral resolution and coverage of IS instruments can also be used improved spatio-temporal214

monitoring with MS data. This could be achieved through, at least, (i) analysis of IS results for the inter-215

pretation of co-located MS measurements, and (ii) the extrapolation of IS-based information to the broad216

spatial and temporal coverage of the MS data set.217

Analysis of IS results for the interpretation of MS measurements: the richer spectral information in the IS218

data complements the wider-area and higher spatio-temporal mapping capabilities of the MS instrument.219

For example, Milewski et al. (2017) combined EO-1 Hyperion data with multitemporal and multispectral220

Landsat acquisitions in order to analyze the spatial distribution of surface evaporite minerals and changes221

in a Namibian Kalahari salt pan, which is a semi-arid depositional environment associated with episodic222

flooding events. The dynamic of the surface crusts was evaluated through change detection analysis based223

on a time series of Landsat acquisitions (1984–2015), whereas a hyperspectral image from Hyperion was224

used to map the spatial distribution of the major crust types (halite, gypsum, calcite/sepiolite and disturbed,225

dark crust) and their abundances through spectral mixture analysis (SMA). The combined information226

from the hyperspectral and multispectral data sets could then be exploited to spatially differentiate and map227

depositional environments over the whole salt pan.228

In a different study, Mielke et al. (2014a) assessed the potential of combined IS and MS spaceborne229

data for mapping the spatial extent of mine waste surfaces in South Africa. For that task, the broadband230

iron feature depth (IFD) index was proposed as a potential proxy for mine waste. The IFD derived from231

Landsat was found to be in good agreement with primary and secondary iron-bearing minerals mapped232



Synergies of Imaging Spectroscopy with other Remote Sensing Approaches 9

from Hyperion data, which suggests that a combination of IS data for mineral identification with MS data233

for repetitive area-wide mapping of the IFD as a mine waste proxy is a promising synergistic application of234

IS and MS data. The use of the IFD index for geological applications based on combined IS and MS data235

will be further discussed in section 2.2.2.236

Also dealing with geological mapping, Bishop et al. (2011) employed a two-step progressive approach,237

first to locate target areas characterized by hydrothermal mineral alteration using Advanced Spaceborne238

Thermal Emission and Reflection Radiometer (ASTER) VNIR and SWIR data, and secondly, to attempt239

detailed mineral mapping using Hyperion’s spectral information.240

Extrapolation of IS-based information to the broad spatial and temporal coverage of the MS data: In a241

different type of synergetic use of IS and MS data, the richer spectroscopic information delivered by the242

imaging spectrometer over a given area can be used to enhance the mapping potential of MS observations243

over a wider area than the one sampled by the IS data set.244

For instance, Hubbard et al. (2003) combined Hyperion, EO–1 Advance Land Imager (ALI) and the245

co-orbiting ASTER data to map hydrothermally altered rocks associated with volcanic systems over the246

Central Andes. The mineral maps derived from Hyperion data with the Tetracorder expert system (Clark247

et al., 2003) were used to adjust image display thresholds in the alteration mineral maps derived from248

ALI and ASTER over a much broader area than the Hyperion coverage alone. Hyperion data were also249

used for the interpretation of ASTER and ALI mapping results as well as for their radiometric and atmo-250

spheric correction. A similar set-up was used by Hubbard and Crowley (2005) for mineral mapping over251

the Chilean–Bolivian Altiplano.252

Schmid et al. (2005) used IS data to support the mapping of geophysical parameters in space and time253

with Landsat data. In particular, they developed an approach to monitor changes in wetlands in Central254

Spain. For this purpose, an SMA approach was used with a temporal series of Landsat data to detect changes255

in the wetland over time. The spectral endmembers for the SMA were extracted from hyperspectral data256

acquired during an airborne campaign, resampled to Landsat’s TM and ETM+ spectral responses. It was257

used for change analysis at different and temporal scales, showing the feasibility of exploiting spectral258

endmembers derived from hyperspectral information in the analysis of MS data.259

Concerning vegetation, optical MS measurements of vegetation reflectance spectra are generally sensi-260

tive to canopy water content (CWC), but quantitative estimates of CWC can only be reliably derived from261

IS radiance data through physical modeling of vapor and liquid water spectral features in the near-infrared.262

Asner et al. (2016) extrapolated CWC maps derived from airborne IS data over some sites to the entire263

state of California by means of a deep learning technique establishing empirical relationships between IS-264

based CWC and a series of parameters retrieved from Landsat and other ancillary data sets. The resulting265

California-wide CWC maps were analysed to assess the forest canopy water loss during the 2012–2015266

California drought.267

Model inversion and assimilation of multi-temporal data sets: Strategies for the combination of IS and MS268

data can be based on a physical modeling of the geophysical parameters to be inferred from the remote269

sensing data, which complements the empirical approaches discussed in sections 2.1.1 and 2.1.2. Broadly270

speaking, this physical modeling means that the scene (e.g. land surface vegetation, atmosphere, ...) can271

be parameterized by a finite set of metrics (e.g. leaf area index, leaf pigment concentrations, soil optical272

properties, ...). These parameters can all be combined in a so-called state vector. Each observation, be it273

IS or MS, would provide an inference of the scene parameters: an uncertainty-quantified estimate of the274

state vector, or more precisely, the probability density function of the state vector. Parameters that can be275

inferred well because a particular observation has a strong sensitivity to it will be characterised by low276

uncertainty, whereas parameters with a large uncertainty will be symptomatic of low sensitivity in the277

observations. The mapping from observation to state vector is accomplished by inverting the observations278
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using an observation operator, typically a physical model based on radiative transfer theory that produces279

a prediction of the sensor observations as a function of the state vector.280

In the case of multi-temporal data sets consisting of both MS and IS acquisitions, dynamic physically-281

based models allow us to blend in observations from the two sensors in a physically consistent manner. In its282

simplest form, we can imagine a scenario where MS and IS sensors fly over the same scene simultaneously.283

We can then invert the observations from one sensor, and use the inferred state vector probability density284

function as the a priori distribution of the second observation, which will result in a physically-based com-285

bination of both, respecting the characteristics of both sensors. The use of an observation operator allows286

one to account for different sensor characteristics (different illumination/viewing geometries, spectral sam-287

pling, spatial resolution, ...). The retrieval system is in this case combining two independent inferences of288

the same scene, acquired at the same time, to come to a solution that is consistent with both. An example289

will be discussed in Section 2.2.3.290

If observations do not happen simultaneously, a first approach might be to assume that within a temporal291

window, the scene changes little, and thus they can be assumed simultaneous. However, this assumption292

can be broken in a few days for the land surface, and in less than an hour for atmospheric parameters.293

Dynamic models might be used to propagate the state vector at one location from one time step to another.294

The simplest possible dynamic model is to assume that nothing is changing, but to use this model under295

the assumption that it is wrong, and thus as model propagates the state over longer and longer time gaps296

will add uncertainty to the original estimate. This uncertainty inflation approach is the basis of temporal297

regularization e.g. (Lewis et al., 2012). More sophisticated approaches will use a dynamic model that298

describes the evolution of the state vector, but the concept of model uncertainty is still important, as even299

in the hypothetical case that the model was perfect, changes in the scene would render it wrong.300

The approach described above has been widely used for dynamical systems, as well as climate studies,301

where it often is referred to as ”data assimilation”. A number of standard techniques, such as Kalman and302

particle filters, variational approaches, have been exploited to this end with Earth observation data. The303

same approaches can be used for IS and MS data combinations, provided that a reasonable observation304

operator is used. An example is shown in Fig 5, where we show the EO-LDAS system introduced in Lewis305

et al. (2012) being used to invert observations of surface directional reflectance from MS sensors, Landsat306

8 and Sentinel-2. In this experiment, Landsat 8 has fewer observations than Sentinel-2, so individual in-307

versions result in a very poor description of the dynamics of the parameter evolution over a year. It is also308

obvious that the single observations have large error bars, a consequence of the limited information con-309

tent on each observation. The situation improves with Sentinel-2, as the number of observations increases.310

However, the dynamics are not well described by this experiment: the clustering of observations results311

in an incomplete retrieval of the temporal evolution of the different parameters. Once we start applying a312

dynamic model, we get interpolation, but also reduced uncertainties, with both Sentinel-2 and Landsat 8313

being able to provide a reasonable path of the trajectory of the parameters. Once the dynamic model is es-314

tablished, it is straightforward to combine the observations from both sensors, resulting in a further reduced315

uncertainty.316

2.2 Examples of synergistic use of IS and MS data317

The theoretical discussion of potential synergies between optical IS and MS data presented in Section 2.1318

is complemented in this section with a series of examples of how such synergies work for selected study319

cases including land use and land cover mapping, mineral exploration, vegetation parameter retrieval and320

water applications.321
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Fig. 5 Synthetic experiment demonstrating ”data assimilation” system to invert land surface parameters from MS observations.
Here, we have simulated a scene where leaf chlorophyll Cab, leaf area index LAI and equivalent leaf water Cw vary over time.
The retrieved LAI, Cab and Cw are shown in each row (top to bottom, respectively). Each column shows the results of retrieving
the parameters from Landsat 8 (left), Sentinel-2 MSI (center) and a combination of both. The dots with error bars refer to single
observation inversions (mean and 1.96 times standard deviation), whereas the filled region shows the results of extending the
inversions with a dynamic model and a variational data assimilation system.

2.2.1 Land use and land cover mapping322

Land use and land cover (LULC) mapping is crucial to many scientific investigations from local to global323

scales. For decades, land cover maps are used for urban planning and a multitude of environmental monitor-324

ing applications such as urban expansion, forest inventory, biodiversity, land surface modeling, etc. LULC325

mapping with satellite data is one of the most widely investigated subjects.326

In the last two decades, extensive efforts have been devoted to understand IS data for LULC mapping.327

However, airborne IS data are expensive and pose big processing challenges when coverage is very large,328

whereas the typical 30 m GSD of spaceborne IS missions is in general too coarse for many applications.329

To tackle this spatial issue, one possibility is to apply superresolution image reconstruction algorithms. Su-330

perresolution enhanced hyperspectral VNIR CHRIS/Proba data (9 m) data have been tested for land cover331

classification and unmixing (Chan et al., 2011). Demarchi et al. (2012) applied the same methodology for332

subpixel mapping. The impression is that these superresolution enhanced data sets have not been satisfacto-333

rily evaluated and hence their real potential remains uncertain. A major issue is the difficulty of compiling334

such data set with reliable groundtruth. Another issue is the algorithm evaluation method: how should the335

accuracy be evaluated for data sets acquired at different spatial resolution. Traditional accuracy measures336

for land cover classification have long been criticized as limited and problematic (Foody, 2002).337

Recent development in pan-sharpening techniques and image fusion and the highly anticipated new338

spaceborne IS missions (e.g. EnMAP, HyspIRI) have ignited new momentum in the spatial enhancement of339

satellite IS images. While the issues related to an appropriate evaluation method still exist, one significant340

obstacle has been overcome – there will be real accessible data sets, such as EnMAP and Sentinel-2. Many341
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(a) (b)

Fig. 6 Land use and land cover mapping over Brussels. A false color composite of the study area from airborne APEX IS data
is shown in (a), and a classification map using Canonical Correlation Forest (CCF) is depicted in (b).

methods fusing high resolution MS data and low-resolution IS data have been proposed targeting such342

future data sets. However, real examples of applying a fused and spatially-enhanced IS image for LULC343

classification are still comparatively rare.344

To illustrate the usefulness of IS-MS fused images for LULC mapping, an APEX data set acquired345

from the Brussels capital region has been used. It has 288 bands between 400–2500 nm and is acquired346

at a GSD of 2.4 m (Chan and Yokoya, 2016). An EnMAP image with 242 bands is simulated with the347

EnMAP end-to-end simulator tool (Segl et al., 2012) at a 30 m GSD to mimic low-resolution IS data. A348

Sentinel-2 data set with 10 bands at 10 m and 20 m GSDs is also simulated using the S2eteS Sentinel-2349

scene simulator (Segl et al., 2015). A generic 13-class land cover classification scheme is adapted for the350

study area: larch, pines, ash, maple, oak, beech, grassland (cropland, lawn and parks), buildings, roads, soil351

(bare soil, fallowed field, construction site), tennis court, football field, and water surface (artificial lake and352

canal). Fig. 6 shows the false color composite of the study area.353

We compared the classification accuracy of EnMAP (30 m), Sentinel-2 (10 m and 20 m) and fused IS354

image at 10 m. The fusion approach has been described in Section 2.1.1. A groundtruth IS image at 10 m355

with the same spectral configuration as EnMAP is also simulated. All datasets are upscaled at 10 m with the356

same number of rows and columns for comparison. A total of 1095 pixels are blind-tested for accuracy. Two357

advanced classification algorithms, Rotation Forest (RF) (Rodriguez et al., 2006) and Canonical Correlation358

Forest (CCF) (Rainforth and Wood, 2015), are investigated. Fig. 6b shows the classification map generated359

from an IS image at 10 m resolution which is used as the benchmark for comparison; a legend with only 8360

colors is used for easy visualization. Table 2 shows the overall accuracy, average class accuracy and kappa361

values of the classification results. In general, CCF performs better than RF. The benchmark 10 m IS data362

has achieved 70-74% (RF-CCF) overall accuracy. With Sentinel-2, the overall accuracy is 66-72%. With363

EnMAP at 30 m, the O.A. is 61-67%. For the fused IS data set, accuracies are 68%-73%. The performance364
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(a) (b) (c) (d)

Fig. 7 Ground-truth map of road and building classes (a) and classification results for EnMAP (b), Sentinel-2 (c) and fused
image (d).

of the enhanced data is a little lower than the benchmark IS, moderately higher than the Sentinel-2, but365

significantly (5%) better than the 30 m EnMAP.366

Fig. 7 clearly shows that the fused IS image reveals important details such as road networks compara-367

ble to Sentinel-2 but at a higher accuracy. Extraction and classification of urban objects such as road and368

buildings are understandably too challenging with EnMAP at 30 m resolution. This explains the high perfor-369

mance of Sentinel-2. Comparison between MS and IS for land cover classification have been widely studied370

and depending on the application; IS imagery does not always have superior performance (Xu and Gong,371

2007). A MS-IS fusion approach is more suitable for challenging problems that require very rich spectral372

information and are better addressed with IS data. Our example shows that fusion of high-resolution MS373

and low-resolution IS images can achieve synergies in terms of significant improvement in classification374

details as compared with the low-resolution data and higher class accuracies as compared to the MS data.375

We expect the fusion synergies to have a significantly greater impact on specific LULC applications which376

require spatial details to characterize range, combination, distribution and clustering of species. For exam-377

ples, urban mapping (Herold et al., 2004), vegetation species mapping (Chan and Paelinckx, 2008), and378

biodiversity information required for environmental assessments (Bush et al., 2017). Given the fact that379

spaceborne IS data at 30 m GSD will only be available in the next few years, the novelty of a potential380

fused IS data at high GSD (10 m) with large coverage is almost certain to attract new research momentum381

with innovative LULC applications.382
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Table 2 Comparison of classificacion accuracies with 13 classes. The highest accuracy is found for the reference data set, and
the second highest for the fused data set. OA stands for overall accuracy and AA for average accuracy.

Classifier Rotation Forests Canonical Correlation Forests
Accuracy OA AA Kappa OA AA Kappa
Reference 69.11 75.87 0.63 74.45 72.73 0.70
EnMAP 61.98 62.80 0.56 67.63 66.11 0.62
Sentinel-2 66.85 62.78 0.61 72.70 70.73 0.68
Fused 68.02 73.04 0.63 73.94 72.38 0.69

2.2.2 Mineral mapping383

The Haib River Cu-Mo deposit in the lower Orange river region represents a unique test site for the demon-384

stration of synergistic applications in geological remote sensing. Using simulations from HyMAP data,385

Mielke et al. (2014a) showed that it is possible to link data from state of the art MS systems such as386

Sentinel-2 and Landsat-8 to results from hyperspectral systems such as EnMAP via the IFD iron index387

introduced in Section 2.1.2. This absorption in the 900 nm region is caused by iron bearing minerals that388

may be produced by the weathering of metal sulfides such as pyrite and chalcopyrite (Chavez Jr., 2000).389

This process forms gossan surfaces that may be targeted with e.g. Sentinel-2, calculating the Normalized390

Iron Feature Depth from Sentinel-2 L1C data as shown in Fig. 8. The IFD is a simple three-point band391

depth index for MS sensor systems that proxies the band-depth of the iron feature near 900 nm using the392

two spectral bands which are closest to the shoulders of the 900 nm iron absorption feature (Mielke et al.,393

2014a). These two shoulder bands encompass the absorption band, which is closest to the 900 nm iron ab-394

sorption feature (Mielke et al., 2014a). The feature depth is found by an interpolation of the aforementioned395

iron absorption feature band with the shoulder bands. The difference between interpolated and measured396

iron feature absorption band yields the IFD (Mielke et al., 2014b). This may be used in mineral exploration397

to highlight gossan zones that may indicate the presence of sulphide ore deposits (Taylor, 2011). If this398

concept is expanded to other sensors, for example ASTER SWIR measurements, it is possible to derive a399

false color composite of the normalized feature depths, which highlight the dominant material mixture at a400

specific location, shown for the Haib River area in Fig. 8b.401

However, hyperspectral data from spaceborne sensors such as EnMAP or PRISMA are necessary for402

a more detailed mineral mapping using e.g. expert systems such as the EnMAP Geologic Mapper (En-403

GeoMAP) Base, which is a fully automated system for the detection of mineralogical surface cover types404

over mineral deposit areas (Mielke et al., 2016). IS may be used for a detailed view on the local domi-405

nant minerals in one area, as shown in Fig. 9. Here the gossan zones, which have been identified in Fig. 8406

via the normalized iron feature depth may be subdivided into hematite, goethite and jarosite dominated407

gossans. Only IS data with its superior spectral resolution is able to correctly highlight and discriminate408

the most prominent minerals in the shortwave infrared from 2000 nm to 2500 nm. This shows the potential409

synergies in mineral exploration between large, multispectral, global mapping missions, such as Sentinel-2,410

and regional scale hyperspectral instruments such as EnMAP. The global mappers identify and highlight411

interesting anomalies for scientists working in mineral exploration, whilst IS data offers the capability to412

characterize these anomalies in much more detail using spectral geology tools such as EnGeoMAP for413

material identification.414

2.2.3 Retrieval of vegetation parameters through model inversion415

We can use the physical modeling introduced earlier to theoretically understand the limitations of different416

sensors for the retrieval of vegetation parameters, and how combining observations from different sensors417

might benefit parameter retrieval. To this end, we simulate a set of spectral acquisitions for EnMAP, as418
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(a) (b)

Fig. 8 Indirect mapping of mineral types from multispectral remote sensing data over the Haib River Quartz Feldspar, Por-
phyrry. The Sentinel-2 normalized iron feature depth data, which highlights the main ore bearing unit, appears as a large oval
shaped anomaly in the central part of the image in (a). ASTER normalized feature depth composite image is shown in (b). It
highlights mineral mixtures that are dominated by absorption features near 2330 nm (red), e.g. epidote, chlorite and carbonates.
Illite, alunite and muscovite dominated areas are colored in green. Areas with material that shows prominent iron absorption
features are colored blue.

Fig. 9 EnGeoMAP Base classification result from simulated EnMAP data. The areas dominated by chlorite, epidote and
carbonates correspond well to the areas colored in magenta and red in Fig. 8b.

well as simultaneous observations from Sentinel-2/MSI. The simulations are done using the PROSPECT-419

D leaf RT model (Féret et al., 2017) and the 4SAIL model (Verhoef, 1984) for leaf and canopy levels,420

respectively. The atmospheric effects are simulated by the 6S model (Vermote et al., 1997), taking into421

account the multiple interactions between land and atmosphere. The simulation thus presents a mapping422

from surface and atmospheric composition parameters to at-sensor reflectances. With some indication of the423

uncertainty in the observations at the sensor level, we can study the uncertainty of the retrieved parameters,424

under the assumption that the ”true state” of the combined surface and atmospheric system can be retrieved.425

This uncertainty is encoded in the posterior covariance matrix, which we approximate by a linearization of426
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the Hessian as in Lewis et al. (2012). We consider an scenario where we have a thick vegetation canopy427

(high LAI), and a moderate atmospheric loading. We can see the uncertainty associated with the retrieval of428

different parameters in the left hand side column of Fig. 10, which depicts the posterior correlation matrix,429

where a perfect retrieval would be indicated by an identity matrix. We can see that for a single EnMAP430

observation, a substantial number of off-diagonal elements are present, suggesting parameters that result431

in changes to the measured reflectance in the same spectral window cannot be individually differentiated432

with a single observation. This is unsurprising, and that is the reason that many retrieval schemes prescribe433

some of these parameters (e.g. the leaf structure parameter N, the parameter(s) controlling the leaf angle434

distribution, ALA, or prescribing a soil response). The left hand side of Fig. 10 is in essence a depiction of435

the ill-posedness of the inversion problem. It is important to note that this example is contrived, as no prior436

information has been used at all, which would not be the case on any practical scenario.437

On the right hand side panel of Fig. 10, we show the posterior correlation matrix where the EnMAP438

observations have been optimally combined with the information retrieved from a Sentinel-2/MSI obser-439

vation. We have assumed that these occur at different times, but close enough for the land surface to only440

have experienced a small change, but no extra information is gained on the atmospheric composition, and441

we have also ignored the 1375 nm band in Sentinel-2 MSI. It is clear that the posterior correlation matrices442

are much closer to a diagonal matrix, suggesting that some parameters such as leaf chlorophyll content,443

carotenoid content and anthocyanins might be well resolved. Other important parameters, such as LAI can444

be retrieved for high canopy cover, but the multiple scattering between the canopy and the atmosphere445

for low LAI results in a strong compensatory effect with aerosol optical thickness (AOT). Note that we446

cannot show the posterior covariance matrix for the Sentinel-2 MSI observation in this example: we are447

approximating the problem as a linear problem, in which we try to infer fourteen surface and atmosphere448

parameters, and with Sentinel-2 MSI we only have twelve bands, which results in an undetermined linear449

system.450

Although in this example we have not assessed whether the solution can be found from the data, only451

what shape the uncertainty would take, the method used forms the basis of any Bayesian update, being452

the fundamental basis of techniques like Kalman or particle filters and smoothers (Gómez-Dans et al.,453

2016). Extended with a state vector dynamic model, the system would not only just provide inferences at454

the time of the acquisitions, but would also be able to optimally interpolate the state vector and provide455

uncertainty quantified inferences. The probabilistic basis of the Bayesian combination method rests on the456

two observations being interpreted by the same physical model with the same parameters, the assumption457

that the two sensors are accurately calibrated to a common standard, and that the different spatial resolutions458

can be bridged (by e.g. modeling the individual IFOV of the individual sensors). Provided these conditions459

are maintained, the method can be extended to other sensors.460

2.2.4 Monitoring of inland and coastal waters461

Regular observations of physical and biogeochemical components in inland and coastal waters provide es-462

sential information in the form of maps of water quality, bottom properties and bathymetry as needed for463

science and resource management (e.g. Palmer et al., 2015; Olmanson et al., 2008; Dekker et al., 2011;464

Mouw et al., 2015; Tyler et al., 2016). Depending on the scale of observations, the developments in wa-465

ter quality and biophysical parameter retrieval algorithms are driven by airborne IS (e.g. AVIRIS, APEX),466

ocean colour (OC) radiometry (e.g. MODIS, MERIS) and MS sensors (e.g. Landsat, Sentinel-2). In par-467

ticular, the Sentinel-3/OLCI MS instrument offers an improve mapping potential for its specific capacities468

to resolve turbid, productive waters, and for having daily revisit with a 300 m GSD, whereas the Sentinel-469

2/MSI can provide data at a higher spatial resolution every 5 days. When combined with Landsat, a fine470

scale global mapping at a temporal resolution close to that of OC missions is also feasible. Finally, the pre-471

viously mentioned IS satellite missions (e.g. EnMAP, PRISMA, HyspIRI) are anticipated to provide greatly472

enhanced capability to effectively enable wider applications for coastal and inland waters that, so far, have473
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Fig. 10 Posterior correlation matrices for the combined land and atmosphere RT models PROSAIL and 6S used to invert
a single observation from the EnMAP sensor (a), and the equivalent matrices when the EnMAP observation is supplemented
with a contemporary Sentinel2/MSI observation (b). The variables in the axis correspond to 6S and PROSAIL input parameters.
The white (... black) squares indicate positive (... negative) correlation, and the size of the square is proportional to its absolute
value. Elements along the main diagonal have a correlation of one.

been mostly based on Hyperion (e.g. Kutser, 2004), HICO (e.g. Garcia et al., 2014) and CHRIS-Proba (e.g.474

Casal et al., 2011).475

IS data in fact allows both to increase the estimation accuracy of inland and coastal water variables476

currently observed by OC and MS sensors and to access to new variables of interest (e.g. identification and477

quantification of particulate and dissolved matter: type and size of suspended particles, types of pigments,478

organic matter composition, cyanobacteria) for multiple applications (Hestir et al., 2015; Giardino et al.,479

2018). In such a context, a prime example regards phytoplankton, a key parameter for water managers and480

of considerable interest to scientists who are for instance interested to freshwater ecology. As a proxy of481

phytoplankton biomass, the chlorophyll-a concentration (chl-a), was mapped in lakes already in 1974 from482

aircraft and satellite (Strong, 1974). It also represents a primary parameter quantitatively derived from OC483

(Mishra et al., 2017). Then, IS provides further insights for detecting the accessory pigments of phytoplank-484

ton such as phycocyanin and phycoerythrin pigments, which are often associated to harmful algal blooms.485

As an example, in occasion of a red ciliate blooms in coastal waters, Dierssen et al. (2015) used OC MODIS486

to map the chl-a concentration and IS HICO to further distinguish phycoerythrin pigments. An additional487

application in which IS provided enhanced mapping capability occurs in shallow waters, (those where the488

bottom is visible from the water surface and measurably influences the remote sensing reflectance). The489

patchy structure typical of these environments hinder the use of OC sensors so that monitoring of bottom490

types and benthic communities (e.g. mud, sand-mud mixture, coral sands, coral reefs, seagrass, macro-491

phytes) has been commonly achieved through MS sensors (e.g. Dekker et al., 2005). With a 10–30 m GSD,492

these sensors are ideal for most of the application scales, but are limited to identify species with similar493

spectral characteristics or to assess particular processes such as the state health of coral reefs (Botha et al.,494

2013). This is especially true for fine tracking of biodiversity and ecosystem functioning (identification495

of invasive and resident species). To this aim, airborne IS simultaneously providing high spatial and high496

spectral resolutions has been extensively used to make large-scale inventories of benthic photosynthetic497

organisms, such as macrophytes, seagrasses and corals (Phinn et al., 2008).498
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Fig. 11 An overview of satellite products developed for Lake Garda. A: total suspended matter (SPM) to trace water dynamics
from Sentinel-2 (17-08-2016, from blue to green the SPM ranges from 0.1 to 2 g/m3); B: coloured dissolved organic matter
(CDOM) as a results of primary producers degradation from MERIS (11-10-2006, from light- to dark-brown CDOM ranges
from 0.01 to 0.1 m-1); C: fine scale mapping of chlorophyll-a concentrations from Sentinel-2 (17-08-2016, from green to
red chl-a ranges from 2 to 5 mg/m3); D: map of cyanobacterial bloom from HICO (23-08-2012, from green-yellow-red the
cyanobacterial index, as a proxy of its biomass, increases); E: substrate type from airborne IS data (15-07-2005, in brown nude
substrates, from cyan to light-green to dark-green: submerged vegetation beds with increasing vegetation density cover); F:
time-series of chl-a from a pelagic station from MERIS.

To summarise, the optical complexity of inland and coastal waters, which also usually show a fast499

degree of change and a patchy distribution of both water components and benthic habitats, make crucial500

synergic applications of IS and MS. Moreover, dealing with water optics, the availability of OC sensors has501

to be naturally included. As an example, we present the Lake Garda (Italy) test site, where at the beginning502

of the nineties, Zilioli et al. (1994) started to study the lake colour from Landsat. The lake is characterised503

by clear yet optically complex deep waters, with occasional cyanobacterial blooms and optically shallow504

areas with important submerged macrophyte beds, which make it challenging to develop robust retrieval505

algorithms. Nevertheless, the lake relevance (it is visited by more than 20 million tourists every year and506

stores about 50 km3 of water, used both for recreational purposes and water supply) is demanding a series507

of applications that only synergistic use of IS, MS and OC are able to provide. Some of these applications508

(e.g. the support to the EU Water Framework Directive to report on both chl-a concentration and extension509
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of submerged vegetation beds) are qualitatively shown in Fig. 11. For the sake of brevity we can only510

mention that most of these applications (namely A, B, C and E) were developed based on Hyperion data,511

that was used as a bench-mark for establishing a sensor-independent physically-based approach (Giardino512

et al., 2007). The use of HICO was instead useful to recognise the spectral feature due to the phycocyanin513

(Fig. 11D) according to Kutser (2004), while the neural network C2R operationally provided the MERIS-514

derived chl-a time series (Fig. 11E). A complete description of the applications can be found in Bresciani515

et al. (2011, 2012).516

3 Potential synergies of IS with non-optical remote sensing data517

3.1 Synergies of IS with TIR data518

TIR measurements hold a strong synergistic potential with optical data in general, and with IS in particular.519

The exploitation of synergies between VSWIR IS and multispectral TIR measurements is actually at the520

core of the NASA HyspIRI mission concept, which is intended to address a number of science questions521

focused on world ecosystems and natural hazards (Lee et al., 2015). HyspIRI is currently awaiting decision522

for implementation.523

Based on the review by Lee et al. (2015), synergies between optical IS and multispectral TIR data can524

be important for, at least, the following applications:525

– Canopy biochemistry: optical IS has demonstrated its potential to retrieve important leaf photosyn-526

thetic pigments, such as chlorophylls, carotenoids and anthocyanins, as well as leaf and canopy liquid527

water content (e.g. Ustin et al., 2004). This capability is well complemented by the ability of TIR mea-528

surements to measure other vegetation parameters such as cellulose, hemi-cellulose, cutin and other529

biochemicals with absorption features in the 8–14 µm region (Ribeiro da Luz and Crowley, 2007).530

– Plant functioning: simultaneous measurements of vegetation biophysical and biochemical properties531

and surface temperature can help monitor plant physiological functioning and potential stress situa-532

tions as well as to estimate evapotranspiration (Anderson and Kustas, 2008), which is important to e.g.533

agricultural applications, water use practices and mitigation strategies in response to drought.534

– Earth surface composition and change: the composition of exposed rock and soils can benefit from535

synergies between optical IS and TIR measurements, as the combination of spectral reflectance and536

emissivity measurements has been shown to be very helpful in identifying rocks, minerals and soils537

(e.g. Calvin et al., 2015; Eisele et al., 2015) which is of especial important for geological applications538

of remote sensing (van der Meer et al., 2012). This is due to the fact that the spectral features of e.g.539

silicates, clay minerals, iron oxides and hydroxides from the VSWIR and TIR range complement each540

other perfectly to material discrimination and quantification.541

– Wildfires: optical IS and TIR measurements yield complementary capabilities to understand wildfire542

processes, and in particular the coupling between fires, vegetation and associated trace gas emissions.543

TIR measurements can be used to calculate fire radiative power and temperature, whereas spectroscopic544

measurements in the SWIR can be used to distinguish small hotter fires from large cooler fires (Mathe-545

son and Dennison, 2012) as well as to evaluate fire severity and vegetation recovery (Veraverbeke et al.,546

2012).547

– Volcanoes: in addition to the capabilities of TIR remote sensing to monitor changes in temperature and548

gases indicating volcanic activity, the combination with optical IS measurements can help predict lava549

flows through the characterization of effusion rate and temperature.550

– Urban environments: although limited by the high spatial resolution (<5 m) typically required by urban551

applications, the combination of optical IS and TIR has been shown to be very useful to characterize552

urban environments. The IS provides a high power of discrimination of manmade materials through553
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the different spectral signatures, whereas TIR measurements can be used to measure temperatures and554

characterize the associated urban heat island effect (Roberts et al., 2012).555

In addition to HyspIRI, concurrent IS and TIR measurements will also be available from the ISS556

through the coordinated operation of ECOSTRESS and HISUI (Stavros et al., 2017). Such combined mea-557

surements can be used for a preliminary assessment of some of HyspIRI’s scientific questions.558

3.2 Synergies of IS with LiDAR data559

LiDAR is an active remote sensing technology, using the time of flight of a laser pulse to compute a distance560

between the instrument and the backscattering (reflecting) object. With a precise estimate of the location561

and orientation of the measurement platform, a 3d coordinate of the reflecting object can be computed.562

LiDAR can be applied across a range of scales, from ground-based instruments to space-borne designs,563

serving very different purposes, as e.g. surveying forest stands (Danson et al., 2007) or measuring the564

decline of the polar ice-caps (Zwally et al., 2002). The most common LiDAR implementation, however, is565

in airborne laser scanners (ALS), where LiDARs are combined with a scanner to cover an across flight-track566

swath. Very high scanning frequencies (modern systems send several hundred thousand laser pulses per567

second) provide detailed 3d point clouds of the earth’s surface. This 3d data is of largest benefit for surface568

types that have inherent 3d features, e.g. urban areas and forests. For the latter, IS suffers from structural569

effects (Hilker et al., 2008) and consequently, the fusion of ALS and IS has the largest potential for forested570

areas. So far, most studies were focused on airborne instruments, as there were only few spaceborne IS571

instruments and LiDARs, and the latter only in very large footprints not well suited for vegetation studies572

(e.g. ICESAT GLAS). The fusion of IS and ALS can be performed at various levels of the processing573

chain, but accurate co-registration of the data sets is key to all approaches. One of the straightforward574

ways of synergistic use of IS and ALS is to use the ALS derived digital surface model (DSM) to geo-575

locate the data of an IS system (typically push-broom sensors). Additional to the elevation model, more576

advanced approaches use both the IS and ALS intensity information in an overlapping wavelength domain577

(Fig. 12a) (Brell et al., 2016, 2017). This strategy enhances the synergistic use especially for the accurate578

co-registration of the two sensors (Brell et al., 2016).579

In addition to the data level, fusion can as well be carried out at the product level, e.g. when combining580

two separate land-cover classifications based on separate IS and ALS data sets. Another aspect to classify581

fusion approaches is the choice of method. So far, most studies have used empirical frameworks for the fu-582

sion, e.g. a classifier or a regression model, but only few have used physical models of the radiative transfer583

to potentially improve results. A recent review of IS and ALS fusion approaches and their categorization by584

fusion level, approach and application can be found in Torabzadeh et al. (2014b). An important considera-585

tion is the notion of scale. IS and ALS data need to be similar in spatial extent and resolution for a genuine586

fusion of data sets. Larger mismatches in these two categories will result in methods being either up- or587

down-scaling or point-based cross-validation, e.g. in the case of a space-borne sampling LiDAR design588

(e.g. GEDI on the ISS) with a wall-to-wall IS instrument.589

Empirical Approaches: Up to now, the majority of studies on IS and ALS fusion have used empirical590

approaches for land-cover classification (Torabzadeh et al., 2014b). In an early example, Koetz et al. (2008)591

fused IS and ALS data layers in a support vector machine framework to classify land-cover types including592

fuel-types in a wildland-urban interface to assess and mitigate forest fire risk. ALS and IS were highly593

complementary, having a much higher accuracy when combined, with the height information of ALS being594

particularly helpful for vegetation canopy height classes. Regarding tree species classification, accuracy for595

a temperate mixed forest comprising 8 species was increased from 75% when using either ALS or IS alone596

to 90% when combining the datasets (Torabzadeh et al., 2014a). Both ALS and IS features were aggregated597



Synergies of Imaging Spectroscopy with other Remote Sensing Approaches 21

(a) (b)

Fig. 12 Combination of IS and LiDAR (airborne laser scanner, ALS) data. A schematic view of the combination is shown in
(a), and a 3d model of a pine stand (Tharandt, Germany) reconstructed within the 3d vegetation laboratory project using laser
scanning is displayed in (b). Laser scanning was at three different levels to model the pine stand: lab (for the shoot structure),
ground (stems and branch structure) and airborne (tree locations and dimensions) (see Eysn et al. (2013) for details).

to individual tree crowns in this study. The high complementarity of ALS and IS for vegetation studies is598

as well confirmed by the large-scale campaigns and results of the Carnegie Airborne Observatory, flying IS599

and ALS sensors simultaneously, forming an ideal tool for 3d ecosystem assessment (Asner et al., 2012).600

Physical Approaches: A potential tool to maximize the complementary exploitation of IS and ALS data are601

radiative transfer models, which add a physical layer in understanding and exploiting the signals recorded602

by both ALS and IS. A first of its kind, Koetz et al. (2007) used two different RTMs, one for IS, one603

for LiDAR, in a fused look-up table inversion retrieval of biochemical and biophysical variables such as604

LAI and fractional cover. However, results were mixed, likely hindered by the two models having distinct605

physical realities and differing parameterizations. For increased understanding of IS signals over vegetation,606

a possible solution is to derive an ALS based parameterization of the vegetation canopy, applied in an RTM607

to forward simulate the spectral response. This was successfully done with the ESA STSE “3d Vegetation608

Laboratory” - project (see Fig. 12b for an example 3d model) and such modeling tools will contribute to609

better fusion approaches for future missions (Schneider et al., 2017).610

Besides the modeling approaches, physically based synergies between inflight IS and ALS data are611

being investigated. Based on radiative transfer modeling and ray-tracing approaches, the highly comple-612

mentary sensor responses are physically adopted, and the active-passive dualism can be used to acquire613

more reliable and comparable hyperspectral data (Brell et al., 2017). This intensity based cross-calibration614

between the two sensors is a first physical based step to exploit active-passive synergies, with the specified615

goal of combining structural and spectral information for a comprehensive surface object description.616
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Level-0 fusion (multi-spectral LiDAR): The ultimate fusion of IS and ALS would be the development617

of a hyper-spectral LiDAR and implement that in an airborne design, remedying many issues of passive618

optical systems. However, up to now, only laboratory designs are truly hyperspectral due to their use a619

supercontinuum light source (Junttila et al., 2015), while the commercial ALS systems are multi-spectral620

only (3 wavelengths maximum in the Optech Titan system). In these implementations, however, not the621

small number of bands is the largest limitation, but the missing spatial and temporal synchronization of the622

wavelengths. This will lead to large errors for band ratios with only small signals (e.g. the photochemical623

reflectance index), as reflectance and structural differences are mixed between the different wavelengths.624

Only a design where all wavelengths sample exactly the same footprint (preferably at the same time) will625

provide accurate band ratios, which can be linked to foliage biochemistry (Morsdorf et al., 2009; Wood-626

house et al., 2011).627

Technology and system characteristic of spaceborne LiDAR instruments differ significantly from air-628

borne systems. However, airborne based insights can be used for the development of synergies between629

various spectral and spatial sparse overlaps of spaceborne IS and LiDAR instruments. Upcoming systems630

like e.g. GEDI, ICESat-2 ATLAS (Abdalati et al., 2010) and the Methane Remote Sensing Lidar Mission631

(MERLIN) (Ehret et al., 2017) demonstrate the rapid advances in spaceborne LiDAR technology. This632

indicates that in the future, large footprints and the lack of spatial coverage will be overcome.633

It must be stated that synergistic applications can also be found for the combination of IS with radar, al-634

though to a lesser extent than with LiDAR in part due to the non-overlapping wavelength domains. Demon-635

strated synergies between IS and radar are relatively similar to those between IS and LiDAR in the sense636

that radar provides the information on object structure to complete the spectral information from the IS637

image. Examples in the literature show the potential of synergies between IS and radar for the retrieval of638

vegetation properties (Treuhaft et al., 2002), urban mapping and land use classification (Hu et al., 2017)639

and oil spill mapping (Dabbiru et al., 2015).640

4 Summary and conclusions641

This contribution has discussed potential avenues for the synergistic use of IS and other sources of remote642

sensing data, with a focus on synergies with optical MS satellite missions because of their co-existence643

with spaceborne IS missions in the next years after the launch of EnMAP and PRISMA.644

Optical IS and MS satellite missions can benefit from each other in two directions. On the one hand,645

IS acquisitions can be spatially-enhanced through fusion with higher spatial resolution MS data sets, as it646

would be the case of the combination of EnMAP and PRISMA with Sentinel-2 10–20 m GSD data. Such647

spatial sharpening of IS data has been shown to have a strong potential for LULC applications, and in648

especial for those dealing with urban environments. On the other hand, the spatio-temporal monitoring po-649

tential of wide-swath MS systems can be complemented by the rich spectral information in IS data. For650

example, IS data can be used to interprete and refine information retrieved from the MS data over a wider651

area through the addition of complementary information (e.g. for multi-sensor monitoring of the composi-652

ton of land surfaces and coastal and inland waters). The combination with IS data also allows to improve653

retrievals by MS systems through the extra spectral information provided by the IS data (e.g. endmembers654

derived from the IS data can be used as input for spectral unmixing techniques applied to the MS data). In655

the particular case of vegetation, for which relatively accurate physical radiative transfer models exist to656

link spectral reflectance with leaf and canopy parameters, model inversion and data assimilation techniques657

have a strong potential for parameter retrieval and the consistent merging of time series of MS and IS data.658

Two other important aspects regarding optical IS and MS synergies have not been addressed in the659

text. First, the high spectral resolution and coverage of spaceborne IS instruments can be used to support660

calibration/validation activities of MS instruments in vicarious calibration exercises. Second, a wide range661

of optical MS missions with very high spatial resolution are being deployed by the private sector. These very662
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high spatial resolution data hold an even bigger potential for spatial enhacement of IS data than Sentinel-663

2. This is especially true for the Worldview-3 mission (DigitalGlobe Inc.) which includes several spectral664

channels in the SWIR which can be expected to substantially improve the fusion results with respect to665

Sentinel-2.666

In addition to optical MS data, TIR data yield strong synergistic potential with optical IS data for667

a number of application domains including the monitoring of vegetation functioning, natural hazards and668

surface composition . Such a synergy of co-located IS-TIR observations is the basis of the HyspIRI mission669

concept currently under development by NASA (Lee et al., 2015). The potential of merging IS and LiDAR670

data for the characterization of e.g. vegetation covers and urban objects has been proven by several studies671

based on airborne data. Synergies of IS with both TIR and LiDAR data can be further tested through672

the joint operation of the HISUI spectrometer, the GEDI LiDAR and the ECOSTRESS multispectral TIR673

instrument to co-exist onboard the ISS (Stavros et al., 2017). However, the exploitation of such data set674

will be restricted to particular scientific studies because of the limited temporal and spatial overlap of the675

four instruments. In this regard, only the combination of optical IS and MS data can be considered for676

regular application in the next years thanks to the availability of Sentinel-2, Landsat and at least EnMAP677

and PRISMA in the 2018–2020 time frame. The development of unsupervised algorithms for the automatic678

co-location and synergistic exploitation of the two sources of data, either through the spatial enhancement679

of the IS data or the improvement of information extraction from the MS, can thus be considered as an680

important field of research in the next years. If such combined IS-MS data exploitation could become681

quasi-operational, it might have an impact on the definition of future spaceborne IS missions, as some682

observational requirements for the most demanding applications (e.g. spatial resolution for urban mapping)683

could be relaxed under the assumption that synergies with existing MS missions could compensate for such684

relaxation.685
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