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Abstract1

Earthquake rates are driven by tectonic stress buildup, earthquake- induced stress2

changes, and transient aseismic processes. Although the origin of the first two sources3

is known, transient aseismic processes are more difficult to detect. However, the knowl-4

edge of the associated changes of the earthquake activity is of great interest, because5

it might help identify natural aseismic deformation patterns such as slow-slip events, as6

well as the occurrence of induced seismicity related to human activities. For this goal, we7

develop a Bayesian approach to identify change- points in seismicity data automatically.8

Using the Bayes factor, we select a suitable model, estimate possible change-points, and9

we additionally use a likelihood ratio test to calculate the significance of the change of the10

intensity. The approach is extended to spatiotemporal data to detect the area in which11

the changes occur. The method is first applied to synthetic data showing its capability12

to detect real change-points. Finally, we apply this approach to observational data from13

Oklahoma and observe statistical significant changes of seismicity in space and time.14

Introduction15

Natural seismicity is a nonstationary process with vari- ous kinds of transient behavior on16

different spatiotemporal scales, for example, aftershocks, foreshocks, swarm activity, and17

quiescence lasting from hours to decades. Man-made earthquakes, for example, arising18

from fluid injection in geothermal areas or wastewater disposals (Ellsworth, 2013) have19

similar statistical features, but on smaller spatial scales with transient boundary conditions.20
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For example, the grow- ing amount of industrial projects related to the injection of fluids at21

depth has led to the question, to which degree the seismic hazard changes at an injection22

site. Figure 1 shows a clear increase of the earthquake number in Oklahoma at around23

the year 2010. Several authors including Keranen et al. (2013), Langenbruch and Zoback24

(2016), Walsh and Zoback (2015) and Weingarten et al. (2015) reported a correlation25

between the injection volume and the observed increase of the seismicity.26

In our study, we propose a Bayesian approach to detect transients in seismicity. Using27

the Poisson assumption for the occurrence of earthquakes, we apply a method which was28

first introduced by Raftery and Akman (1986) and further applied to earthquake data by29

Gupta and Baker (2015), Montoya and Wang (2017) and Gupta and Baker (2017). We30

go beyond these works and present an algorithm that allows the identification of multiple31

change-points that occur in space and time. Moreover, we note that for observational32

data, signals for change-points might be weak and difficult to distinguish from random33

fluctuations. Therefore, we put special emphasis on the development of an appropriate34

significance test and apply the concept of the Bayes factor for model selection.35

Our model approach is based on the assumption that the earthquake occurrence follows36

a piecewise homogeneous Poisson process (HPP) in time. In particular, the system is37

assumed to suddenly change from one Poisson rate into another. Such transitions are38

defined as change-points in time. This approach is then extended to space–time in a39

straightforward way by subdividing the area into smaller segments of a specific size. For40

every subarea, we obtain a time series contain- ing change-points or not. In both cases,41

we first address the question which model is statistically preferable, for example, a model42
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with or without a change-point. If a specific change- point model is preferred, we then43

use an extended approach of Raftery and Akman (1986) to estimate the change-points44

and calculate associated Bayesian credibility intervals at a given significance level (e.g.,45

95%). This is described in the Estimation of Change-Points section. Additionally, we use46

a likelihood ratio test to calculate the significance (p-value) of the change of the Poisson47

intensity (the Likelihood Ratio Test section) and extend the approach to the space–time48

prob- lem (the Spatiotemporal Change-Point Problem section). By means of synthetic data,49

we demonstrate the performance of the method (the Illustration for Synthetic Data section)50

before applying it to the observed data from Oklahoma (the Application to Seismicity in51

Oklahoma section).52

Method53

Estimation of Change-Points54

First we give a brief overview on the detection of temporal change-points according to55

Raftery and Akman (1986). In comparison to this work we extend the method to a general56

case with more than one change-point.57

An observation period of [a, b] is given with n events at times58

a ≤ t1 < t2 < . . . < tn ≤ b. (1)

We assume the existence of k change-points59

τ1, τ2, . . . , τk ∈ [a, b] (2)
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with k < n. Moreover in [a, τ1] we have N(τ1) events which come from a Poisson process60

with rate λ1, and N(τi) − N(τi−1) events in (τi−1, τi] with rate λi for i = 2, . . . , k.61

Finally, in (τk, b] the number of events follows a Poisson process with rate λk+1.62

Let t = {t1, . . . , tn} and θ = {λ1, . . . , λk+1, τ1, . . . , τk}. It can easily be shown that63

the mutual likelihood function is given by64

p(t | θ) = λ
N(τ1)
1 e−λ1(τ1−a)λ

N(τ2)−N(τ1)
2 e−λ2(τ2−τ1) · . . . · λN(b)−N(τk)

k+1 e−λk+1(b−τk)

= λ
N(τ1)
1 e−λ1(τ1−a)λ

N(b)−N(τk)
k+1 e−λk+1(b−τk)

k∏
i=2

λ
N(τi)−N(τi−1)
i e−λi(τi−τi−1).

(3)

Using Bayes’ Theorem65

p(θ | t) =
p(t | θ)p(θ)∫

Θ p(t | θ) p(θ) dθ
∝ p(t | θ)p(θ) (4)

we can calculate the posterior density p(θ | t) for the parameter θ given the data represented66

by t = {t1, . . . , tn}. Here p(t | θ) denotes the likelihood function and p(θ) is the prior67

density of θ.68

Let p(τ1), . . . , p(τk) and p(λ1), . . . , p(λk+1) be the prior densities. Then the posterior69

density is given by70

p(θ | t) ∝ p(τ1)p(λ1)p(λk+1)λ
N(τ1)
1 e−λ1(τ1−a)λ

N(b)−N(τk)
k+1

× e−λk+1(b−τk)
k∏
i=2

p(τi)p(λi)λ
N(τi)−N(τi−1)
i e−λi(τi−τi−1).

(5)

Assuming now a flat prior, we calculate the marginal posterior density of τ = {τ1, . . . , τk}71

by integrating with respect to λ1, . . . , λk+1 (see also the Derivation of the Marginal Pos-72

terior Density section in the Appendix).73
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p(τ | t) = c

∞∫
0

. . .

∞∫
0

λ
N(τ1)
1 e−λ1(τ1−a)λ

N(b)−N(τk)
k+1 e−λk+1(b−τk)

×
k∏
i=2

λ
N(τi)−N(τi−1)
i e−λi(τi−τi−1) dλ1 . . . dλk+1

= c(τ1 − a)−[N(τ1)+1]Γ[N(τ1) + 1](b− τk)−[N(b)−N(τk)+1]

× Γ[N(b)−N(τk) + 1]

k∏
i=2

(τi − τi−1)−[N(τi)−N(τi−1)+1]Γ[N(τi)−N(τi−1) + 1]

(6)

We consider two special cases of Eq. (6).74

Special case: one change-point75

p(τ | t) = c(τ − a)−[N(τ)+1]Γ[N(τ) + 1](b− τ)−[N(b)−N(τ)+1]Γ[N(b)−N(τ) + 1] (7)

Special case: two change-points76

p(τ1, τ2 | t) = c(τ1 − a)−[N(τ1)+1]Γ[N(τ1) + 1](τ2 − τ1)−[N(τ2)−N(τ1)+1]

× Γ[N(τ2)−N(τ1) + 1](b− τ2)−[N(b)−N(τ2)+1]Γ[N(b)−N(τ2) + 1]

(8)

We note that in Eq. (6), (7) and (8) c is a normalizing constant which ensures that the77

conditions for a probability density function is fulfilled. Alternatively to a flat prior density,78

a conjugated prior for the parameters λ1, . . . , λk+1 (e.g. a gamma distribution) and79

uniformly distributed prior densities for τ1, . . . , τk can be used (see also Raftery and80

Akman (1986)). By maximizing p(τ | t) in Eq. (6) with respect to τ = {τ1, . . . , τk} we81

obtain the estimation τ̂ = {τ̂1, . . . , τ̂k} for the change-points.82

In Akman and Raftery (1986) it was shown that the estimator for a single change-83

point is consistent and asymptotically normal. Moreover in Ghosal et al. (1999) and other84
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related papers (e.g. Ghosh et al. (1994) and Ghosal and Samanta (1995)) it was also85

demonstrated that in this case the posterior distribution asymptotically behaves like an86

exponential function on both sides of the detected change-point. The asymptotic behavior87

for the general case with more than one change-point is shown in Ghosal et al. (1999).88

For model selection, we use the Bayes factor to get an idea which model should be89

preferred, that is, whether to prefer a change-point model (M1) or a model without a90

change-point (model M0). The Bayes factor is defined by the ratio of the marginal or91

integrated likelihood for both models, that is92

Blm =
p(t | Ml)

p(t | Mm)
. (9)

Here Ml and Mm denote a model with l respectively with m change-points where l,m =93

0, 1, . . . , k. Apart from the goodness of fit, the complexity of the assumed model has to be94

taken into account in order to assess the most capable model describing the data and thus95

performing the estimation. As an example, if we test the hypothesis of no change-point96

(H0) against a change-point model, the value of the Bayes factor quantifies the evidence97

of the supported model, e.g. B01 < 0.01 can be interpreted as a decisive evidence against98

H0, compare Kass and Raftery (1995). Equation (9) strongly depends on the choice of99

the prior distributions. When an improper prior is used, the Bayes factor is, however, not100

well-defined and depends on an arbitrary ratio of constants. To handle this problem we101

use the idea of an imaginary training sample which involves the smallest possible sample102

size permitting a comparison of M0 and Mm and provides maximum possible support103

for M0. In this case the Bayes factor should be approximately one. This approach was104

introduced in Spiegelhalter and Smith (1982) and was adopted and discussed in several105
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other works, e.g. Raftery and Akman (1986), Kass and Raftery (1995) or Berger et al.106

(2004). Using improper prior densities for the intensities of the shape p(λi) ∝ λ
− 1

2
i and a107

uniform distributed prior for τi, i.e. p(τi) = 1
b−a (Raftery and Akman, 1986) and taking108

into consideration the approach of Spiegelhalter and Smith (1982), the Bayes factor can109

be calculated by110

B01 =
4
√
π(b− a)−nΓ(n+ 1

2)∑n
i=0 Γ(i+ 1

2)Γ(n− i+ 1
2)
∫ ti+1

ti
(τ − a)−(i+ 1

2
)(b− τ)−(n−i+ 1

2
)dτ

. (10)

This approach can be extended and the derivation for the general case Blm is shown in111

the Appendix Derivation of the Bayes factor. For example, for the hypothesis of no change112

point (H0) against a model with two change-points we get113

B02 = 4π2(b− a)−n+ 1
2 Γ(n+

1

2
)

 n∑
i=0

n∑
j=i+1

Γ(i+
1

2
)Γ(j − i+

1

2
)Γ(n− j +

1

2
)

×
∫ ti+1

ti

∫ tj+1

tj

(τ1 − a)−(i+ 1
2

)(τ2 − τ1)−(j−i+ 1
2

)(b− τ2)−(n−j+ 1
2

)dτ1dτ2

]−1

.

(11)

We note that the computation of Eq. (9) for large l and m is numerically very difficult to114

handle because of the high- dimensional integrals. We remark that the function evaluations115

grow exponentially as the number of dimensions increases. If the quadrature rules do not116

lead to a desirable result, Monte Carlo methods should be used instead. In our work, we117

apply a likelihood ratio test in addition to the established methods we considered before.118

As an advantage, we get the significance (p-value) of the change of the Poisson intensity.119

Needless to say that the Bayes factor is a powerful tool for the model selection, but although120

we know the preferred model, we cannot yet prove that the estimated change-points are121

significant. This problem can be solved with the aid of the likelihood ratio test.122
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Likelihood Ratio Test123

We consider two Poisson processes with intensities λ1 and λ2 in the time intervals [s1, s2]124

and [s3, s4] with s3 > s2. In the first period we have n1 events, and in the second period125

the number of events is n2. We aim at testing whether or not the intensities are equal. In126

detail we test hypothesis H0 versus H1 with127

H0 : λ1 = λ2 = λ

H1 : λ1 6= λ2.

(12)

The likelihood function is given by128

p(t | λ1, λ2) = λn1
1 exp(−λ1∆1)λn2

2 exp(−λ2∆2), (13)

with ∆1 = s2 − s1 and ∆2 = s4 − s3.129

For H0 we get130

p(t | λ) = λn1+n2 exp[−λ(∆1 + ∆2)]. (14)

As shown in the Appendix Derivation of the Likelihood Ratio Test, we can derive the131

statistic of this test by calculation of the maximum likelihood estimators for λ, λ1 and λ2132

and by using a general result of Witting and Müller-Funk (1995). It follows that the test133

statistic of this likelihood ratio test is equal to134

Z = 2

[
n1 log

(
n1

∆1

)
+ n2 log

(
n2

∆2

)
− (n1 + n2) log

(
n1 + n2

∆1 + ∆2

)]
. (15)

H0 is rejected, if z > χ2
1, 1−α or if the p-value = P (Z ≥ z) < α. Here α ∈ (0, 1) is a135

given significance level and χ2
1, 1−α is the (1− α)-quantile of the chi-squared distribution136

with one degree of freedom.137
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To investigate the properties of this test, we perform calculations with artificially generated138

data resulting in a reasonable resemblance to the error of the first kind α, as summarized in139

Table 1. As an estimator for the error probability, we use the number of rejected hypotheses140

divided by the number of generated samples. Moreover, Figure 2 illustrates the behavior141

of the power for fixed values of λ and n. As expected, the simulations show that the test142

can distinguish between H0 and H1 in a suitable way.143

Spatiotemporal Change-Point Problem144

In this section, we extend our approach for time series in a straightforward way towards145

spatiotemporal change-point problems. For this aim, we scan an area D to find change-146

points in space and time. Figure 3 illustrates the algorithm. First, the investigated domain147

is subdivided into m subareas A1, . . . ,Am with D =
⋃m
i=1Ai. For simplicity, we use148

equidistantly centered subareas with the same size in the following way: We consider a set149

of circles, where Ai has the radius r and the center (xi, yi) for all i = 1, . . . ,m. However,150

any other subdivision is also possible, see Gupta and Baker (2017).151

In the next step we investigate the time series of all events that occurred in Ai given152

by153

Si = {ti1, ti2, . . . , tini}. (16)

Hence the data is a set of triples154

m⋃
i=1

(Ai ∪ Si) =
m⋃
i=1

{(xij , yij , tij) | j = 1, . . . , ni}. (17)

For Si we use our method to detect and evaluate change-points as described before in the155
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Estimation of Change-Point and Likelihood Ratio Test sections.156

In detail, for every time series Si we use the Bayes factor (9) to decide which model fits157

best to the given data. If a specific change-point model is preferred, we maximize p(τ | t)158

in Eq. (6) and receive a set of possible change-points. For every estimated change-point159

in this set we use the likelihood ratio test and define a change-point as significant, if the160

p-value is smaller than a given significance level α. The result is a set τ̂ i = {τ̂1i, . . . , τ̂ki}161

of significant change-points in Si. Finally we provide the mathematical definition of a162

transition event within a global statistical model Mtrans. For this aim, we define a set of163

transition events as triples in the following way164

Mi =


(xi, yi, τ̂ i), Si has at least one change-point

∅, Si has no change-point

. (18)

165

Mtrans =
m⋃
i=1

Mi. (19)

Evaluation and Application166

The derived methodology from the Method section is for test and illustration purposes first167

applied on synthetic data and in the following part applied to real seismicity data recorded168

in Oklahoma, United States.169

Illustration for Synthetic Data170

We first test our method by applying it to synthetic data under controlled conditions. For171

this aim we generate synthetic time series with t ∈ [0, 1] with a single change-point at172
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τreal = 0.5 and investigate the goodness of the estimator. To test how the method works,173

we calculate the standard deviation of τ̂−τreal and Bayes factors depending on the number174

of events and the ratio of the intensities, see Figure 4. It can be seen e.g. that a change-175

point can be detected in sequences of 100 events with a high probability and precision, if176

the intensity ratio exceeds a value of 2.177

For the spatiotemporal approach, we generate random realizations of a 3D HPP with a178

given intensity. From these data, we cut out cylinders and replace it by new cylinders with179

data from HPPs with different intensities, as illustrated in Figure 5. Using our algorithm we180

calculate the transition events Mtrans. Therefore we scan the whole domain as explained181

in Figure 3. The ”training” sample is a 3D HPP with rate λ ≈ 0.8 (per unit area) in a182

cylinder with center (0, 0), radius r1 = 6 and height h1 = 20, corresponding to the time183

interval t ∈ [0, 20]. The replaced cylinders follows a HPP with rate λcp ≈ 8 (per unit184

area). One cylinder has center (1, 1), radius r2 = 1 and height h2 = 10. Here the related185

time interval is t ∈ [5, 15] and the second replaced cylinder has the center (−3,−3), radius186

r3 = 1 and height h3 = 5. Here the related time interval is t ∈ [15, 20]. In other words,187

the transitions are given by the sets188

C1 = {(x, y, t) | (x+ 3)2 + (y + 3)2 ≤ 1 ∧ t = 15}. (20)

and189

C2 = {(x, y, t) | (x− 1)2 + (y − 1)2 ≤ 1 ∧ t ∈ {5, 15}}. (21)

The chosen sample size is n = 2000, and approximately 15% of the data is located within190

the replaced cylinders. For this test case, we set the selection radius to r0 = 0.3. In191

general, our results presented in Figure 4 can guide the choice for this selection: To be192
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able to detect a certain rate change, the event number within the selection radius must193

exceed a minimum number, e.g. 20 events for a ten-times increased intensity as in our194

example. For the change-point domain C1 the method yields an average value of τ̂ = 15.173195

and for C2 we get average values of τ̂1 = 5.094 and τ̂2 = 14.971. The estimated areas196

are illustrated in Figure 6. It is remarkable that apart from a small number of outliers the197

complete transition area was detected correctly by the method.198

Additionally we investigate the sensitivity of the method depending on the selection199

radius. Therefore, we generated synthetic data from a HPP in the time interval t ∈ [0, 20],200

where in the circular region with radius r0 = 2 around the center occurs a change at time201

10 to a five-times increased rate, particularly the change-point domain is given by the set202

C = {(x, y, t) | x2 + y2 ≤ 4 ∧ t ∈ [10, 20]}. (22)

The chosen sample size is n = 2000, where 50 events are within the change-point domain.203

The intensities are given by λ ≈ 0.08 and λcp ≈ 0.4 (per unit area). For 100 simulations,204

we calculate the Bayes factors and the standard deviation of τ̂–τreal for increasing radii of205

the event selection around the center. The results are illustrated in Figure 7. The test206

results show that the estimation uncertainty is lowest and the success rate is highest for207

the case that the selection radius equals the radius of the change-point region. A too208

small selection radius leads to time series with a non-significant number of events, while a209

too high value results in a systematical error and the precision of the method decreases.210

However, the results are found to be almost the same for a rather broad range of selection211

radii within 0.5r0 and 2r0. This indicates that the results should be rather robust, if the212

selection radius is chosen in a reasonable range.213
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Application to Seismicity in Oklahoma214

We now apply the method to real earthquake data. Because of its drastic seismic activity215

changes, Oklahoma probably counts as one of the most interesting study areas for the216

application of the above estimations. Therefore, we consider an earthquake catalog from217

Oklahoma with 18,997 events from 1 January 1980 to 31 December 2015, obtained from the218

Oklahoma Geological Survey, compare Data and Resources. We declustered the catalog219

using the method of Reasenberg (1985) with standard parameters (van Stiphout et al.220

(2012), Tab. 3) and taking into account all events with magnitude m ≥ 3. The declustered221

catalog contains 1,199 events. Using all m ≥ 3 events, the Bayes factor from Eq. (9) leads222

to a model with two change-points (see detailed results in Table 2). The estimated 95%223

credibility intervals for the (significant) change-points τ̂1 and τ̂2 are given by [12/01/2009;224

28/03/2009] and [14/12/2013; 30/01/2014]. This result is illustrated in Figure 8. We225

note that the application of the likelihood ratio test leads to p-values � 1 which means226

that both change-points are considered to be significant and the result strongly supports227

our model selection. As depicted in Table 2, the calculation of the Bayes factor B01, B02228

and B03 always leads to the preference of a change-point model. For comparison, a model229

with one change-point leads to a 95% credibility interval [24/10/2013; 10/11/2013]. A230

model with three change-points would detect a further change-point in August 2014. If we231

use the non-declustered catalog a model with three change-points leads to the detection232

of the MW = 5.6 earthquake at Prague in November 2011 with a subsequent aftershock233

sequence in addition to the induced seismic changes in 2009 and 2013 (see Figure 8). Here234

we observe a natural change-point, caused by the aftershock sequence. In comparison to235
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the works of Gupta and Baker (2017) and Montoya and Wang (2017) we note that they236

have found similar results for the change-points. The study of Montoya and Wang (2017)237

used another method for multiple change-point detection in time series and included four238

different areas in Oklahoma according to the towns Jones, Perry, Cherokee and Waynoka.239

In all of the four areas their method lead to the choice of a model with two change-points.240

In the Jones area they found two change-points in May, 2008 and August, 2011. For the241

other areas they calculated change-points in 2013 until 2015. The work of Gupta and Baker242

(2017) used the method of Raftery and Akman (1986) to detect single change-points in243

spatiotemporal data. They used a 25 km radius and found changes in seismicity rates244

between 2008 and the end of 2015.245

By scanning the spatial domain shown in Figure 1 with a total area of approximately246

260, 000 square kilometers, our method leads to the results shown in Figure 9 and Figure 10.247

We used a radius of 5 km leading to 3, 500 evaluations of time series. This choice is248

a compromise between optimizing the spatial resolution and increasing the detectability249

which requires that the considered circles contains enough events to get robust results (see250

Figure 4). In the Appendix Case study Oklahoma: Evaluation with different choices of the251

radius, we show the results for alternative values of r = 2 km and r = 10 km indicating252

that the main features are robust with regard to the choice of the selection radius. For a253

better illustration of the results, we only take into account the models M0, M1 and M2.254

Interestingly, the significant change-point locations show a spatial migration pattern from255

south to north in both figures and overlap with the injection wells. Moreover a correlation256

with the injection volume could be a reason for this result as illustrated in Figure 10.257
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Furthermore we show the related times of the detected transition events. It is remarkable,258

that most of the corresponding times of the change-points occur after 2009. This result259

supports the hypothesis that the detected change-points are correlated with the onset dates260

of the wastewater injections. Here we have recorded an discernable increase of approval261

dates after 2010 for wells with an approved injection volume of at least 10, 000 barrels per262

day.263

Conclusions264

The main objective of this article is to present an algorithm for the automatic detection of265

change-points in seismicity data. We use a Bayesian algorithm to identify rate changes in266

time and space. Tests with synthetic earthquake data show a good agreement of detected267

change-points with real change-points in space and time. For the Oklahoma case study, the268

significant change-points show a correlation with the onset of injection wells and especially269

with the high-volume wells. The method leads to reasonable findings of significant change-270

points between 2008 and the end of 2015, which correspond to the results of Gupta and271

Baker (2017) and Montoya and Wang (2017). This makes us confident that our method272

is powerful for the automatic detection of change-points, even for cases with less drastic273

activity changes as in Oklahoma.274

Nevertheless we only consider a fixed radius for the subdivision of the space. As we have275

shown the choice of the radius depends on the number of events, and the systematic error276

should be taken into account. Here the method could be extended for example by using a277
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Voronoi partition (Okabe et al., 2008) or by using the approach of Gupta and Baker (2017).278

Furthermore the likelihood ratio test assumes that we have two fixed intervals. Although279

our method leads to preferable results, an adaptive test could be useful. Another idea for280

such a test has been proposed in Csörgő and Horváth (1997). Another issue is the deviation281

from Poissonian behavior, e.g. due to aftershock sequences. In this respect, it is desirable282

to consider also cluster models like the Epidemic Type Aftershock Sequences (ETAS) model283

(Ogata, 1988; Zhuang et al., 2002). The ETAS approach to detect seismic changes within284

the framework of wastewater injections was presented by Wang et al. (2016). In our work285

we use the declustering approach of Reasenberg (1985) but also other methods could be286

used to fulfill the Poisson assumption for the considered catalogs (van Stiphout et al.,287

2012).288

Data and Resources289

The data used in this article are from the websites290

http://www.ou.edu/ogs/research/earthquakes/catalogs.html, last accessed August 28, 2018 and291

http://www.occeweb.com/og/ogdatafiles2.htm, last accessed August 28, 2018.292

Figure 1, Figure 9 and Figure 10 were made using the Generic Mapping Tools version293

4.2.1 (www.soest.hawaii.edu/gmt, last accessed March 2018; Wessel and Smith (1998)).294

Simulations were made using the open source software packages R version 3.2 and295

Python version 2.7.12.296
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Tables376

Table 1377

Table 1: Estimation of the α-error simulations

λ1 = λ2 theoretical α estimated α number of events

1 0.05 0.061 10

1 0.05 0.057 50

1 0.05 0.052 100

1 0.05 0.049 1000
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Table 2378

Table 2: Bayes factors for the declustered catalog of M ≥ 3 earthquakes in Oklahoma. The

results indicates that two change-points are preferable.

Bayes factor Decision

B01 = 3.73× 10−158 M1

B02 = 1.67× 10−197 M2

B03 =1.16× 10−197 M3

B12 = 4.47× 10−40 M2

B13 = 3.12× 10−40 M3

B23 = 0.69 M2
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Figure captions379

Figure 1380

(A) Magnitude-time plot for all earthquakes in Oklahoma from January 1, 1980 to De-381

cember 31, 2015. (B) Cumulative number of earthquakes with M ≥ 3 in Oklahoma from382

January 1, 1980 to December 31, 2015. Inset: Spatial map of all earthquakes with M ≥ 3383

(time color-coded).384

Figure 2385

Estimation of α error and power depending on λ and number of events n for a hypothesis386

test defined as H0 : λ1 = λ2 versus H1 : λ1 6= λ2 . Plots show the behavior of the387

empirical cumulative distribution function (ecdf) of the p-values generated under the null388

hypothesis H0 and its alternative H1. Here we have n1 + n2 = 400 events and 1000389

random realizations were generated.390

Figure 3391

Schematic diagram presenting the steps for our scan algorithm. (A) A certain area is392

subdivided into m subareas A1, . . . ,Am. (B) Every subarea Ai is a disk with the same393

radius r. (C) Events within the subarea Ai occur at ni times tij , so we can project it into394

a three-dimensional domain Ai ∪ Si. (D) The time series Si is investigated with regard to395

(i) model selection with Bayes factors, (ii) estimation of change-points, (iii) significance of396

change-points, and (iv) credibility intervals.397
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Figure 4398

Results based on 100 synthetic sequences for every evaluation: (A) Standard deviation of399

τ̂ − τreal and (B) percentage of change-point detections by means of the Bayes factor as a400

function of the number n of data points in the simulation and the ratio λ1/λ2 of intensities401

in the first and second half of the simulations.402

Figure 5403

Synthetic data: Generation of a 3D homogeneous Poisson process with different intensities.404

The sample size is 2000. (A) Poisson process with a rate λ ≈ 0.8 (per unit area) and (B)405

Poisson processes with different rates within the replaced cylinders i.e. the intensity in the406

change-point domain is given by λcp ≈ 8 (per unit area).407

Figure 6408

Synthetic data: (A) Perspective view of the circle C1 and the change-point domain C2 with409

the estimated significant change-point locations. (B) Example for the marginal posterior410

p(τ | t) in the change-point domain C1. (C) Example for the marginal posterior p(τ1, τ2 | t)411

in the change-point domain C2. The logarithmic values of the density are color coded.412

Figure 7413

Synthetic data of a Poisson process with an intensity of 0.08 (per unit area) in the time414

period [0, 20] in which a change-point domain is embedded (intensity λcp ≈ 0.40 within415
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a cylinder with radius r0 = 2, center (0, 0) and t ∈ [10, 20]): (A) Standard deviation of416

τ̂ − τreal and (B) percentage of change-point detections by means of the Bayes factor as417

a function of the selection radius.418

Figure 8419

(A) Magnitude-time plot with the estimated change-points for the whole declustered time420

series. (B) Cumulative number of earthquakes with M ≥ 3 for the declustered catalog with421

the estimated change-points (model with one change-point (green line) and two change-422

points (red lines). Inset: Cumulative number of earthquakes for the non-declustered cat-423

alog with the estimated change-points (model with three change-points), where the third424

change-point coincides with the occurrence time of the MW = 5.6 mainshock.425

Figure 9426

Maps with transition events and the MW = 5.6 earthquake for the case study Oklahoma.427

(A) and (B) Color-coded times of the first and second change-points at grid points where428

the algorithm prefers two change-points: (A) first change-point and (B) second change-429

points. (C) lllustration of all calculated transition times at grid points where the algorithm430

preferred a model with one change-point.431

Figure 10432

Locations and occurrence times of the first change-points (for models with one and with433

two change-points) in comparison to approval dates of injection wells from 1.1.2000 to434
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31.12.2015 for the Oklahoma case study. The high-volume injection wells (approved volume435

> 10, 000 barrels per day) are illustrated in black. (A) Map view of the estimated change-436

points, (B) latitude-time plot, and (C) time-longitude plot with estimated transitions and437

injection wells.438
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Figures439

Figure 1440

Figure 1: (A) Magnitude-time plot for all earthquakes in Oklahoma from January 1, 1980 to

December 31, 2015. (B) Cumulative number of earthquakes with M ≥ 3 in Oklahoma from

January 1, 1980 to December 31, 2015. Inset: Spatial map of all earthquakes with M ≥ 3 (time

color-coded).
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Figure 2441

Figure 2: Estimation of α error and power depending on λ and number of events n for a hypothesis

test defined as H0 : λ1 = λ2 versus H1 : λ1 6= λ2 . Plots show the behavior of the empirical

cumulative distribution function (ecdf) of the p-values generated under the null hypothesis H0

and its alternative H1. Here we have n1 + n2 = 400 events and 1000 random realizations were

generated.
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Figure 3442

Figure 3: Schematic diagram presenting the steps for our scan algorithm. (A) A certain area is

subdivided into m subareas A1, . . . ,Am. (B) Every subarea Ai is a disk with the same radius

r. (C) Events within the subarea Ai occur at ni times tij, so we can project it into a three-

dimensional domain Ai ∪ Si. (D) The time series Si is investigated with regard to (i) model

selection with Bayes factors, (ii) estimation of change-points, (iii) significance of change-points,

and (iv) credibility intervals.
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Figure 4443

Figure 4: Results based on 100 synthetic sequences for every evaluation: (A) Standard deviation

of τ̂ − τreal and (B) percentage of change-point detections by means of the Bayes factor as a

function of the number n of data points in the simulation and the ratio λ1/λ2 of intensities in

the first and second half of the simulations.
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Figure 5444

Figure 5: Synthetic data: Generation of a 3D homogeneous Poisson process with different in-

tensities. The sample size is 2000. (A) Poisson process with a rate λ ≈ 0.8 (per unit area) and

(B) Poisson processes with different rates within the replaced cylinders i.e. the intensity in the

change-point domain is given by λcp ≈ 8 (per unit area).
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Figure 6445

Figure 6: Synthetic data: (A) Perspective view of the circle C1 and the change-point domain C2

with the estimated significant change-point locations. (B) Example for the marginal posterior

p(τ | t) in the change-point domain C1. (C) Example for the marginal posterior p(τ1, τ2 | t) in

the change-point domain C2. The logarithmic values of the density are color coded.
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Figure 7446

Figure 7: Synthetic data of a Poisson process with an intensity of 0.08 (per unit area) in the

time period [0, 20] in which a change-point domain is embedded (intensity λcp ≈ 0.40 within a

cylinder with radius r0 = 2, center (0, 0) and t ∈ [10, 20]): (A) Standard deviation of τ̂ − τreal

and (B) percentage of change-point detections by means of the Bayes factor as a function of the

selection radius.
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Figure 8447

Figure 8: (A) Magnitude-time plot with the estimated change-points for the whole declustered

time series. (B) Cumulative number of earthquakes with M ≥ 3 for the declustered catalog

with the estimated change-points (model with one change-point (green line) and two change-

points (red lines). Inset: Cumulative number of earthquakes for the non-declustered catalog with

the estimated change-points (model with three change-points), where the third change-point

coincides with the occurrence time of the MW = 5.6 mainshock.
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Figure 9448

Figure 9: Maps with transition events and the MW = 5.6 earthquake for the case study Oklahoma.

(A) and (B) Color-coded times of the first and second change-points at grid points where the

algorithm prefers two change-points: (A) first change-point and (B) second change-points. (C)

lllustration of all calculated transition times at grid points where the algorithm preferred a model

with one change-point.
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Figure 10449

Figure 10: Locations and occurrence times of the first change-points (for models with one and

with two change-points) in comparison to approval dates of injection wells from 1.1.2000 to

31.12.2015 for the Oklahoma case study. The high-volume injection wells (approved volume

> 10, 000 barrels per day) are illustrated in black. (A) Map view of the estimated change-points,

(B) latitude-time plot, and (C) time-longitude plot with estimated transitions and injection wells.
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Appendix450

Derivation of the Marginal Posterior Density451

With the notation of the Estimation of Change-Points section, we derive the formula for452

the Bayesian posterior density Eq. (6). Here we use Fubini’s theorem and the definition of453

the gamma function454

Γ(x) =

∞∫
0

zx−1e−z dz (A1)

or more precisely the following calculation:455

∞∫
0

λ
(N(τi)−N(τi−1)
i e−λi(τi−τi−1) dλi =

∞∫
0

(
z

τi − τi−1

)N(τi)−N(τi−1)

e−z
dz

τi − τi−1

= (τi − τi−1)−(N(τi)−N(τi−1)+1)

∞∫
0

zN(τi)−N(τi−1)+1−1e−z dz

= (τi − τi−1)−(N(τi)−N(τi−1)+1)Γ(N(τi)−N(τi−1) + 1)

(A2)
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Derivation of the Likelihood Ratio Test456

Based on the test problem457

H0 : λ1 = λ2 versus H1 : λ1 6= λ2. (A3)

the likelihood function for two different rates is given by458

p(t | λ1, λ2) = λn1
1 exp(−λ1∆1)λn2

2 exp(−λ2∆2), (A4)

where ∆1 = s2 − s1 and ∆2 = s4 − s3.459

The log-likelihood function is given by460

l (λ1, λ2 | t) = n1 log λ1 − λ1∆1 + n2 log λ2 − λ2∆2. (A5)

Under H1 we have to calculate the maximum likelihood estimator (MLE) for λ1 and λ2.461

From462

∂l (λ1, λ2 | t)
∂λ1

=
n1

λ1
−∆1

!
= 0 (A6)

we get463

λ̂1 =
n1

∆1
. (A7)

Furthermore464

∂2l (λ1, λ2 | t)
∂λ2

1

= −n1

λ2
1

< 0 for all λ1 ∈ R+. (A8)

So λ̂1 is the MLE for λ1. In the same way we can show that λ̂2 =
n2

∆2
is the MLE for λ2.465

Under H0 is λ = λ1 = λ2, so we get the likelihood466

l (t | λ) = λn1+n2 exp[−λ(∆1 + ∆2)]. (A9)
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The log-likelihood function is given by467

l (λ | t) = (n1 + n2) log λ− λ(∆1 + ∆2). (A10)

Thus468

∂l (λ | t)
∂λ

=
n1 + n2

λ
− (∆1 + ∆2)

!
= 0, (A11)

which leads to469

λ̂ =
n1 + n2

∆1 + ∆2
. (A12)

Furthermore470

∂2l (λ | t)
∂λ2

= −n1 + n2

λ2
< 0 for all λ ∈ R+. (A13)

So λ̂ is the MLE for λ.471

In general the test statistic is given by472

Z = 2 ln

[
p(t | H1)

p(t | H0)

]
. (A14)

Hence473

Z = 2
[
l
(
λ̂1, λ̂2 | t

)
− l
(
λ̂ | t

)]
(A15)

leads to

Z = 2

[
n1 log

(
n1

∆1

)
− n1

∆1
(∆1) + n2 log

(
n2

∆2

)
− n2

∆2
(∆2)

−
(

(n1 + n2) log

(
n1 + n2

∆1 + ∆2

)
− n1 + n2

∆1 + ∆2
(∆1 + ∆2)

)]

and finally to474

Z = 2

[
n1 log

(
n1

∆1

)
+ n2 log

(
n2

∆2

)
− (n1 + n2) log

(
n1 + n2

∆1 + ∆2

)]
. (A16)
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Derivation of the Bayes Factors475

The Bayes factor is defined by the ratio of the marginal or integrated likelihood for the476

two considered modelsMl (model with l change-points) andMm (model with m change-477

points), i.e.478

Blm =
p(t | Ml)

p(t | Mm)
, (A17)

with l,m = 0, . . . , k and l 6= m. For M0 and M1 we get479

p(t | M0) =

∫ ∞
0

p(λ)λne−λ(b−a) dλ (A18)

and480

p(t | M1) =

∫ b

a

∫ ∞
0

∫ ∞
0

p(τ)p(λ1)p(λ2)λ
N(τ)
1 e−λ1(τ−a)λ

N(b)−N(τ)
2 e−λ2(b−τ) dλ1 dλ2 dτ.

(A19)

For l ≥ 2 we obtain481

p(t | Ml) =

∫
Λ

∫
T
p(τ1)p(λ1)p(λl+1)λ

N(τ1)
1 e−λ1(τ1−a)λ

N(b)−N(τl)
l+1 e−λl+1(b−τl)

×
l∏

i=2

p(τi)p(λi)λ
N(τi)−N(τi−1)
i e−λi(τi−τi−1) dλ1 . . . dλl+1 dτ1 . . . dτl.

(A20)

Here is Λ = (0,∞)l+1 and T = (a, b)l.482

To evaluate Eq. (A18), Eq. (A19) and Eq. (A20) we use improper prior densities for the483

intensities so that p(λ) = c0λ
− 1

2 and p(λ) = ckλ
− 1

2
1 . . . λ

− 1
2

k+1 , where ci is a not further484

specified constant. Moreover we formulate uniform distributed priors for τi, i.e. p(τi) = 1
b−a485

(compare Raftery and Akman (1986)). For this approach Eq. (A18) becomes486

p(t | M0) =

∫ ∞
0

c0λ
− 1

2λn1e
−λ(b−a) dλ

= c0(b− a)−(n+ 1
2

)Γ(n+
1

2
).

(A21)
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Further Eq. (A19) becomes487

p(t | M1) =

∫ b

a

∫ ∞
0

∫ ∞
0

c1

b− a
λ
N(τ)− 1

2
1 e−λ1(τ−a)λ

N(b)−N(τ)− 1
2

2 e−λ2(b−τ) dλ1 dλ2 dτ

=
c1

b− a

n∑
i=0

Γ(i+
1

2
)Γ(n− i+

1

2
)

∫ ti+1

ti

(τ − a)−(i+ 1
2

)(b− τ)−(n−i+ 1
2

)dτ,

(A22)

with t0 = a and tn+1 = b. The resulting Bayes factor B01 contains an unspecified constant488

c0/c1, which can determined by using the boundary condition B01 ≈ 1, if we consider an489

observation period of [a, b] consisting only a single event t1 = (a + b)/2. So Eq. (A22)490

becomes491

p(t | M1) =
c1

b− a

1∑
i=0

Γ(i+
1

2
)Γ(n− i+

1

2
)

∫ ti+1

ti

(τ − a)−(i+ 1
2

)(b− τ)−(1−i+ 1
2

)dτ

=
c1

b− a
Γ(0.5)Γ(1.5)

[∫ (a+b)/2

a
(τ − a)−

1
2 (b− τ)−

3
2dτ

+

∫ b

(a+b)/2
(τ − a)−

3
2 (b− τ)−

1
2dτ

]

=
c1

(b− a)2
4
√
πΓ(1.5).

(A23)

If c0/c1 =: c01(a, b), we receive by solving B01
!

= 1 that c01(a, b) = 4
√
π(b−a)−

1
2 . Finally492

we get Eq. (10). In the same way we can evaluate Eq. (A20). Here we have to consider493

p(t | M2) = c2

∫ b

a

∫ b

a

∫ ∞
0

∫ ∞
0

∫ ∞
0

1

(b− a)2
λ
N(τ1)− 1

2
1 e−λ1(τ1−a)λ

N(τ2)−N(τ1)− 1
2

2

× e−λ2(τ2−τ1)λ
N(b)−N(τ2)− 1

2
3 e−λ3(b−τ2) dλ1 dλ2 dλ3 dτ1 dτ2

= c2
1

(b− a)2

n∑
i=0

n∑
j=i+1

Γ(i+
1

2
)Γ(j − i+

1

2
)Γ(n− j +

1

2
)

×
∫ ti+1

ti

∫ tj+1

tj

(τ1 − a)−(i+ 1
2

)(τ2 − τ1)−(j−i+ 1
2

)(b− τ2)−(n−j+ 1
2

)dτ1dτ2.

(A24)
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By using the training sample method we obtain494

p(t | M2) =
c2

(b− a)2

1∑
i=0

1∑
j=i+1

Γ(i+
1

2
)Γ(j − i+

1

2
)Γ(1− j +

1

2
)

×
∫ ti+1

ti

∫ tj+1

tj

(τ1 − a)−(i+ 1
2

)(τ2 − τ1)−(j−i+ 1
2

)(b− τ2)−(1−j+ 1
2

)dτ1dτ2

= c2
[Γ(0.5)]2Γ(1.5)

(b− a)2

∫ (a+b)/2

a

∫ b

(a+b)/2
(τ1 − a)−

1
2 (τ2 − τ1)−

3
2 (b− τ2)−

1
2dτ1dτ2

=
c2

(b− a)
5
2

2π2Γ(1.5).

(A25)

Without loss of generality we assume that τ2 > τ1, so that we have to multiply the resulting495

constant with the factor 2. This finally leads to c02(a, b) = 4π2(b− a)−1 and Eq. (11). To496

compare M1 and M2 we use497

B12 =
B02

B01
. (A26)

For the general case Blm, we first calculate the Bayes factors B0l and B0m by using498

the training sample method to get the occurring constants as shown in Eq. (A23) or in499

Eq. (A25) and then straightforward500

Blm =
B0m

B0l
. (A27)
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Using the priors as explained before, evaluation of Eq. (A20) leads to501

p(t | Ml) = cl

∫
Λ

∫
T
p(τ1)λ

N(τ1)− 1
2

1 e−λ1(τ1−a)p(τl)λ
N(b)−N(τl)− 1

2
l+1 e−λl+1(b−τl)

×
l∏

i=2

p(τi)λ
N(τi)−N(τi−1)− 1

2
i e−λi(τi−τi−1) dλ1 . . . dλl+1 dτ1 . . . dτl

=
cl

(b− a)l

n∑
i1=0

. . .

n∑
il=il−1+1

Γ(i1 +
1

2
)Γ(n− il +

1

2
)

l∏
j=2

Γ(ij − ij−1 +
1

2
)

×
∫ ti1+1

ti1

. . .

∫ til+1

til

(τ1 − a)−(i1+ 1
2

)(b− τl)−(n−il+ 1
2

)
l∏

j=2

(τj − τj−1)−(ij−ij−1+ 1
2

)

× dτ1 . . . dτl.

(A28)

With the help of the training sample method, the occurring constants can be calculated.502

As a further example for B03 we get c03(a, b) = 4
√

2π
5
2 (b− a)−

3
2 .503

For model selection we use the following algorithm:504

i) Define the maximum number k of possible change-points in the investigated data.505

ii) Set m = 0.506

iii) Calculate the Bayes factors Bml with l = m+ 1, . . . , k.507

iv) Calculate lnew = arg min
l∈{m+1,...,k}

{Bml < 0.3}.508

v) If lnew exists, set m = lnew and go to step iii). Otherwise, select a model where the509

number of change-points is equal to m.510
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Case Study Oklahoma: Evaluation with Different Choices of511

the Radius512

In comparison to the results illustrated in Fig. 9 where we used a radius r = 5 km, Fig. A1513

shows the transition events for the radii r = 2 and r = 10 km.

Figure A1: Maps with transition events and the MW = 5.6 earthquake for the case study

Oklahoma. (A) and (B) Illustration of all calculated change-point locations where the algorithm

prefers two change-points by using a radius of 2 km. (C) and (D) Illustration of all calculated

change-point locations where the algorithm prefers two change-points by using a radius of 10

km. (E) and (F) show all calculated transition events where the algorithm prefers a model with

one change-point, e.g. (E) r = 2 km and (F) r = 10 km.

514
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