
Distributed generation of image pyramids
for web map services
D. Eggert, M. Sips, D. Dransch
daniel.eggert@gfz-potsdam.de

mike.sips@gfz-potsdam.de

doris.dransch@gfz-potsdam.de

transfer only small overlapping tiles in a distributed environmentProposed Solution:

- those overlapping tiles emerge

  if the pyramid tile grid does not

  align with the image borders, 

  which is usually the case

- the empty area in those tiles 

   have to be filled with parts

    from neighboring images, 

      potentially stored on a

       different node

Warp 
to target projection

operator type: <map>
data access: <local only>

Cut 
according to pyramid tile grid

operator type: <map>
data access: <local only>

Resample 
to zoom level

operator type: <map>
data access: <local only>

Merge 
overlapping tiles

operator type: <reduce>
data access: <global>

MapReduce Workflow:

Introduction:

Web map services (WMS) are a common technique to publish high-resolution satellite images, 
allowing fast pan and zoom operations on the client-side. In order to reduce the computational costs 
on the server-side, the image data is usually processed into a tiled image pyramid in advance. The 
generation of such an image pyramid from a big high resolution source image, normally distributed 
over multiple storage and processing nodes in a cloud environment, causes a high network traffic 
when executed by a single node. Furthermore this single processing node has to meet high 
requirements regarding computation power, main memory and storage capabilities. We present a 
new approach that distributes the generation of the image pyramid across all nodes, reducing the 
induced network traffic by exploiting data locality and eliminating the need of a powerful processing 
node.

all chunks of the distributed image are transferred to a single node to generate an image pyramidProblem:

- stresses the network

- high requirements for the

  single processing node

- time consuming

Conclusion:

- eliminates the need of a powerful processing node -> increased scalability

- distributes the processing over multiple nodes -> faster generation

- exploits data locality -> reduced network traffic


