English
 
Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The pan-European Engineering Strong Motion (ESM) flatfile: compilation criteria and data statistics

Authors

Lanzano,  Giovanni
External Organizations;

Sgobba,  Sara
External Organizations;

Luzi,  Lucia
External Organizations;

Puglia,  Rodolfo
External Organizations;

Pacor,  Francesca
External Organizations;

Felicetta,  Chiara
External Organizations;

D’Amico,  Maria
External Organizations;

/persons/resource/fcotton

Cotton,  Fabrice
2.6 Seismic Hazard and Risk Dynamics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

/persons/resource/bindi

Bindi,  Dino
2.6 Seismic Hazard and Risk Dynamics, 2.0 Geophysics, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in GFZpublic
Supplementary Material (public)
There is no public supplementary material available
Citation

Lanzano, G., Sgobba, S., Luzi, L., Puglia, R., Pacor, F., Felicetta, C., D’Amico, M., Cotton, F., Bindi, D. (2019): The pan-European Engineering Strong Motion (ESM) flatfile: compilation criteria and data statistics. - Bulletin of Earthquake Engineering, 17, 2, 561-582.
https://doi.org/10.1007/s10518-018-0480-z


Cite as: https://gfzpublic.gfz-potsdam.de/pubman/item/item_3515904
Abstract
The Engineering Strong-Motion (ESM) flatfile is a parametric table which contains verified and reliable metadata and intensity measures of manually processed waveforms included in the ESM database. The flatfile has been developed within the Seismology Thematic Core Service of EPOS-IP (European Plate Observing System Implementation Phase) and it is disseminated throughout a web portal (http://esm.mi.ingv.it/flatfile-2018/flatfile.php) for research and technical purposes. The adopted criteria for flatfile compilation aim to collect strong motion data and related metadata in a uniform, updated, traceable and quality-checked way to develop Ground Motion Models (GMMs) for Probabilistic Seismic Hazard Assessment (PSHA) and engineering applications. In this paper, we present the characteristics of ESM flatfile in terms of recording, event and station distributions, and we discuss the most relevant features of the Intensity Measures (IMs) of engineering interest included in the table. The dataset for flatfile compilation includes 23,014 recordings from 2179 earthquakes and 2080 stations from Europe and Middle-East. The events are characterized by magnitudes in the range 3.5–8.0 and refer to different tectonics regimes, such as shallow active crustal and subduction zones. Intensity measures include peak and integral parameters and duration of each waveform. The spectral amplitudes of the (5% damping) acceleration and displacement response are provided for 36 periods, in the interval 0.01–10 s, as well as the 103 amplitudes of the Fourier spectrum for the frequency range 0.04–50 Hz. Several statistics are shown with reference to the most significant metadata for GMMs calibrations, such as moment magnitude, focal depth, several distance metrics, style of faulting and parameters for site characterization. Furthermore, we also compare and explain the most relevant differences between the metadata of ESM flatfile with those provided by the previous flatfile derived in RESORCE (Reference Database for Seismic Ground Motion in Europe) project.