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Abstract

Silicon is a beneficial element for many plants, and is deposited in plant tissue as amorphous bio-opal
called phytoliths. The biochemical processes of silicon uptake and precipitation induce isotope
fractionation: the mass-dependent shift in the relative abundances of the stable isotopes of silicon. At
the bulk scale, §3°Si ratios span from -2 to +6 %o. To further constrain these variations in situ, at the
scale of individual phytolith fragments, we used femtosecond laser ablation multicollector inductively

coupled plasma mass spectrometry (fsLA-MC-ICP-MS).

A variety of phytoliths from grasses, trees and ferns were prepared from plant tissue or extracted from
soil. Good agreement between phytolith §°Si ratios obtained by bulk solution MC-ICP-MS analysis and
in situ isotope ratios from fsLA-MC-ICP-MS validates the method. Bulk solution analyses result in at
least two-fold better precision for §°Si (2SD on reference materials <0.11 %o) over that found for the

means of in situ analyses (2SD typically £0.24 %.).

We find that bushgrass, common reed, and horsetail show large internal variations up to 2 %o in i,
reflecting the various pathways of silicon from soil to deposition. fsLA provides a means to identify the

underlying processes involved in the formation of phytoliths using silicon isotope ratios.

Keywords

In situ silicon isotope ratios analysis, phytolith, laser ablation inductively coupled plasma mass

spectrometry, biogenic silica

Introduction

Silicon is the second most abundant element in the Earth’s crust, and considered a beneficial element

for plants (Epstein 1999, Marschner and Marschner 2012). Silicon can become highly enriched in plant
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tissues (up to 40 mg-g!) where it mainly promotes structural rigidity, pathogen resistance and plant
health (Ma and Yamaji 2015, Rodrigues and Datnoff 2015, Deshmukh et al. 2017), and serves to
promote to salinity stress resistance (Haghighi et al. 2012, Rios et al. 2017). Silicon is taken up from the
soil solution by plant roots exclusively as monosilicic acid (H4SiO4) via aquaporin membrane
transporters, and is then transported passively along the transpiration gradient towards the plant’s
organs (Ma et al. 2006, 2011, Delvigne et al. 2009). Silicon is eventually deposited in the form of
phytoliths or other amorphous silica precipitates within cell lumina, cell walls or intercellular spaces
(Watteau and Villemin 2001, Piperno 2006, Ma et al. 2011). The structure, form, and sizes of phytoliths
differ greatly between plant species and can be used to identify their presence from phytoliths
preserved in soil and sediment (Piperno 2006). There is an ongoing debate on the stability of phytoliths
after their deposition in soil. Fraysse and co-worker showed that the stability of the phytoliths depends
on the availability of water, temperature, microbial activity and the acidity of the soil solution, where
dissolution is slowest at low pH and low temperature (Fraysse et al. 2006, 2009, 2010). The
experimentally determined phytolith dissolution time constant is just slightly lower than that of
amorphous silicon. Based on these estimates the half-life of a phytolith with respect to dissolution is
between six months and three years (Fraysse et al. 2009). Prentice and Webb showed that during the
dissolution of phytoliths, oxygen and silicon isotope are fractionated (Prentice and Webb 2016). The
magnitude of the fractionation depends on the pH, and temperature of the solution. The authors
observed a two-stage dissolution process. A first, very fast stage that is attributed to the removal of a
reactive surface, and a second stage involves re-precipitation of silicon. Under favourable conditions,
phytoliths persist dissolution in soil and can be used to reconstruct past vegetation, or the use and
domestication of plants during prehistoric settlements (Piperno 2006, Hodson et al. 2008, Hodson

2016).

As is the case for all elements that contain more than one stable isotope, the biogeochemical reactions
at the Earth’s surface induce a mass-dependent shift in the relative abundance of the three stable
silicon isotopes (?3Si, 2°Si and 30Si). The shift in the resulting isotope ratios can be used to study the
biogeochemical cycle of silicon (Bouchez et al. 2013, Sutton et al. 2018). Traditionally, silicon isotope
ratios were determined after fluorination of the silicon (either by treatment with a fluorine source
(Allenby 1954) or by laser fluorination (De La Rocha et al. 1996) on a gas isotope ratio mass
spectrometer (IRMS). Since the 2000s, silicon is analysed in solution using high-resolution MC-ICP-MS.
(De La Rocha 2002, Georg et al. 2006). The sample preparation used for the gas IRMS and MC-ICP-MS
are designed for bulk analysis and not for the analysis of single phytoliths. The isotopic composition of
silicon in plants thus investigated resulted in a large isotopic range of -2.7 %o (rice stem) to 6.1 %o (rice
grains) (Douthitt 1982, Ding et al. 2005, 2008b, 20084, Ziegler et al. 2005, Opfergelt et al. 2006, 2008,
2010, Engstrom et al. 2008, Sun et al. 2008, 2016b, 2016a, Hodson et al. 2008, Delvigne et al. 2009,
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Koster et al. 2009, Bern et al. 2010, Cornelis et al. 2010, Steinhoefel et al. 2011, Opfergelt and Delmelle
2012, Prentice and Webb 2016, Riotte et al. 2018). Only a few studies investigated the silicon isotope
fractionation between plants and soil. Plants preferentially incorporate light silicon, and the isotopic
fractionation (reported as A¥Sipiant-solution) fOr banana, rice and bamboo are between -0.5 %o to -1.6 %o
(Ziegler et al. 2005, Opfergelt et al. 2006, Ding et al. 2008b, 2008a, Sun et al. 2008, 2016b, Delvigne et
al. 2009). Apart from the silicon in phytoliths, oxygen has been successfully used as
paleoenvironmental proxy. Alexandre and co-worker showed a temperature dependency on the
oxygen isotope signature of phytoliths. Changes in the mean annual temperature lead to a shift in the
oxygen isotope composition of rainwater, and ultimately those changes are recorded in the silica

deposits (Alexandre et al. 2012).

The stable silicon isotope analyses of phytoliths from living plants potentially offers insight into the
biogeochemical transformations of silicon between soil and plant organs, whereas the analyses of
phytoliths found in soils offer to provide information on their origin and preservation history. An in situ
analysis technique with a high spatial resolution could in addition provide the possibility to assess
phytolith heterogeneity, and thus provide supplemental information on the spatial and temporal
variations of the silicon cycles involved. However, to date the application of an in situ technique to
study stable silicon isotopes of phytoliths is still limited. Steinhoefel and co-worker characterised the
different silicon pools in two weathered soils in situ to establish an approach to quantify silicon
transport processes during weathering. Their investigation included the analysis of the phytolith pool.
However, an independent verification of the analytical approach was not performed at that time

(Steinhoefel et al. 2011).

To determine in situ the silicon isotopic composition of a variety of phytoliths from different plants and
thus close this gap, we developed an analytical routine based on femtosecond laser ablation multi
collector inductively coupled plasma mass spectrometry (fsLA-MC-ICP-MS). The use of fsLA has been
demonstrated to be advantageous for the analysis of stable silicon isotope ratios, in particular when
using non-matrix matched reference materials, e.g. (Schuessler and von Blanckenburg 2014). To
evaluate our analytical routine, we used a set of natural phytolith samples extracted and purified from
soil and a set of phytolith samples extracted directly from plant leaves and stems. Different sample
mounting and laser ablation strategies were evaluated to optimise analytical precision. Due to the
phytolith’s high water and carbon contents matrix effects on instrumental mass bias could potentially
arise in the ICP (Jochum et al. 2014, Zheng et al. 2018). Yet no phytolith reference material with a
characterised silicon isotope composition is available that would allow the test for such effects. Thus
to assess the accuracy of the fsLA-MC-ICP-MS analytical method, comparative values for the natural
phytoliths were obtained after bulk digestion, chromatographic silicon purification, and analysis by

solution MC-ICP-MS.
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Materials and Methods

Phytolith samples
Two different sources for phytoliths were selected. The first source is directly from living plants, and
the second source are phytoliths separated from the organic-rich topsoil horizon (O). In total 7

different phytolith samples from 6 different species were collected.

Phytoliths from common reed (Phragmites australis) and bushgrass (Calamagrostis epigejos) were
extracted directly from living plants from the “Hiihnerwasser” (“Chicken Creek”) catchment, the
former lignite opencast mine “Welzow-Siid” in northeast Germany (Puppe et al. 2017). Additionally,
common and rough horsetail (Equisetum arvense, Equisetum hyemale) were obtained from a location
in northern Germany (samples provided by Prof. Peter Behrens, Institute for Inorganic Chemistry,
Leibniz University of Hannover). Two different parts of rough horsetail were sampled separately, from
annual plants only nodes were calcinated, and from perennial plants the entire stem - containing nodes
and internodes were calcinated. Two phytolith samples were extracted from O-horizons of forest soils,
i.e. from European beech (Fagus sylvatica L.) collected in Beerenbusch, a study site in northern
Brandenburg, Germany, close to the village Rheinsberg (Sommer et al. 2013). Norway spruce (Picea

abies) was collected from the Wildmooswald, in the southern Black Forest (Steinhoefel et al. 2011).

With these 7 samples we can investigate the homogeneity of phytolith silicon isotope composition
within single plant species. We expect that isotopically homogeneous plant parts will result in a narrow
distribution of isotope ratios determined in situ, and close agreement between the averages of fsLA
with the isotope ratio obtained by solution analysis after bulk sample digestion. Potential
heterogeneity within the phytoliths is expected to result in a broader silicon isotope ratio distribution
obtained from fsLA. Depending on how representative the phytolith fragments selected for in situ
analyses are, a deviation in the isotope averages of fsLA ratio from the isotope ratio from bulk solution
will emerge. Such a deviation can also be caused by samples that contain sub-micrometre sized silicate
precipitates (Sommer et al. 2006). These would be contained in bulk analyses, but not in the larger
fragments mounted for fsLA. For phytoliths extracted from soil (Norway spruce and European beech)
such differences are not expected, as during the sample preparation an amalgamation of fragments is

taking place which leads to an artificial homogenisation of Si pools and their of isotope ratios.

Phytolith extraction

Phytoliths sampled directly from the plant parts were ashed at 600°C (6 — 24h). European beech and
Norway spruce phytoliths were extracted from the organic-rich forest soil layer by combined chemical
and physical separation procedure. Those phytoliths were extracted by oxidising the organic matter

using H20, (35 vol%), HNO; (65 vol%), HCIO4 (70 vol%) at 80 °C until reaction subsides. Subsequently,
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Fe oxides and carbonates are dissolved by boiling the sample in HCI (10 vol%) for 30 min. Finally, the
phytoliths are separated by shaking the remaining solid phase with 30 mL of sodium polytungstate
(Nas(H2W1,040)-H,0, density of 2.3 g-cm™), centrifugation at 3000 rpm for 10 min, carefully pipetting
the supernatant, and filtering by 5um Teflon filter. This step was repeated three times. The filter
residue was washed with water, and dried at 105 °C. (Alexandre et al. 1997, Sommer et al. 2013). The
obtained phytolith separates are compacted into a loosely bound pellet (see Phytolith imaging section)
and might contain minor amounts of residual quartz, clay, or particles from aeolian dust (Steinhoefel

etal. 2011).

Phytolith imaging

For sample characterisation, phytoliths were imaged using a scanning electron microscope (SEM, Zeiss
Ultra Plus, working distance 7.6 mm, acceleration voltage 15 kV) and a light microscope (Leica EZ4D)
at GFZ Potsdam. The phytoliths imaged by SEM were fixed on an aluminium holder using carbon-
conductive adhesive tape and were carbon-coated. For light microscopy the phytoliths were mounted

with the same method as used for LA, fixed with lacquer on a microscope slide.

Sample preparation for laser ablation

Three different strategies for introducing mounted phytoliths into the ablation cell were evaluated. In
the first strategy phytolith fragments were imbedded in epoxy resin. The mount was carefully polished
to expose the fragments. In the second method phytoliths were directly fixed by carbon-conductive
adhesive tape onto an aluminium SEM holder. In the third method phytolith samples were fixed onto

microscope slides using clear nail lacquer.

The preparation of the epoxy mounts is time consuming, and part of the sample is lost in the polishing
process. The resulting thin sample will eventually lead to shorter measurement duration, and thus to
lower precision in isotope ratios. Sample preparation on adhesive tape is faster. Phytoliths
immediately adhere to the aluminium holder and can be analysed directly by LA. However, adhesive
tape tends to attract dust and laser debris. Nail lacquer performs similarly to adhesive tape, dries in
40 s, and the entire phytolith can be analysed. To minimise possible contamination from the support,
microscope slides made from poly(methyl methacrylate) (PMMA) were used throughout the study.
Several commercial nail polishes and lacquers were bought in a local German chemist’s shop and
tested for blank contamination, impact and scrub resistance. An advantage of nail lacquer is that

phytoliths can be recovered by re-dissolving the lacquer.

Method validation strategy and uncertainty evaluation
No phytolith reference material with a characterised silicon isotope composition is available for use as

external reference material. Since phytoliths are made up of bio-opal, they contain water (<9%) and to
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some extent also carbon (Piperno 2006). The presence of carbon potentially leads to matrix effects in
the plasma, which would not be accounted for using the standard sample bracketing approach with a
dry reference material containing no carbon (Fliegel et al. 2011, Frick and Glinther 2012). Moreover,
the material embedding the phytoliths (epoxy resin or nail laquer) might get partially ablated. To
evaluate the performance of the silicon isotope measurements obtained by fsLA-MC-ICP-MS, several
reference materials (BHVO-2, NBS28) and a homogenised phytolith sample (European beech) were
analysed by both fsLA-MC-ICP-MS and bulk solution MC-ICP-MS, respectively. Additionally, reference
materials for which published silicon isotope data exists (ATHO-G, BHVO-2, GOR132-G, and NIST612)
were analysed in each fsLA session for quality control and to verify that the target measurement
uncertainty is met. Thereby uncertainties in the measurement results of these homogenous materials
can be evaluated and then used as a benchmark to assess micro-scale silicon isotope heterogeneity in

the unknown phytolith samples detected by in situ fsSLA-MC-ICP-MS analysis.

The silicon isotope results are reported in the 6-notation as permil deviation relative to an international

measurement standard (Coplen et al. 2002).

| 305i
5305i =| ZSSi sample
K”Si)
28¢;
St standard

All 6%°Si and 83°Si from bulk solution MC-ICP-MS analysis are reported relative to NBS28 (quartz NIST

— 1|[in %o] (1)

SRM8546 alias NBS28, §%°Si = 0 and §3°Si = 0; directly used as bracketing measurement standard) and
in situ fsLA-MC-ICP-MS analysis are reported relative to NIST SRM610 (used as bracketing
measurement standard) which is isotopically indistinguishable from NBS28, and also identical to NIST

SRM612 (Schuessler and von Blanckenburg 2014, and Table S7)

All 6%°Si and &%°Si results are accompanied with uncertainties at the 95% confidence level, exemplified
for 6%Si as follows. Individual 6°°Si values obtained by in situ analysis by fsLA-MC-ICP-MS contain
mainly three uncertainty contributions, i.e. from the analysis of the sample and from the two
bracketing standard measurements (NIST SRM610). For each of these, an expanded standard
measurement uncertainty (U) (JCGM 2008) is obtained by calculating the standard deviation (s) of n
silicon isotope ratio integration cycles acquired during < 3 min of analysis (18 > n < 94 for samples given

in Frick et al. 2018, Table S1). Count- statistical uncertainties at the 95% confidence level can be
expressed as the standard deviation of the mean (2 - s,,, = %) with a coverage factor k = 2 (Ellison and

Williams 2012). Here, instead of k we use t derived from student-t distribution at 95% confidence to

. t: . .
account for variable n (2SE = \/_%; this is also sometimes called the standard error of the mean at 95%

confidence). By propagation of these individual counting statistical uncertainties through equation 1,
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we obtain a combined expanded standard uncertainty (U.) for each individual in situ fsSLA-MC-ICP-MS
5%°Si result. We note that other components of variance contributing to the uncertainty (e.g., mass

bias stability, blank correction, ...) are already included in this statistical evaluation.

To evaluate the measurement precision the repeatability was calculated as 2 times the standard
deviation (2SD) of n individual &-values obtained by independent sample-standard bracketing
measurements. We followed this procedure on reference materials of which the average results and
their uncertainties were compared to independently obtained §3°Si values, and to verify the previously
established target uncertainty of the fsLA-MC-ICP-MS method of better than +0.23%o. (2SD) and
+0.15%o0 (2SD) for 6°°Si and &%°Si, respectively (Schuessler and von Blanckenburg 2014, Frick et al.
2016).

The latter approach is also used for bulk solution MC-ICP-MS silicon isotope analysis, where repeat
measurements of samples and reference materials (after dissolution and silicon chromatographic
purification) are obtained and average 6%°Si and §%°Si values and associated standard deviations are

calculated (Table 1 and S6).

To obtain reference silicon isotope ratios for our laser ablation study we have measured bulk phytolith
samples after dissolution using an established alkali fusion method (Georg et al. 2006, Zambardi and
Poitrasson 2011, Schuessler and von Blanckenburg 2014). Briefly, 5 to 15 mg phytoliths were fusion
melted in an Ag crucible with NaOH (p.a. grade, tested for silicon background levels) at 750°C for
15 min. The fusion cake was dissolved in ultra-pure water (18 MQ-cm) followed by mild 0.03 M HCI.
The obtained solution was acidified to pH 1.5 with HCIl. An aliquot of the solution was loaded onto
chromatography columns (Spectrum 104704 PP containing 1.5 ml AG50W-X8) and silicon was eluted
with 5 ml H,0. Complete silicon recovery and purity (> 95% Si) was verified by ICP-OES analysis. Before
MC-ICP-MS analysis, the purified silicon solutions were acidified to 0.1 M HCl and diluted to a
concentration of 0.6 ug-g?. Solutions of samples and bracketing measurement standards (NIST
SRM8546, NBS28) were both doped with 0.6 ug-g™* Mg to use the *Mg/**Mg ratio for mass bias drift
correction during the analysis. The solutions were introduced into the ICP using an ESI ApexHF
desolvator and a self-aspirating PFA nebuliser (measured uptake 160 pL min). Measurements were
done in dynamic mode, alternating between silicon and magnesium isotopes, each for 30 cycles at 4 s
integration time per cycle. The Neptune cup configuration and instrument settings can be found in the
supplement, Table S1 and Table S2. BHVO-2 (USGS, basalt powder) is a well-characterised reference
material for silicon isotopes and was prepared and analysed together with the phytoliths to verify no
bias is introduced during sample preparation and measurement. Additionally, ERM-CD281 (IRMM, rye
grass) was analysed using the same method; unfortunately up-to-now, there are no other published

silicon isotope data available for comparison. All §2°Si and &3°Si from bulk analysis are reported relative
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to NBS28. Since NIST SRM610 and NBS28 are isotopically indistinguishable in their silicon composition,
the bulk and in situ data can be directly compared (Schuessler and von Blanckenburg 2014, Frick et al.

2016, Table S7).

In situ silicon isotope analysis by femtosecond laser ablation MC-ICP-MS

In situ silicon isotope ratios were measured using a custom-built deep-UV (196 nm) femtosecond laser
ablation system (GFZ fem2, containing a frequency-quadrupled Spectra Physics Solstice femtosecond
laser, see (Schuessler and von Blanckenburg 2014) for technical details) in combination with an
inductively coupled plasma multi-collector mass spectrometer (Thermo Fisher Scientific Neptune MC-
ICP-MS, equipped with the Neptune Plus Jet Interface) at the Helmholtz Laboratory for the
Geochemistry of the Earth Surface (von Blanckenburg et al. 2016). The ion optics were operated at
medium mass resolution with a typical mass resolving power m/Am > 6000, to resolve isobaric
interferences (mainly N®0* on 3°Si*). Faraday detectors (equipped with 10 Q amplifiers) were
positioned to measure on interference-free, flat top peak shoulders. The Faraday cup configuration is
shown in Table S3. The gas flows, torch position, and ion optics were tuned daily for highest intensity
and mass bias stability, while maintaining the 1*N°0* interference on 3°Si* at resolvable levels (<10 V).

The typical laser and ICP-MS settings can be found in Table S4 and Table S5.

fsLA has proven to be advantageous over nsLA for non-matrix matched silicon isotope ratio
standardisation of different sample matrices (Janney et al. 2011, Schuessler and von Blanckenburg
2014). To further improve the mass bias stability during non-matrix matched calibration using the
standard-sample-bracketing approach, wet plasma conditions were used by admixture of water from
spray chamber nebulisation to the laser aerosol before entering the ICP. The addition of water
stabilises the position of the highest analyte ionisation density in the plasma regardless of the matrix,
which leads to an improved accuracy in non-matrix matched quantification (Flamigni et al. 2012, 2014).
Both measures, fsLA and wet plasma lead to less mass bias drift between bracketing standards and
samples and thus improves the precision of the isotope ratio determination. Instrumental mass bias
was corrected for by standard-sample-bracketing using NIST SRM610 as measurement standard (Frick
et al. 2016). The laser beam (ca. 25 um in diameter) on the sample was continuously scanned over the
sample - the paths were adapted to the irregular shapes of phytolith samples. To account for the fragile
nature and sometimes also porous structure of phytoliths, the laser frequency (pulse repetition rate)
during phytolith analysis was dynamically adjusted to maintain a signal intensity as similar as possible
to that obtained during ablation of the bracketing standard (4 - 7 V on 28Si). Moreover, every analytical
session contained a range of reference materials (ATHO-G, BHVO-2, GOR132-G, NIST SRM612, and
NBS28) that were repeatedly analysed in between the phytolith measurements for comparison to

published values (see compilations in (Jochum et al. 2005, Schuessler and von Blanckenburg 2014).
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Raw data processing and background corrections were made according to the protocol described in
Schuessler and von Blanckenburg (2014) that also involves application of several data
rejection/acceptance criteria. Of these, the most important ones are that A) only 3¥28Sj and 2%/%%Si ratios
are used for the calculation which deviate less than 3SD from the mean and B) only results which follow
the mass-depended terrestrial fractionation line in a three-isotope-plot of §%°Si vs. §3°Si within
analytical uncertainties and C) have a mass bias drift between the two bracketing standards of less

than 0.30 %o in 3”2%Sj are accepted and reported in this study.
Results and Discussions

Phytolith imaging

In Figure 1 SEM and optical microscopic images of the phytolith samples are shown with typical laser
ablation paths. Phytoliths from rough horsetail look like sheet structures. Figure 1A and 1B show SEM
images of the epoxy embedded (A) and carbon tape-affixed (B) perennial horsetail sample. In Figure
1A the thin nature of the sheet structures is visible. In Figure 1B a group of intact stomatal phytoliths
after the separation process are shown. For comparison, Figure 1C shows the optical microscopic

image of the perennial horsetail phytoliths sample affixed using nail lacquer.

The annual and perennial rough horsetail phytolith samples differ by the age of the plants and by the
plant parts from which they were extracted. The perennial sample consist of stems and nodes, and the
annual sample are from nodes only. No visual difference between the nodes of the annual and

perennial sample was visible. Common horsetail phytoliths (not shown) form also sheet-like structures.

European beech and Norway spruce phytolith samples were separated from forest soils. Figure 1D
shows the optical microscopic image of the Norway spruce phytolith sample and Figure 1E-F of
European beech. Figure 1E reveals a compacted particle structure that resulted from the chemical and
physical sample separation employed. The sample comprises a mixture of phytolith fragments rather

than a single phytolith.

Common reed phytoliths form are also sheet-like structures (Figure 1G), however the sheets tend to
be smaller and thinner compared to the rough and common horsetail samples. Typically, only one to
two laser ablation passes were possible before exhausting the sample. To ensure sufficient analysis
time nevertheless the size of the ablation area was increased. The bushgrass phytolith sample (Figure
1H) is an assembly of small sheet like structures (300-400 um) with much smaller fragments (10 um)

of various sizes and shapes.
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Figure 1: SEM (A,B,E, and G) and optical microscopy (C,D,F, and H) images of the phytolith samples. (A-C) rough horsetail, (D)
Norway spruce, (E-F) European beech, (G) common read, and (H) bushgrass phytoliths. (A-C) shows the different fixation
techniques used in this study, (A) embedded into epoxy, (B) affixed using carbon sticky tape, (C) affixed using nail lacquer. (D-
F) shows the compact, pellet-like nature of the Norway spruce and European beech phytoliths separated from the forest soil.
Common reed (G), and (H) bushgrass phytoliths show a sheet-like structure. Scale bars are 100 um for SEM, and 500 um for
the light microscopy images. Apart from (B) and (E) the images show typical laser ablation traces which are highlighted with
white arrows.
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Bulk phytolith silicon isotope analysis results

The bulk silicon isotope ratio composition of the 7 samples measured by solution MC-ICP-MS (after
fusion digestion and chromatographic silicon purification) ranges from 83°Si = -1.12 %o to +1.27 %o (see
Table 1). This is within the range previously reported in the literature for phytoliths (63°Si -2.3 to
+6.1 %o) (Douthitt 1982, Ding et al. 2005, 2008b, 20084, Ziegler et al. 2005, Opfergelt et al. 2006, 2008,
2010, Engstrom et al. 2008, Sun et al. 2008, 2016b, 2016a, Hodson et al. 2008, Koster et al. 2009, Bern
et al. 2010, Cornelis et al. 2010, Steinhoefel et al. 2011, Opfergelt and Delmelle 2012, Prentice and
Webb 2016). The values reported in the literature however, comprise not only of samples from natural
ecosystems, but also from laboratory growth experiments, and included samples from roots to seeds,
and some examples were analysed by fluorination and gas MS which might have resulted in lower

accuracy than modern solution MC-ICP-MS techniques.

Table 1: Silicon isotope ratios from bulk phytolith digestion, with 2 standard deviations based on n replicate mass spectrometer
measurements. For in situ fsLA, standard deviation is based on n measurement of individual phytoliths. *Bushgrass was
digested and analysed in two independent bulk solution MC-ICP-MS analytical sessions (each n=3). TNorway spruce sample
was analysed previously by (Steinhoefel et al. 2011) and resulted in 53°Si = -0.36 + 0.09 %o. The measurement standards NBS-
28 and NIST SRM610 are indistinguishable in their silicon isotope composition and therefore delta values from both analytical
techniques can be directly compared.

Bulk digestion solution .
MC-ICP-MS In situ fsLA-MC-ICP-MS

] 0 S S = g
8 _ 8 _ E_ E_ HERP
Sample g-f L | 25D g-f L |20 |n 92 L | 25D g,_z L |20 | n g % g,_z S

w0 g P P  £%
Bushgrass* 0.50 0.07 0.99 0.12 | 6 0.12 1.15 0.24 2.17 | 33 -1.23-3.85
Common horsetail -0.56 | 0.15 | -1.12 | 0.23 | 3| -0.40 | 095 | -0.74 | 1.78 | 11 | -2.92-0.48
Common reed 0.66 | 0.07 1.27 | 0.05 | 3| 0.50 1.16 1.06 | 2.16 | 18 | -0.05-4.26
European beech 0.08 0.10 0.13 0.09 | 3| 0.04 0.17 0.10 0.24 | 24 | -0.12-0.39
Norway sprucet -0.21 0.03 -0.42 0.07 | 3| -0.08 0.75 -0.15 1.42 | 24 -0.88-1.39
Rough horsetail (annual) 0.06 0.03 0.14 0.06 | 3| -0.24 0.63 -0.44 1.20 | 18 -2.34-0.19
Rough horsetail (perennial) 0.32 0.07 0.61 0.13 | 3| 0.24 0.73 0.43 1.40 | 21 | -0.85-1.45

Two different reference materials, BHVO-2 and ERM-CD281, were analysed using the same procedure
along with the phytolith samples. The results are shown in the supplement, Table S6. Within two
standard deviations there is no difference between the measured and the published values (Jochum
et al. 2005, Schuessler and von Blanckenburg 2014). The repeatability of all solution MC-ICP-MS
measurements on samples and reference materials is similar to what was previously obtained using

this method (Tatzel et al. 2015, Oelze et al. 2016, Frick et al. 2016).

Results of in situ phytolith analysis

Evaluation of the laser ablation parameters and sample preparation methods
The fsLA system employed in this study is characterised by two features that differ from those common

to ns lasers. The achievable spot size is limited to 15-30 um, and the laser beam has a Gaussian energy
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distribution. Both the small spot size and the Gaussian intensity distribution result in rapid increase in
laser crater depth which is accompanied by fast decrease in ion beam intensity. We circumvent this
effect by three means. A) We typically perform a small-size raster (50 - 100 pum) analysis instead of a
single spot analysis; B) in contrast to nsLA we use a faster scan speed (40 um/s); and C) we employ a
higher laser pulse repetition rate (frequency 20-40 Hz). During the optimisation of the analytical
routine we evaluated laser parameters optimised for the different phytolith types. For the sheet-like
structured phytoliths from common and rough horsetail, a larger raster or line scan across selected
features was chosen. During the first pass on those sample, a low laser pulse repetition rate (15-20 Hz)
was applied to obtain signal intensities in the range of 4-7 V forSi. On the subsequent passes the laser
frequency was increased. The ablation characteristics of the compacted phytolith samples, European
beech and Norway spruce, resembled closely those encountered on silicate glass reference materials.
These samples were analysed with a small raster size, with up to 10 passes and without the need to
adjust the laser frequency. Generally, we have chosen analysis parameters similar to those outlined by
Schuessler and von Blanckenburg, with laser ablation durations of 100s, and on-peak background

measurements after each sample (Schuessler and von Blanckenburg 2014).

Three different strategies for fixing the phytolith samples in the ablation cell were evaluated.
Embedding samples into epoxy resin typically led to short data acquisition periods at ion beam
intensities that provide good counting statistics with high temporal variations in signal intensity (Figure
2). This is mainly due to the relatively thin samples left after polishing the epoxy mounts that are
consumed while the laser ablation pit deepens with every pass of the line scan and also ablates areas
consisting predominately of epoxy resin where the porous sample has been removed by polishing. In
contrast, affixing phytoliths using adhesive tape or clear nail lacquer does not lead to a loss of material.
This leads to longer data acquisition periods at a relatively constant signal intensity, resulting in a better
precision of the silicon isotope ratios. An example for this different ablation behaviour is shown in
Figure 2. Figure 2A-B is a rough horsetail (perennial) phytolith imbedded into epoxy, and Figure 2C-D

fixed with nail lacquer on a PMMA slide.

The signal on the epoxy-embedded phytoliths appears only after the third pass of the laser ablation
raster (see Figure 2A). During the first two passes the phytolith was still partially covered with epoxy.
The laser pulse repetition rate (frequency) was thus increased to accelerate the ablation. Once the
phytolith was fully uncovered, very high signal intensities were recorded. For the nail lacquer-fixed
phytolith, such initial uncovering was not required, and the ion signal was detected shortly upon
ablation began and remained stable throughout the analysis. The signal on the epoxy-embedded
phytolith lasted for about 50 seconds, whereas for the phytolith fixed with nail lacquer the full ablation
period of 100 s was used for data acquisition. The epoxy-embedded perennial rough horsetail analysis
resulted in a 6°°Si = 0.87 + 0.25 %o (n = 56, 2 SE) and for the nail lacquer-fixed phytolith 0.86 + 0.18 %o
12
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(n =81, 2 SE). The average &°°Si by bulk solution MC-ICP-MS result is 0.61 + 0.13 %o (n = 3, 2SD) and
the average fsLA-MC-ICP-MS result for this sample is 0.43 + 1.40%o (n = 21, 2SD).

15- 15
__10] L10
> >
wiﬁ D;ﬁ
% . [ B3
0 - C 0
0.0380- e+ 0.0380
0.03791 . 10.0379
£ 0.0378 10.0378 &
~ ~
& 0.0377+ . +0.0377 &
0.0376 % « 10.0376
0.0375 : : : o : : : D [0.0375
0 50 100 150 2000 50 100 150 200

cycle cycle

Figure 2: Typical fsLA-MC-ICP-MS signal from rough horsetail (perennial) phytoliths, left (A-B) embedded in epoxy resin, and
right (C-D) glued with clear nail lacquer. ?Si intensity (A, C), 3%?8Si ratio (B, D), and calculated mean (solid black line) with 3
SD (dashed grey line) of the 325 ratio (black dots). Only 3%/?8Si ratios that are deviating less than 3 SD from the mean in their
30/286j and 29/%8Sj ratio are used for the data evaluation and calculation of delta values (grey circles). For clarity, background
ratios (acquired beyond 120 cycles) are not shown. One cycle is equal to an integration time of 1.049 seconds.

Carbon-adhesive tape and nail lacquer are our preferred sample preparation methods. The
preparation is faster, and a smaller number of preparation steps are involved. However, when handling
the sample, the epoxy-embedded and nail lacquer-fixed samples are favoured, since no dust or laser
ablation debris can adhere to the sample after the epoxy or lacquer has dried. Based on these
considerations the best applicable sample preparation method is using clear nail lacquer to affix the

phytolith samples onto PMMA slides.

Evaluation and comparison of fsLA with the bulk solution silicon isotope measurements

The results of the in situ measured phytoliths by fsLA-MC-ICP-MS are shown in Figure 3, and the
individual results are reported in Table S1 in the accompanying data publication (Frick et al. 2018).
Each phytolith sample was analysed in at least three independent measurement sessions. Data in

Figure 3 are sorted according to the measurement session.

Comparing 83°Si values from bulk solution MC-ICP-MS silicon isotope with the averages from in situ
fsLA-MC-ICP-MS analysis, three different cases can be identified. A) A heterogeneous silicon isotope
composition of phytoliths within a single plant species (bushgrass, common reed, rough horsetail, and
common horsetail), B) a homogeneous composition from the soil-extracted phytoliths (European
beech) and C) a heterogeneous composition from the soil-extracted phytoliths of Norway spruce. The

potentially existing fourth case, a homogenous distribution of phytoliths from a single plant species,
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was not found. The wide variation in silicon isotope ratios of more than 2 %o observed within a single
plant indicates that different silicon translocation and utilisation mechanisms in the plant are traced
by silicon isotopes. The soil water silicon isotopic composition as well as the cell environment, where
silicic acid is dehydrated and phytoliths are formed, influence the isotopic composition of the formed
phytoliths. For common reed, rough horsetail (perennial) and common horsetail no systematic bias
between the bulk solution and in situ fsLA data is observed. For bushgrass and rough horsetail (annual)
a systematic difference between results from both measurement methods is apparent. Closer
inspection of the distribution of the single bushgrass phytolith analysis indicates, however, that this
difference is not due to a systematic analytical bias. Rather, while the large spread is due to inter-
phytolith fragment isotopic heterogeneity, the small number of phytoliths analysed by fsLA-MC-ICP-
MS did not result in representative sampling of the distribution. For the annual rough horsetail
phytolith sample, the individual micro-scale analysis overlaps with the bulk analysis within
uncertainties. A systematic offset between the two analytical routines is therefore unlikely. These
results together with the results obtained on reference materials (Table S7, supplement) verify the
previously established target uncertainty of the fsLA-MC-ICP-MS method of better than £0.23%. (2SD)
and +0.15%o (2SD) for &3°Si and 6%°Si, respectively (Schuessler and von Blanckenburg 2014, Frick et al.
2016).

For European beech and Norway spruce an amalgamation of the phytoliths has taken place during the
extraction procedure from the soil horizon and separation. The phytolith samples of European beech
show a very narrow silicon isotope ratio distribution, indicating either a homogenisation of the silicon
isotopic composition during the sample preparation, or a homogeneous initial phytolith composition.
The electron microscope image showed finely-ground material (see Figure S1A in the supplement).
Thus, homogenisation during sample preparation is the most likely explanation. The average silicon
isotope composition obtained by fsLA-MC-ICP-MS (83°Si= 0.10 + 0.05 %o, combined expanded
standard uncertainty at 95% Cl for n = 24) overlaps within the confidence interval of the average bulk
solution MC-ICP-MS result (8%°Si = 0.13 +0.11 %o, n = 3) for this sample. For Norway spruce the
measured micro-scale silicon isotopic variability is higher (8%°Si = -0.88 to +1.39 %o), and here,
phytoliths fragments observed by SEM are larger (see Figure S1B in the supplement), indicating that a
small-scale homogenisation of the fragments has not been attained. Close inspection of the individual
fsLA-MC-ICP-MS results for Norway spruce reveals that a small number of phytoliths in the sample
population are significantly heavier in their silicon isotope composition than the bulk composition (up
to 6°°Si = 1.39 %o). The detection of such small sub-groups within a sample population is one of the
strengths of the in situ technique and would not have been noticed in the bulk solution MC-ICP-MS
analysis. The average Norway spruce fsLA-MC-ICP-MS result (863°Si = -0.15 * 0.30 %o, n = 25) and the

bulk silicon isotope composition (8§3°Si = -0.42 + 0.09 %o, n = 3) are indistinguishable from each other
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within their uncertainties. We conclude that for the two most homogeneous samples (Norway spruce
and European beech) no systematic difference between the two analytical methods is apparent. Thus,
the fsLA-MC-ICP-MS analytical routine can provide accurate in situ stable silicon isotope ratios of plant
and soil extracted phytoliths. Any systematic differences between in situ and bulk silicon isotope ratio
signatures thus arises from non-representative sampling, such as the possible inclusion of sub-
micrometre sized silicate precipitates in bulk samples and their exclusion from larger phytolith samples

which were not amalgamated.
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Figure 3: 5°°Si values measured by in situ fsLA-MC-ICP-MS on phytolith samples (bushgrass, European beech, common reed,
rough horsetail, annual and perennial, common horsetail and Norway spruce). Uncertainty on each individual data point is
the combined expanded standard uncertainty at the 2SE level for 5°°Si (see method section for definition). Light grey area is
the average &6°°Si value (relative to NIST SRM610) for each sample from in situ fsLA-MC-ICP-MS analysis with 95 % confidence
interval. The dark grey shaded area is the average 5°°Si composition (relative to NBS28) with 95 % confidence interval obtained
by bulk solution MC-ICP-MS. The size of the data points is indicative of the number of measurements cycles used for data
acquisition (1 cycle = 1.049 s integration time). Only where few cycles were acquired (<30 integrations) the statistical

. ts . . . .
uncertainty expressed as 77 Increases. The measurements are arranged according to the temporal sequence in which they

were measured. The results include phytoliths from epoxy-embedded, nail lacquer-, and carbon-adhesive fixed specimens.

Analytically the in situ analysis of the phytolith samples is more challenging due to non-uniform
ablation behaviour resulting in higher uncertainties compared to the analysis of glass or rock reference
standards. The non-uniform ablation causes individual integration cycles to strongly deviate from the
mean. These can be identified by a statistical outlier test and rejected. For analysis where more than
forty 1-second-integration cycles were averaged, no systematic variation with the standard deviation
of the mean is observed. For very short data acquisition periods (n < 30, see dot size in Figure 3) we
observe an increase in the standard deviation of the mean in silicon isotope ratios for an individual

analysis, and thus an increase in the combined expanded standard uncertainty of §3°Si values. Some
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of the results are subject to a large analytical uncertainty, which span almost the entire reported silicon
isotopic range of biogenic opal. For completeness those data are included in Figure 3, in the following

discussion those inferior data are however omitted.

Implications for silicon biogeochemistry

The in situ fsLA-MC-ICP-MS results allow to develop a more detailed insight into the biogeochemistry
of silicon in plants. The first significant finding is the small-scale heterogeneity in the silicon isotope
composition within a given plant species (Figure 4). Not only does this heterogeneity imply that a
variety of processes are involved in the formation of phytoliths in plants. The obtained isotope ratios

potentially also aide to identify these processes.

Results from both annual and perennial rough horsetail samples are good examples of this potential
application. The bulk analyses reveal a significant difference between the annual and the perennial
sample. The annual phytoliths show a lower §30Si signature (0.14 * 0.06 %o, 2SD) than the perennial
phytoliths (0.61 + 0.13 %o, 2SD). For these differences three explanations are possible: A) differences
in soil chemistry can result in a compositional change in the plants’ silicon source; B) the isotope
fractionation during uptake varies, depending on environmental conditions; and C) the removal of
stems in the annual sample shifts the isotopic composition. All three explanations will result in
differences in the silicon isotope composition of the formed phytoliths. Note that explanations A) and
B) might also include temporal variations, as the isotope composition of silicon in the source may shift
between years but also between seasons (Steinhoefel et al. 2017), and so may the isotope
fractionation factors depending on, for example, silicon saturation in fluids or pH. Thus &°°Si of
individual fragments might depend on their age. Given the experimental design, a differentiation

between the three mechanisms are not possible.

We also find specific silicon isotope ratios that appear to correlate to morphological features of
analysed phytoliths. Optical microscopy imaging of laser ablation paths in the perennial horsetail
sample revealed that the two analyses with the horsetails’ lowest §3°Si (-0.79 %o and -0.85 %o) were
measured in a region lacking visible features of stomata. In all other measurements, yielding higher
539Si, the laser ablation path included stomata features. This distinction suggests differences in the
depositional processes of bio-silica close to stomata, or that these particular phytoliths were formed

at a different stage of the plants growth and thus from a different source of silica.
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Figure 4: 5°°Si values of the analysed phytoliths. Black circles denote bulk solution MC-ICP-MS results, error bars are 2SD of
repeated measurements. Grey diamonds denote single values determined by fsLA-MC-ICP-MS. Box plots depict mean (black
dot) and median (dotted line) of the in situ fsLA-MC-ICP-MS measurements, with 2 standard error (box size) and 2 standard
deviation (whisker). For comparison the top row contains the Si isotope range of published soil solutions (from Opfergelt and
Delmelle 2012) and published values for phytoliths and biogenic opal are shown in black (measured by gas phase IRMS) and
grey (measured by MC-ICP-MS). (Douthitt 1982, Ding et al. 2005, 2008b, 2008a, Ziegler et al. 2005, Opfergelt et al. 2006, 2008,
2010, Engstrom et al. 2008, Sun et al. 2008, 2016b, 2016a, Hodson et al. 2008, Delvigne et al. 2009, Koster et al. 2009, Bern
et al. 2010, Cornelis et al. 2010, Steinhoefel et al. 2011, Opfergelt and Delmelle 2012, Prentice and Webb 2016, Riotte et al.
2018)

The second finding that highlights the future scientific potential of this method is a higher §°Si in some
of the phytoliths (Figure 4) compared to the §3Si of typical soil solutions that range from -1 to +2 %o
(Opfergelt and Delmelle 2012). Plants preferentially incorporate light silicon isotopes from the soil
solution, with a 3°Si/?8Si fractionation between plant and soil solution of -0.5 %o to -1.6 %o (Ziegler et
al. 2005, Opfergelt et al. 2006, Ding et al. 2008b, 2008a, Sun et al. 2008, 2016b, Delvigne et al. 2009)
such that 8°°Si of around 0 %o is expected for whole plants. Bushgrass and common reed were
harvested from the same catchment, and both yielded a significantly heavier silicon isotope signature
(83SipyPusherass = 0,99 + 0.12 %o, and 53°Sipy®™mo" e = 1,27 + 0.05 %o, with an outlier of 3.85 + 0.69 %o
in bushgrass, and another outlier of 4.26 + 0.58 %o in common reed, Figure 4). This observation is
intriguing because a (bio)chemical process enriching heavy silicon isotopes has not been found to date.
Precipitation and adsorption of both abiogenic and biogenic silicon is known to enrich the light isotopes
in the precipitate (Oelze et al. 2014, Geilert et al. 2015, Frings et al. 2016). Thus, the solution remaining

after precipitation process will yield high 63°Si. There are two possible pathways of such residual silicon
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high in 63°Si into phytoliths. Either the soil solutions’ silicon available to the plants was previously
depleted in light isotopes by, for example, neo-formation of secondary minerals, or these phytoliths
formed from an intra-plant silicon pool that was depleted in the light isotope by previous precipitation

of bio-silica within the plant.

Conclusions

We have established an analytical routine based on femtosecond laser ablation inductively coupled
plasma mass spectrometry (fsLA-MC-ICP-MS) for in situ analysis of stable silicon isotope composition

of phytoliths.

In terms of sample preparation, the lowest uncertainties associated with the &°°Si results were
achieved by mounting phytolith samples with clear nail lacquer onto a PMMA sample holder. The
traditional approach, using epoxy resin for embedding, impaired the measurements by loss of
phytolith material during polishing and thus to low and highly variable ion beams signals during laser

ablation and data acquisition.

Good agreement between phytolith §3°Si results obtained by bulk solution MC-ICP-MS analysis after
total sample decomposition and silicon purification with in situ determined silicon isotope ratio by

fsLA-MC-ICP-MS validates the analytical method described in this study.

In terms of uncertainty, bulk analysis resulted in at least two-fold better precision for 3%/2%S; (typically
2SD on reference materials was better than 0.11 %o) over that found for the means of in situ analyses
(2SD typically better than 0.24). If differences were found between results from in situ analyses and
those from bulk solution MC-ICP-MS, we identified the origin from sample heterogeneity combined
with incomplete capture of a phytolith population in the analysis of single fragments. Phytolith samples
extracted from the soil horizons were more amalgamated (i.e., homogenisation of the phytoliths’
fragments) due to the preparation technique, leading to easier analyses, and also to isotopic

homogenisation on the scale of fsLA-MC-ICP-MS.

In terms of advantages, fsLA-MC-ICP-MS is the better-suited method for screening and characterising
heterogeneous phytolith populations. We found that certain investigated species (bushgrass, common
reed, and horsetail) show large internal variations amounting to up to 2 %o in %°Si between different
phytolith fragments. Capturing such heterogeneity thus potentially opens the possibility to investigate
pathways of silicon of plants grown in vivo, after removal of only small parts of plant tissues.
Furthermore, using phytoliths from geo-archives could enable the exploration of past silicon

biogeochemical and climate cycles.
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Figure 1: SEM (A,B,E, and G) and optical microscopy (C,D,F, and H) images of the phytolith samples. (A-

C) rough horsetail, (D) Norway spruce, (E-F) European beech, (G) common read, and (H)
bushgrass phytoliths. (A-C) shows the different fixation techniques used in this study, (A)
embedded into epoxy, (B) affixed using carbon sticky tape, (C) affixed using nail lacquer. (D-
F) shows the compact, pellet-like nature of the Norway spruce and European beech
phytoliths separated from the forest soil. Common reed (G), and (H) bushgrass phytoliths
show a sheet-like structure. Scale bars are 100 um for SEM, and 500 um for the light
microscopy images. Apart from (B) and (E) the images show typical laser ablation traces

which are highlighted with White arrows. .........ccooeeiiiiiiiicc e 10

Figure 2: Typical fsLA-MC-ICP-MS signal from rough horsetail (perennial) phytoliths, left (A-B)

embedded in epoxy resin, and right (C-D) glued with clear nail lacquer. %Si intensity (A, C),
30/28gj ratio (B, D), and calculated mean (solid black line) with 3 SD (dashed grey line) of the
30/28Gj ratio (black dots). Only 3%8Sj ratios that are deviating less than 3 SD from the mean in
their 3%/28Sj and 2%/2%Sj ratio are used for the data evaluation and calculation of delta values
(grey circles). For clarity, background ratios (acquired beyond 120 cycles) are not shown. One

cycle is equal to an integration time of 1.049 SECONS. ....ccccveeeiecieeeiiiiee et 13

Figure 3: 63°Si values measured by in situ fsLA-MC-ICP-MS on phytolith samples (bushgrass, European

beech, common reed, rough horsetail, annual and perennial, common horsetail and Norway
spruce). Uncertainty on each individual data point is the combined expanded standard
uncertainty at the 2SE level for 63°Si (see method section for definition). Light grey area is the
average 6%Si value (relative to NIST SRM610) for each sample from in situ fsLA-MC-ICP-MS
analysis with 95 % confidence interval. The dark grey shaded area is the average &°°Si
composition (relative to NBS28) with 95 % confidence interval obtained by bulk solution MC-
ICP-MS. The size of the data points is indicative of the number of measurements cycles used
for data acquisition (1 cycle = 1.049 s integration time). Only where few cycles were acquired
(<30 integrations) the statistical uncertainty expressed as t-sn increases. The
measurements are arranged according to the temporal sequence in which they were
measured. The results include phytoliths from epoxy-embedded, nail lacquer-, and carbon-
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Figure 4: 6°°Si values of the analysed phytoliths. Black circles denote bulk solution MC-ICP-MS results,

error bars are 2SD of repeated measurements. Grey diamonds denote single values
determined by fsLA-MC-ICP-MS. Box plots depict mean (black dot) and median (dotted line)
of the in situ fsLA-MC-ICP-MS measurements, with 2 standard error (box size) and 2 standard

deviation (whisker). For comparison the top row contains the Si isotope range of published

26



770
771
772
773
774
775

776
777
778
779
780
781
782
783
784
785

soil solutions (from Opfergelt and Delmelle 2012) and published values for phytoliths and
biogenic opal are shown in black (measured by gas phase IRMS) and grey (measured by MC-
ICP-MS). (Douthitt 1982, Ding et al. 2005, 2008b, 2008a, Ziegler et al. 2005, Opfergelt et al.
2006, 2008, 2010, Engstrom et al. 2008, Sun et al. 2008, 2016b, 2016a, Hodson et al. 2008,
Delvigne et al. 2009, Koster et al. 2009, Bern et al. 2010, Cornelis et al. 2010, Steinhoefel et
al. 2011, Opfergelt and Delmelle 2012, Prentice and Webb 2016, Riotte et al. 2018) ......... 17

List of Tables
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38 Table S1: Instrument configuration of Faraday cup and amplifier settings for bulk solution MC-ICP-MS Si isotope

39 measurements. There is a 3 s delay time between line 1 and line 2.
Faraday Cup L3 L2 L1 C H2
Line 1 285 295 305
Line 2 Mg Mg Mg
Amplifier 1011 Q 101 Q 1011 Q 101 Q 1011 Q
40
41 Table S2: Instrument settings for bulk solution MC-ICP-MS Si isotope measurements. *Parameters tuned for best sensitivity,
42 stability and peak shape before each measurement session.
Cool Gas Flow 15.00 [L minY] | Extraction Lens -2000 V]
Auxiliary Gas Flow 0.80 [L min™] | Focus Lens* -651 V]
Nebuliser Gas Flow  1.071* [L minY] | X-Deflection* -2.87 [V]
RF Power 1200 [W] Y-Deflection* -2.97 [V]
Torch: Shape* 202 V]
X* 1.010 [mm)] Rotation Quad 1* 2.03 V]
Y* -3.760 [mm)] Source Offset 0.0 V]
7* -1.250 [mm] Focus Quad 1* -19.89 V]
Sampler Cone Ni Jet Rotation Quad* 2 0 V]
Skimmer Cone Ni H Focus Offset* 50.00 V]
Focus Quad* -1.0 V] Matsuda Plate 0.0 V]
Dispersion 0.0 V]
Apex: Heat: 2, Cool: 2 with PFA nebuliser with 160uL/min measured uptake rate.
Cycles 30 | Integration time 4.194 [s/cycle]
43

44 Table S3: Instrument configuration of Faraday cup and amplifier settings for fsLA MC-ICP-MS Si isotope analysis.

Faraday Cup L4 L2 C H2
Line 1 27Al 285 255 305
Amplifier 1010 | 10 Q | 102 Q | 1010
45
46 Table S4: Typical laser settings used throughout the study. *Laser repetition rate was adjusted to attain uniform 28Si ion beam
47 intensities during measurements (matched to bracketing standard signal intensity).
Crater size 25-30 [um]
Repetition rate*  15-125 [Hz]
Scan velocity 40 [um/s]
Energy density 1.2-1.5 J/cm?
Wavelength 196 [nm]
48

49 Table S5 Instrument settings used for in situ fsLA fsLA MC-ICP-MS Si isotope analysis. *Parameters tuned for best sensitivity,

50 stability and peak shape before each measurement session. Auxiliary and nebuliser gas flows were within 0.1 L min™ for the

51 different measurement sessions.
Cool Gas Flow 15.00 [Lmin™? Extraction Lens -2000 V]
Auxiliary Gas Flow* 0.6 [L min'Y Focus Lens* -582 [V]
Nebuliser Gas Flow* 0.6 [L minY X-Deflection* -4.06 [V]
Helium Gas Flow* 1.1 [L min™Y] Y-Deflection* -2.24 V]
RF Power 1250 [W] Shape* 204 V]
Torch: Rotation Quad 1* 291 V]
X* 1.090 [mm)] Source Offset -1.0 V]
Y* -3.670 [mm)] Focus Quad 1* -19.89  [V]
Z* -0.900 [mm)] Rotation Quad 2* 0.0 [V]
Sampler Cone Ni Jet Focus Offset 50.00 [V]
Skimmer Cone Ni H Matsuda Plate 0.0 V]
Focus Quad* -2.10 V]
Dispersion 0.0 [V]

PFA Nebuliser with a measured uptake rate of 50 pL/min
Cycles 200 | Integration time 1.049 [s/cycle]
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Table S6: Silicon isotope ratio results from solution MC-ICP-MS analysis (after alkali fusion and Si purification) of international
reference materials. Mean o&-values with their 2 standard deviations (2SD) of n repeat MC-ICP-MS analysis are reported

relative to NBS28.

Bulk solution MC-ICP-MS results

Averages of published values*

(this study)
829Si/%8Siings2s 2SD | 8%9Si/28Siygszs | 2SD | n | §2°Si/?%Singszs | 2SD | 83°Si/?%Singszs | 2SD
(%o) (%o) (%o) (%o)
BHVO-2 -0.11 0.05 -0.24 001 | 4 -0.14 0.05 -0.28 0.09
ERM-CD281 -0.15 0.06 -0.28 0.08 | 3 - - - -

*Values for BHVO-2 from (Jochum et al. 2005) and (van den Boorn et al. 2006, Abraham et al. 2008, Fitoussi et al.
2009, Savage et al. 2010, 2011, 2012, 2013a, 2013b, Opfergelt et al. 2011, 2012, Zambardi and Poitrasson 2011,
Armytage et al. 2011, 2012, Pogge von Strandmann et al. 2012, Pringle et al. 2013, 2016, Savage and Moynier 2013,
Kempl et al. 2013, Geilert et al. 2014a, 2014b, 2015, Dauphas et al. 2015, Tatzel et al. 2015, Mavromatis et al. 2016,

Reddy et al. 2016, Zheng et al. 2016, Chen et al. 2017)

Table S7: Silicon isotope ratio results from in situ fsSLA MC-ICP-MS analysis of international reference materials. Mean &-values
with their 2 standard deviations (25D) of n repeat fsLA MC-ICP-MS analysis are reported relative to NIST SRM610.

In situ fsLA MC-ICP-MS results

Averages of published values*

87°Si/%Siniste10 5%°Si/%Siniste10 57°Si/%8Sings2s 5%°Si/%8Sings2s
6 25D ) 25D | n (%) 25D (%) 25D
ATHO-G -0.13 0.18 -0.25 0.24 24 -0.19 0.12 -0.39 0.29
BHVO-2 -0.18 0.13 -0.32 0.20 46 -0.14 0.05 -0.28 0.09
GOR132-G -0.17 0.14 -0.36 0.18 10 -0.15 0.12 -0.27 0.21
NBS28 -0.02 0.15 -0.08 0.14 6 =0 - =0 -
NIST612 -0.01 0.12 0.01 0.13 16 -0.02 0.07 -0.02 0.11

*for ATHO-G: (Jochum et al. 2011, Schuessler and von Blanckenburg 2014, Frick et al. 2016), for BHVO-2 (van den
Boorn et al. 2006, Abraham et al. 2008, Fitoussi et al. 2009, Savage et al. 2010, 2011, 2012, 2013a, 2013b, Opfergelt
et al. 2011, 2012, Zambardi and Poitrasson 2011, Armytage et al. 2011, 2012, Pogge von Strandmann et al. 2012,
Pringle et al. 2013, 2016, Savage and Moynier 2013, Kempl et al. 2013, Geilert et al. 20144, 2014b, 2015, Dauphas et
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G (Jochum et al. 2011) and NIST612 (Schuessler and von Blanckenburg 2014, Frick et al. 2016)
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S-Figure 1: SEM image details of European beech (A) and Norway spruce (B). Both samples consist of finely-ground phytoliths
material, indicating a homogenisation process has taken place during the decomposition in the soil or the sample preparation
steps. Close inspection of the European beech phytolith fragments reveal a compacted structure of finely-ground fragments.
Scale bar are 100 um.
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