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ABSTRACT 19 

During the Quaternary, periodic glaciations transformed mountain landscapes. 20 

However, how mountain erosion changes between glacier- and river-dominated 21 

conditions has been elusive. Here, using samples from an offshore sedimentary core, we 22 



 

Page 2 of 17 

estimate the spatial distribution of erosion in the southern part of the Southern Alps of 23 

New Zealand during a full transition from the Last Glacial Maximum (LGM), ~20 ka, to 24 

the last millennium. Raman spectroscopy analyses of carbonaceous material reveal a 25 

marked change in the sediment provenance, which we interpret to reflect the evolving 26 

erosion pattern of the mountain range. Over the Holocene since at least ~9 ka, erosion 27 

was focused on the chlorite zone schist within the upper reaches of the valleys (>15–20 28 

km distance from the mountain front), possibly dominated by large-magnitude landslides. 29 

During the last glaciation, the proportion of sediments from the biotite schist and higher-30 

grade metamorphic rocks in the lower lying areas closer to the mountain front (<15–20 31 

km) was relatively higher, probably the products of glacier carving. Our results suggest 32 

that glacier retreat during the last deglaciation caused an upstream localization of the high 33 

erosion rates, which is consistent with the snowline records in the Southern Alps and the 34 

regional and global climate histories. 35 

INTRODUCTION 36 

The topography of a tectonically active mountain range is heavily influenced by 37 

surface processes, such as fluvial, glacial and hillslope erosion, which are strongly 38 

controlled by climate. Although it remains a subject of debate (e.g., Herman and 39 

Champagnac, 2016; Willenbring and Jerolmack, 2016), climate cooling has been 40 

proposed to have increased mountain erosion rates since the Plio-Pleistocene (Herman et 41 

al., 2013; Zhang et al., 2001). Accelerated erosion can be explained by expansion of 42 

alpine glaciers, which have been found to be locally more erosive than rivers (Hallet et 43 

al., 1996). However, other field observations suggest that fluvial incision and hillslope 44 

erosion can be as efficient as glacial erosion in tectonically active regions (e.g., Burbank 45 
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et al., 1996; Koppes and Montgomery, 2009; Larsen and Montgomery, 2012). The 46 

apparent conundrum in part reflects the lack of constraints on how erosion rates are 47 

distributed in space and time, especially during climatic transitions. 48 

Sediment fluxes measured at outlets of modern rivers and glaciers have been used 49 

to estimate catchment-averaged erosion at seasonal to decadal scales (e.g., Dadson et al., 50 

2003; Koppes et al., 2015), but they provide little constraints on how erosion varies 51 

spatially within a catchment. Here, based on a semiquantitative provenance analysis of 52 

sediments from an offshore core, we are able to estimate the spatial distribution of the 53 

relative erosion intensity at catchment scale as well as the variation of this distribution 54 

through time. Our approach is based on Raman spectroscopy of carbonaceous material 55 

(RSCM), which is commonly used to estimate the peak metamorphic temperature of 56 

rocks, based on quantifying the degree of graphitization of carbonaceous material (CM) 57 

during the metamorphism (Beyssac et al., 2002). The method has been recently applied in 58 

provenance studies in the Southern Alps of New Zealand (Herman et al., 2015; Nibourel 59 

et al., 2015): distributions of the estimated peak metamorphic temperatures from detrital 60 

samples were used to infer the erosion patterns of the source areas, assuming that the 61 

weathering intensity of CM is low and that there are no systematic biases introduced by 62 

denudation, transport and weathering processes. This main assumption, the preservation 63 

of CM tracer along the pathway from bedrock outcrops to the deposition, is also adopted 64 

in this study, but the caveats of the method and the potential bias associated with the 65 

possible weathering of the rock-derived CM are discussed in the Data Repository. 66 

SETTING 67 
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The Southern Alps extend along the Alpine Fault, a major transpressional 68 

boundary between the Australian and Pacific plates in the South Island of New Zealand. 69 

In the western Southern Alps since at least ~6–4 Ma (Sutherland, 1996; Walcott, 1998), 70 

rocks have been exhumed from upper to lower crustal levels and are exposed within a 71 

narrow, 15–30 km zone, presenting a metamorphic gradient sub-perpendicular to both the 72 

mountain strike and the Alpine Fault (Beyssac et al., 2016). In the central part of the 73 

range, rapid rock uplift and high precipitation have maintained high erosion rates up to 74 

~6–9 mm/yr over millennium to million-year time scales during the Plio-Pleistocene 75 

(Herman et al., 2010; Hovius et al., 1997; Tippett and Kamp, 1993), whereas in the 76 

southwest of the range the long-term rock exhumation rate decreases to ~1–2 mm/yr (Jiao 77 

et al., 2017; Tippett and Kamp, 1993). At the LGM the Southern Alps were extensively 78 

glaciated (Barrell, 2011), but now, in the study area, glacier névés only occur at the 79 

highest elevations (Fig. 1). In the areas of principal interest to this study, the Waiatoto 80 

and Arawhata catchments (see DISCUSSION), the two dominant rock types are chlorite 81 

and biotite schists (Fig. 1), which contain CM that record peak metamorphic temperatures 82 

in the ranges of 298–625 °C and 394–641 °C, respectively (single-grain data 83 

from Beyssac et al., 2016). Chlorite schist (CS), constituting ~38% of the surface area in 84 

the catchments, is distributed mainly in the upper valleys near the Main Divide (>15–20 85 

km horizontal distance to the mountain front), whereas biotite schist (BS), ~48% of the 86 

surface area, is more proximal (<15–20 km) to the Alpine Fault and at lower elevations 87 

(mostly <1000 m) (Fig. 2). The surface area (~14%) of other schist/semischist (garnet 88 

and upper amphibolite and sub-greenschist facies) is significantly smaller than the 89 

chlorite and biotite schists. West of the Alpine Fault, the bedrocks comprise 90 
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metamorphosed sandstones, gneisses and minor granitoids that are covered by glacial 91 

gravels (Rattenbury et al., 2010), which are much less eroded than the schists in the 92 

Southern Alps and significantly underrepresented in the river bedload (Cox and Nibourel, 93 

2015; Sutherland, 1996).  94 

SAMPLES AND METHODS 95 

Sediment samples (silts and clays) were collected from a piston core (TAN0712–96 

27; −43.753917°, 168.150617°; 1369 m water depth) on the northern levee of the 97 

Waiatoto Canyon (Fig. 1). The age model (from ~21 ka to <1 ka) of the core is 98 

constrained by three radiocarbon dates and environmental magnetic correlation with a 99 

nearby core (Fig. DR2; Tables DR1 and DR2). Twenty-seven samples were collected at 100 

every 10 cm, and each is 1 cm long and integrates sedimentation over periods from a few 101 

decades to more than one hundred years. X-ray diffraction (XRD) analysis suggests 102 

dominance of phyllosilicates, quartz, plagioclase and lesser calcite and K-feldspar (Fig. 103 

DR1), consistent with expected mineralogy of a terrestrial-dominated sediment derived 104 

from the schist in the Southern Alps. Phyllosilicates include white mica (phengite), 105 

chlorite, with lesser vermiculite (perhaps from weathered biotite) and traces of serpentine 106 

minerals (Fig. DR1). Eight samples were selected for RSCM analyses, and 185–228 CM 107 

particles were measured for each sample (Table DR3). In order to construct RSCM 108 

temperature distributions for different metamorphic source rocks in the Southern Alps, 109 

we obtained data from 16 bedrock samples from the Waiatoto and Arawhata catchments 110 

(Table DR3) and added them to the dataset reported by Beyssac et al. (2016). To address 111 

the tracer concentration variation in the bedrocks, we analyzed total carbon from sands 112 

collected in the rivers draining to the west coast from the Southern Alps (Table DR4), 113 
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and compiled existing total organic carbon (TOC) data from the literature (Table DR5). 114 

More details regarding the core, age model and analyses (magnetic, XRD, RSCM and 115 

TOC) are described in the Data Repository. 116 

RESULTS 117 

RSCM results indicate that the peak metamorphic temperatures of the CM grains 118 

in the samples range between 213 and 626 °C, with the majority between 375 and 575 °C 119 

(Fig. DR5). By comparing to the bedrock data (Fig. DR4), we estimate an optimized CM 120 

composition in terms of their source rocks through a Monte Carlo simulation, and use a 121 

ratio of 0.6–1 for the tracer abundance in the chlorite schist (CS) relative to the biotite 122 

and amphibolite schists, for accommodating the observed variation in CM concentration 123 

in the bedrocks (Data Repository). The results suggest that the majority (>90%) of the 124 

CM originate from the chlorite and biotite schists. In the Holocene samples (i.e., ~9.1–0.8 125 

ka), 86–91% of the CM are modelled to be from the CS, and considering the tracer 126 

abundance variation in source rocks, the proportion of the bulk CS sediments could be up 127 

91–93% (Fig. 3). 128 

The mixing model applied to the LGM sample (21.2 ka) predicts 65.5% CM from 129 

the CS, which corresponds to 65.5–75% bulk sediments using the relative tracer 130 

abundance ratio mentioned above, markedly lower than the Holocene samples. During 131 

the last deglaciation, the models suggest an increased proportion of the CS-derived CM 132 

from 73% at 14.3 ka to 87% at 9.1 ka, corresponding to an increased proportion of the CS 133 

sediments from 73–81% to 87–91% (Fig. 3). 134 

DISCUSSION 135 
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The narrow continental shelf (~15 km) and poorly sorted bed sediments suggest 136 

the submarine canyon is active and mainly fed by high river discharges sourced from 137 

high rainfalls, storms or earthquakes. Most of the sediment load is transported to the deep 138 

Tasman Sea, and the dominant deposition on the canyon levee comprises turbidity 139 

current overspill and hemipelagic sediments with negligible influence from surface ocean 140 

currents (Fig. DR6). The narrow coastal plain along the west coast of the South Island 141 

facilitates rapid delivery of most of the particulate sediments from the Southern Alps 142 

through the fluvial system to offshore. During the last glaciation, the sediment transport 143 

to the ocean was probably more efficient, due to rapid glacial evacuation and tidewater 144 

termini of glaciers in the region (Barrell, 2011). Therefore, we assume limited impact 145 

from the onshore storage on the sediment compositions in the core. The head of the 146 

Waiatoto Canyon is connected to the present-day Waiatoto and Arawhata rivers, whose 147 

catchments we postulate as the primary provenance for sediments in the core. This is 148 

supported by the observation that the quartz content in the core sediments is consistent 149 

with that measured in the modern sands from these two catchments, but lower than that 150 

from most other rivers draining the western flank of the Southern Alps (Fig. DR3). Some 151 

sediments in the core were perhaps also derived from the smaller Turnbull and Okuru, or 152 

the bigger Haast-Landsborough catchments, but including them as additional source areas 153 

does not materially affect our conclusions (Data Repository). 154 

Sedimentation rates in the core show a general increase from the glaciation (<10 155 

cm/kyr) to the Holocene (mostly >15 cm/kyr) (Fig. 3). This is consistent with the erosion 156 

history previously estimated from the bedrocks in the southern part of Southern Alps, 157 
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where the decadal erosion rate (>5 mm/yr) is significantly higher than the average 158 

exhumation rate over the Quaternary (<2 mm/yr) (Jiao et al., 2017). 159 

Our mixing models suggest that chlorite schist (CS) is the major source of the 160 

sediments in the offshore core, but the proportion of CS-derived material shows 161 

systematic variation through time. This is compared to the spatial distribution of erosion 162 

intensity predicted from models of three different surface processes, in order to infer their 163 

relative importance in contributing sediments to the drainage system. During the 164 

Holocene, erosion has been concentrated in the CS area in the catchment. We estimate 165 

the potential distribution of fluvial incision based on the unit stream power, which can be 166 

approximated by an upstream drainage area A and a channel slope S (ε = A0.5S, 167 

e.g., Finlayson et al., 2002). This calculation predicts high incision rates in the steep 168 

tributaries (Fig. DR7), with no significant contrast between the upper and lower valleys. 169 

On the other hand, mapped large (affecting area >0.2 km2) landslides are mainly located 170 

>30 km upstream (or >15 km in horizontal distance) from the Alpine Fault (Fig. 2; Fig. 171 

DR7) (Heron, 2014). We estimate that the CS sediments produced by landslides makes 172 

up ~64% of the total evacuated hillslope materials in the inventory of Heron (2014), 173 

using a volume-area scaling exponent of 1.5 (Larsen et al., 2010). Therefore, driven by 174 

the rapid rock uplift and relief production, the higher temporal frequency and larger 175 

affecting area of slope failures in the upper valleys relative to the low areas, support rock 176 

landslides to be the most significant sediment-contributing process during the last 9 ka, 177 

although the spatial analysis based on the current inventory does not fully reproduce the 178 

estimated very high proportion (86–93%) of CS sediments in the terrestrial component of 179 

the Holocene sediments. 180 
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The inferred erosion pattern during glaciation is different. A best-fit ice-sheet 181 

model for the LGM (Golledge et al., 2012) predicts fast flowing glaciers on the trunk 182 

beds of the mountain valleys, with particularly high velocities within 15 km from the 183 

Alpine Fault (Fig. DR7). As the rate of glacial abrasion may scale nonlinearly with the 184 

basal sliding velocity (Herman et al., 2015; Koppes et al., 2015), the low valleys formed 185 

by the biotite zone and amphibolite schist would have been preferentially carved by 186 

glaciers. Using the sliding velocity squared µ2 as a proxy for glacial erosion, the materials 187 

produced by glacial abrasion are expected to contain only 29% sediments from the CS. 188 

Therefore, compared to the present-day near ice-free condition, erosion during the 189 

glaciation would produce a higher proportion of the higher-grade metamorphic rocks; this 190 

is consistent with the decreased portion of CS sediments in the deeper samples in the 191 

core.   192 

From the LGM to early Holocene, the erosional change in the Southern Alps is 193 

synchronous with both global and regional warming of the atmospheric temperature (Fig. 194 

3). During this period, snowlines on the eastern flank of the Southern Alps rose by over 195 

226–360 m in elevation (Fig. 3)(Kaplan et al., 2013; Putnam et al., 2012). Due to higher 196 

precipitation rates, the ice mass to the west of the Main Divide is more sensitive to a 197 

warming climate and has receded more substantially following the LGM, with an 198 

Equilibrium line altitude (ELA) difference estimated over 1000 m (Golledge et al., 2012) 199 

(Fig. 2). Therefore, we suggest that the relative increase in erosion contribution from the 200 

high CS areas was a consequence of upstream retreat of the glaciers, which decelerated 201 

the erosion of the low-lying biotite zone and higher-grade schists. In addition, seasonal 202 

fluctuation of the ice mass may trigger increasing failures of steeper slopes in the CS 203 
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areas near the present ELA (Fig. 2), which is supported by the frequent rock avalanches 204 

observed in the current periglacial zones (Allen et al., 2011; Augustinus, 1992). During 205 

the Holocene, the sediment composition has been generally constant, in accord with the 206 

trends of the global atmospheric temperature and regional snowline elevations, both of 207 

which remained relatively steady until the last few hundred years. 208 
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FIGURE CAPTIONS 343 

 344 

Figure 1. Map of the Arawhata and Waiatoto (also Turnbull, Okuru and Haast) 345 

catchments in the Southern Alps of New Zealand and the offshore location of the 346 

TAN0712-27 core site. Bedrock metamorphism is from Rattenbury et al. (2010) and the 347 

bathymetry is from Neil et al. (2007). LGM ice extent is after Barrell (2011). Inset 348 

indicates the location of the map area. 349 

 350 

Figure 2. River profiles from the Waiatoto and Arawhata catchments. Equilibrium line 351 

altitude (ELA) during the Last Glacial Maximum (LGM) is extracted from the best-fit 352 

icefield model of Golledge et al. (2012), in comparison to the modern ELA of the Findlay 353 

Glacier (Fig. 1) (Willsman et al., 2010). Location and magnitude of landslides are from 354 

the inventory of Heron (2014). Proportions of chlorite schist (CS) area out of the total 355 

surface area as functions of elevation and upstream distance are plotted along the right 356 

and top axes, respectively.  357 

 358 

Figure 3. Sedimentary records compared to climate and snowline histories. Climate 359 

records are from the Vostok ice core, Antarctica (Petit et al., 1999) and New Zealand 360 

speleothem (Williams et al., 2005). Snowline elevation changes are from the Whale 361 



 

Page 17 of 17 

Stream (west branch) glacier (Kaplan et al., 2013) and the Cameron and Mt. Cook 362 

glaciers (Putnam et al., 2012). Sedimentation rates are estimated from the age model 363 

using spline (solid) and linear (dashed) interpolations. Sediment provenance is indicated 364 

as the estimated proportion of chlorite schist (CS) sediments, assuming a relative tracer 365 

abundance of 0.8±0.2 (line and envelope); error bar indicates a combined uncertainty 366 

from tracer abundance and standard deviation of the sediment mixing models. 367 
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