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Abstract The inverse problem of determining the flow at the Earth’s core-mantle boundary according
to an outer core magnetic field and secular variation model has been investigated through a Bayesian
formalism. To circumvent the issue arising from the truncated nature of the available fields, we combined
two modeling methods. In the first step, we applied a filter on the magnetic field to isolate its large scales
by reducing the energy contained in its small scales, we then derived the dynamical equation, referred as
filtered frozen flux equation, describing the spatiotemporal evolution of the filtered part of the field. In the
second step, we proposed a statistical parametrization of the filtered magnetic field in order to account
for both its remaining unresolved scales and its large-scale uncertainties. These two modeling techniques
were then included in the Bayesian formulation of the inverse problem. To explore the complex posterior
distribution of the velocity field resulting from this development, we numerically implemented an algorithm
based on Markov chain Monte Carlo methods. After evaluating our approach on synthetic data and
comparing it to previously introduced methods, we applied it to a magnetic field model derived from
satellite data for the single epoch 2005.0. We could confirm the existence of specific features already
observed in previous studies. In particular, we retrieved the planetary scale eccentric gyre characteristic
of flow evaluated under the compressible quasi-geostrophy assumption although this hypothesis was not
considered in our study. In addition, through the sampling of the velocity field posterior distribution, we
could evaluate the reliability, at any spatial location and at any scale, of the flow we calculated. The flow
uncertainties we determined are nevertheless conditioned by the choice of the prior constraints we applied
to the velocity field.

1. Introduction

The core magnetic field (MF) of the Earth is sustained by the dynamo action taking place in its outer core.
Here the variations in chemical composition and in temperature of the liquid metal allow convection to
develop. Since the fluid is electrically conducting, it interacts nonlinearly with the magnetic field. While the
flow is advecting the MF, this latter is constraining the fluid motions through the Lorentz forces. The evolu-
tion of the fluid velocity field (VF) and the magnetic field are therefore entirely connected to one another
through energy exchanges between them.

Studying such a system is difficult in many aspects. From a numerical point of view, simulating directly the
dynamic of the outer core is a challenging task. Because of the strong regime of turbulence that the mag-
netohydrodynamic (MHD) flow exhibits, the separation between the smallest and the largest scales of the
system is extremely broad. Yet to properly describe the evolution of both the VF and the MF, all these scales
should be considered in simulations since they interact nonlinearly together. However, this is, with the
actual computation power available, impossible.

From an observational point of view, direct observation of the evolution of the outer core is also impossible.
Nevertheless, measurements of the MF from ground observatories or satellites may allow to indirectly infer
some dynamical properties of the flow and the MF in the core. In particular, because of the low conductivity
of the mantle [Veĺımský, 2010], a knowledge of the core MF at the Earth’s surface is sufficient to evaluate
it at the level of the core-mantle boundary (CMB). At this very specific location, the MF is coupled to the
outer core VF through the frozen flux equation (a simplified version of the induction equation introduced
by Roberts and Scott [1965], and in which the diffusion effects are neglected). By inverting this equation,
it is therefore possible to evaluate the VF at the CMB. Unfortunately, the problem is ill posed for different
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reasons. First, the two components of the velocity field are connected to the radial component of the secular
variation (SV) through a unique equation. Then, the available secular variation given by MF models such as
the second generation of the GFZ Reference Internal Magnetic Model (GRIMM-2) of Lesur et al. [2010] is only
resolved at large scales whereas any scale of the velocity field can contribute to this resolved SV. Finally, as
it is the case for the SV, only the large-scale core MF can be determined at the Earth surface, yet interactions
between the unknown small-scale MF with the VF can generate large-scale SV [see Eymin and Hulot, 2005].

As shown by Backus [1968], to reduce the nonuniqueness of the velocity field in this inverse problem, con-
straints have to be imposed on the flow behavior. Different formulations have been proposed over the
past decades. This includes tangential-geostrophy, tangential-magnetostrophy, steady flow, columnar flow,
helical flow, or purely toroidal flow (see Holme [2007] and Finlay et al. [2010] for exhaustive reviews of the dif-
ferent constraints usually applied and their physical implications). Nevertheless, these physical constraints
are not sufficient to provide a unique flow solution [see Chulliat and Hulot, 2000, and references therein],
and additional regularization assumptions have to be introduced in the problem [see Holme, 2007].

Although identified for more than 20 years [Hulot et al., 1992], it is only recently that the effects of the
unknown small-scale MF on the large-scale SV have been modeled in the inversion of the frozen flux approx-
imation. In particular, two methods have given promising results, namely the ensemble approach of Gillet
et al. [2009] and the iterative method of Pais and Jault [2008]. The philosophies of these two approaches
is quite distinct from one another. Whereas in the method of Gillet et al. [2009], an ensemble of magnetic
field containing small scales is generated and directly used to evaluate an ensemble of velocity field; in the
method of Pais and Jault [2008], the effects of the unknown magnetic field is transposed into a modeling
error which is iteratively estimated. In this study, we propose a development of these approaches in the
context of Bayesian modeling.

In section 2, after describing the principle of derivation of the frozen flux equation, we recall the issue raised
in the inversion of this equation by the truncated nature of the available MF. We then describe how to iso-
late the large scales of the MF and present the approximated dynamical equation, referred as Filtered Frozen
Flux (FFF) equation, which determines the evolution of these large scales. At the end of the section, we
present how to formulate the inverse problem in a Bayesian framework when variations of the MF around
the prescribed one are allowed to occur. In section 3, tests on synthetic data are performed. In the first one,
we evaluate the improvement brought by using the FFF equation in the inverse problem. In the second test,
the Bayesian formalism developed in section 2 is considered to recover the velocity field from a set of artifi-
cially generated data, and the results are compared to the flow obtained with three other approaches. The
methodology we developed is then used to determine the velocity field and its underlying uncertainties for
the epoch 2005.0. Finally, we present our conclusions in section 4.

2. Governing Equations
2.1. The Frozen Flux Approximation
In this section, we introduce briefly the hypothesis necessary to derive the frozen flux approximation. For a
more detailed description, see Holme [2007].

Outside the core, the geodynamo’s MF 𝐁 is irrotational; it can therefore be expressed through a potential 𝜙
according to the relation:

𝐁 = −∇𝜙 . (1)

As mentioned previously, the low conductivity of the mantle [Veĺımský, 2010] allows to evaluate the MF, and
therefore, its radial component Br = −𝜕r𝜙 at the level of the core-mantle boundary. There its evolution is
prescribed by the induction equation:

𝜕tBr = −∇𝐇(𝐮Br) + 𝜂 (Δ𝐁) ⋅ 𝐞𝐫 , (2)

with ∇𝐇 the horizontal divergence operator, 𝐮 the two-dimensional velocity field, 𝜂 the magnetic diffusivity,
and 𝐞𝐫 a radial unitary vector. Because for the Earth, on short period of time, the dissipation effects are dom-
inated by advection effects [see Holme, 2007], and since our study is limited to single epoch inversion, the
fluid can be considered as a perfect conductor. Roberts and Scott [1965] showed that under this assumption,
known as the frozen flux (FF) approximation, the induction equation can be simplified as follows:

𝜕tBr = −∇𝐇(𝐮Br) . (3)
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2.2. The Unresolved Scale Issue
To perform a consistent inversion of the frozen flux equation at the CMB, in addition to imposing a certain
behavior to the flow and to regularizing it [see Holme, 2007; Finlay et al., 2010], every scale composing the
secular variation and the magnetic field must be known. Unfortunately, in the current models describing
the spatiotemporal evolution of the Earth’s magnetic field derived from satellite and observatory data, the
resolution of both the SV and the MF is limited. For the GRIMM-2 model of Lesur et al. [2010], for example,
the fields do not excess the degree 13 when expanded in spherical harmonics. So if gl,m corresponds to the
spherical harmonics (SH) coefficient at degree l and order m associated with the scalar potential 𝜙, such
as follows:

𝜙 = R
l=+∞∑

l=0

m=+l∑
m=−l

( c
r

)l+1
gl,mYl,m , (4)

where R is the core radius, and Yl,m is the Schmidt seminormalized SH; then according to equation (1), the
available MF B<r , and its unknown part B>r are respectively given by the following:

B<r = −
l=lc∑
l=1

(l + 1)
m=+l∑
m=−l

g<l,mYl,m (5)

B>r = −
l=+∞∑
l=lc+1

(l + 1)
m=+l∑
m=−l

g>l,mYl,m , (6)

with lc the cutoff scale (which is equal to 13 for the MF provided by the GRIMM-2 model). Note that the total
radial component of the MF corresponds to the sum of these two quantities.

To account for the truncated nature of the available MF and SV, the frozen flux approximation has to be
rewritten as follows:

𝜕tB<r = −
(
∇𝐇(𝐮Br)

)<
(7)

= −
(
∇𝐇

(
𝐮B<r

))< −
(
∇𝐇(𝐮B>r )

)<
, (8)

where the advection term, on the right-hand side of equation (8), is split into two parts, one depending
on the resolved magnetic field and the other function of the undetermined field. Hulot et al. [1992] were
the first to highlight the issue raised by the unknown part of the MF in the inversion of the FF equation.
Nevertheless, because at this epoch the uncertainties on SV measurements were large, the contribution of
the term

(
∇𝐇(𝐮B>r )

)<
could be neglected in the inverse problem. The recent increase in quality of both the

measurements and models describing the evolution of the core MF [see Hulot et al., 2002] invalidate this
latter statement, and Eymin and Hulot [2005] showed that the unresolved part of the MF could no longer be
neglected anymore.

2.3. Parametrization of the Unresolved Magnetic Field
To model the effects of the unresolved part of the magnetic field on the large-scale secular variation,
assumptions on this unknown field behavior have to be made. In particular, one can prescribe to it a certain
energy spectrum. This operation can be performed, for instance, by extrapolating the spectrum associated
with the resolved scales which is defined by the following:

EB< (l) = (l + 1)
m=l∑

m=−l

(
g<l,m

)2
. (9)

The resulting spectrum EB> can then be used to statistically model the unknown MF B>r . Following the devel-
opment of Hulot et al. [1992] where the field is assumed to be isotropically distributed, the covariance of the
coefficients g>l,m is directly proportional to the extrapolated spectrum through the relation:

E
[

g>l,m, g>l′ ,m′

]
=

EB> (l)
(l + 1)(2l + 1)

𝛿(l − l′)𝛿(m − m′) , (10)

where E [...] corresponds to the mathematical expectation.
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Figure 1. Energy spectrum of the GRIMM-2 magnetic field at the CMB
for the epoch 2005.0 (between SH degree 1 ≤ l ≤ 13) and its filtered
(thick lines) and nonfiltered (thin lines) extrapolations. The laws used to
extrapolate the large-scale spectrum were taken from Roberts et al. [2003]
(plus symbols), Voorhies [2004] (circles), and Buffett and Christensen [2007]
(triangles).

The issue with such a modeling is
that no universal spectrum of the
geodynamo’s MF at the core mantle
boundary is available. Nevertheless,
different formulations have been pro-
posed over the past decades, but
unfortunately, most of them strongly
differ from one another. An illus-
tration of this statement is given
in Figure 1 where the spectrum of
the MF prescribed by the GRIMM-2
model for the epoch 2005.0 (between
SH degree 1 ≤ l ≤ 13) together
with three different extrapolations
(thin lines) are plotted. In this exam-
ple, the laws derived by Buffett and
Christensen [2007], Roberts et al.
[2003], and Voorhies [2004] were used

to extrapolate the resolved scale spectrum. They, respectively, read the following:

EB
B(l) = C1𝜒

l (11)

ER
B(l) = C2e−Sl (12)

EV
B (l) = C3

l + 1∕2
l(l + 1)

(13)

with 𝜒 = 0.99 and S = 0.055. The constants C1, C2, and C3 were determined by fitting the resolved magnetic
field spectrum between the degree 2 < l ≤ 13.

As it is confirmed in Figure 1, the three extrapolated spectra present distinct behaviors. Furthermore, the
law proposed by Buffett and Christensen [2007] predicts a strong concentration of energy at small scales. If
this latter formulation was to be the closest one from reality, the unresolved MF would have to be modeled
at very high degree (up to l∼500), which is nowadays numerically impossible. We propose therefore to
reduce the impact of the small-scale magnetic field on the large-scale secular variation by applying a filter
on the magnetic field and by determining the dynamical equation governing the evolution of the resulting
filtered field.

2.4. Filtering of the Fields
As it is believed to be the case for the Earth’s dynamo, the degree of turbulence in astrophysical or geo-
physical systems is most of the time extremely high. This implies that the magnetic and velocity fields are
populated by a great variety of scales. Capturing all these scales in observations or in numerical simulations
is usually impossible. Therefore, focusing on the large scales, and their dynamics, is probably the best solu-
tion to study such systems. This approach has been widely followed in the context of hydrodynamic (HD)
and magnetohydrodynamic (MHD) turbulence [see Sagaut, 2006; Lesieur, 2008; Baerenzung et al., 2008a,
2008b]; Fabre and Balarac, 2011]. To extract the large scales from a given field, one has to filter it. In HD or
MHD turbulence, three different filters are generally used, the top-hat or the Gaussian filter for studies in
Cartesian space, or the sharp cutoff filter in spectral space. While the top-hat and Gaussian filter are continu-
ous filters, the cutoff filter truncates the field above a certain predefined scale. In spherical coordinates, the
top-hat filter is usually preferred [Sun and Su, 2007] since until recently no equivalent of the Gaussian filter
existed for such geometries (see, however, Bülow [2004]). In our study, we consider the isotropic filter devel-
oped by Bülow [2004]. The principle of derivation of this filter is detailed in Appendix A. Applying this filter
to a scalar field 𝜉 leads to the following:

𝜉 = G ⋆ 𝜉 , (14)
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where 𝜉 is the filtered field, the ⋆ symbol denotes the convolution product over the sphere between convo-
lution kernel G and the scalar field 𝜉. According to the convolution theorem [see Driscoll and Healy, 1994], in
spectral space equation (14) becomes the following:

𝜉 l,m =
√

4𝜋
2l + 1

𝜉l,mG0
l , (15)

where 𝜉 l,m and 𝜉l,m are, respectively, the filtered and the total SH coefficients associated with 𝜉, and G0
l is

convolution kernel expressed in spectral space at degree l. Since for the filter developed by Bülow [2004], G
is zonal, only its coefficients at order m = 0 are different from zero. As shown in Appendix A equation (A7),
equation (15) can be expressed as follows:

𝜉 l,m = 𝜉l,m exp

(
− l(l + 1)Δ

2

24R2

)
, (16)

where Δ corresponds to the filter width. With this formulation, one can directly connect the spectrum of the
scalar field E𝜉 to the spectrum of its filtered part E𝜉 as follows:

E𝜉 = E𝜉 exp

(
− l(l + 1)Δ

2

12R2

)
. (17)

We then applied this filter to the three different extrapolated spectra presented in the previous section (see
equations (11)–(13)). In Figure 1, the nonfiltered (thin lines) and the filtered (thick lines) spectra are plotted.
The width of the filter has been set to Δ = 500 km in order to preserve the large-scale fields and to suppress
the small-scale ones. One can observe that most of the energy that was contained in the small scales of
the initial fields have now vanished in the filtered fields. Furthermore, the variations between the different
extrapolated filtered spectra are now much less pronounced than in the nonfiltered case.

2.5. The Filtered Frozen Flux Approximation
Applying the spatial filter presented in the preceding section to the velocity and the magnetic field allows
to decompose them into an averaged part 𝐮 and Br , and a fluctuating part 𝐮′ and B′

r such as the following:

𝐮 = 𝐮 + 𝐮′ (18)

Br = Br + B′
r . (19)

Since the spatial filter considered here is homogeneous and time invariant, it commutes with all the dif-
ferential operators encountered in the induction equation. Therefore, applying this filter to the frozen flux
approximation (equation (3)) leads to the following:

𝜕tBr = −∇𝐇(𝐮Br) . (20)

Following the decomposition introduced by Leonard [1974], the part of the subgrid stress tensor which
allows interactions between the tangential components of the velocity field and the radial component of
the MF reads

𝜏 = 𝐮Br − 𝐮Br . (21)

Now equation (20) can be rewritten as follows:

𝜕tBr = −∇𝐇(𝐮Br) − ∇𝐇𝜏 . (22)

The subgrid stress tensor 𝜏 , through the averaged product 𝐮Br = (𝐮 + u′)(Br + B′
r), incorporates interactions

between averaged and fluctuating part of the velocity and magnetic fields; thus, equation (22) is not closed
in the sense that it does not only contains large-scale quantities. To close this equation, expressions of the
fluctuating quantities depending on the averaged ones have to be derived.
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As mentioned in Appendix A, the filtered velocity and magnetic field are both solutions of the diffusion
equations:

𝜕s𝐮(𝐱, s) = DuΔH
𝐮(𝐱, s) (23)

𝜕sBr(𝐱, s) = D
B
Δ

H
Br(𝐱, s) (24)

𝜕s

(
𝐮(𝐱, s)Br(𝐱, s)

)
= D

B
Δ

H

(
𝐮(𝐱, s)Br(𝐱, s)

)
(25)

where the filtered and total fields are, respectively, 𝐮 = 𝐮(𝐱, s) and Br = Br(𝐱, s), and 𝐮 = 𝐮(𝐱, 0) and
Br = Br(𝐱, 0), and the product between s and the two diffusion coefficients DB and Du determines the
width of the filter. Note that since DB is the diffusion coefficient applied to each term of the frozen flux
equation, it has to be applied to the MF but not necessarily to the VF. To link fluctuating to filtered fields,
Taylor expansions at the first order in s of 𝐮, Br , and 𝐮Br , using relations (23) to (25) are performed, leading to
the following:

𝐮 ∼ 𝐮 − sDuΔH
𝐮 (26)

Br ∼ Br − sD
B
Δ

H
Br (27)

𝐮Br ∼ 𝐮Br + sD
B
Δ

H
(𝐮Br). (28)

By analogy to the usual Gaussian filters used in large eddy simulations, one can define the following
characteristic lengths:

Δ
2

u = 24sDu (29)

Δ
2

B
= 24sD

B
. (30)

Letting Δ
2

u = Δ
2

B
= Δ

2
, injecting equations (26) and (27) into equation (28), and keeping only the first-order

terms, one gets the following:

𝐮Br ∼ 𝐮Br −
Δ

2

24

(
𝐮Δ

H
Br + BrΔH

𝐮 − Δ
H
(𝐮Br)

)
, (31)

which can be reduced to the following:

𝐮Br ∼ 𝐮Br +
Δ

2

12

((
∇𝐇Br

)
∇𝐇

)
𝐮 . (32)

So the subgrid stress tensor 𝜏 in its approximated closed form reads

𝜏 = Δ
2

12

((
∇𝐇Br

)
∇𝐇

)
𝐮 . (33)

The filtered frozen flux equation can now be written for the filtered secular variation 𝜕tB
<

r truncated at
degree lc = 13 as follows:

𝜕tB
<

r = −
(
∇𝐇(𝐮Br)

)<
−
(
∇𝐇𝜏

)<
, (34)

with Br = B
<

r + B
>

r .

In the case where Δ
2

u and Δ
2

B
are assumed to exhibit different values, the compact form of the subgrid stress

tensor 𝜏 is lost. As a consequence, the numerical cost to evaluate this latter is increased. The simulations we
performed in this study being numerically demanding, we therefore chose to set Δ

2

u = Δ
2

B
.

In our study, the extrapolated filtered magnetic field B
>

r is extended up to the spherical harmonic degree
l = 30. Above this scale, the filtered magnetic field (for Δ = 500 km) is extremely weak (see Figure 1) and its
influence on the large-scale secular variation is neglected.
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2.6. Bayesian Formulation of the Inverse Problem
The problem of determining the velocity field at the CMB knowing the exact MF and the SV together with its
uncertainties is an ill-posed inverse problem: in a continuum formulation, the number of unknown is twice
as large as the number of equations. One of the most common methods to tackle this problem consists
in minimizing an energy functional composed of two main terms; a quantity measuring the discrepancies
between the model and the data, balanced, through a regularization parameter, with a quantity expressing
a prior knowledge on the expected solution. This method has been widely used to evaluate the flow at the
CMB and for a review of the different parametrization employed [see Holme, 2007].

Another option consists in formulating the problem in a Bayesian framework. The solution becomes then
the full posterior distribution of the velocity field given the secular variation. This method allows the
estimation of a model for the flow together with the quantification of its uncertainties.

When variations around the prescribed MF are allowed to occur, the inverse problem becomes more com-
plicated. For models of the Earth’s core MF derived from satellite or observatory data, the nature of these
variations is diverse. At large scales, they can be due to a leakage of the external and lithospheric field into
the core field, whereas at small scales, the entire MF is undetermined because of the dominance of the litho-
spheric field at the Earth’s surface. Recent models such as GRIMM-2 [Lesur et al., 2010] are able to separate at
large scales (between SH degree 1 ≤ l ≤ 13) the external from the core field, but not the lithospheric field
from the core field. As a consequence, the large-scale lithospheric field becomes a source of uncertainty on
the geodynamo’s MF.

To parametrize the unresolved part of the MF in the inverse problem, different approaches have been
recently developed. This includes the ensemble method of Gillet et al. [2009] and the iterative algorithm of
Pais and Jault [2008]. In this study we propose to extend these methods to the context of Bayesian model-
ing, following the development of Jackson [1995]. Furthermore, in addition to parametrizing the unresolved
MF, we also consider the uncertainties on the large-scale MF due to the lithospheric field.
2.6.1. CMB Velocity Distribution
From now on, in order to simplify the notations, the filtered MF and VF and the filtered and truncated SV will
be written as follows:

Br = b (35)

𝐮 = u (36)

̇B
<

r = 𝛾 . (37)

In this section, the distribution we want to characterize is the posterior distribution of the velocity field
given the secular variation p (u|𝛾). But since we want to account for the unknown small-scale magnetic field
together with the uncertainties on the large-scale field, this distribution cannot be expressed directly. Nev-
ertheless, it can be obtained by marginalizing the joint posterior distribution of the velocity field and the
magnetic field as follows:

p (u|𝛾) = ∫ p(u, b|𝛾)db . (38)

According to Bayes [1763], the distribution on the right-hand side of relation (38) can be decomposed into
the following:

p(u, b|𝛾) = p(𝛾|u, b)p (u, b)
p(𝛾)

, (39)

with p (u, b) the joint prior distribution of the VF and the MF, p(𝛾) the distribution of the SV, which is constant
with respect to both u and b, and finally p(𝛾|u, b) the likelihood distribution. Because u and b are a priori
assumed to be independent random variables, their joint distribution can be split into two distributions
such as the following:

p (u, b) = p(u)p(b) . (40)
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The prior distribution of the VF p(u) is assumed to be Gaussian with the following general form:

p(u) =
exp

[
− 1

2
uTΣ−1

u u
]

(2𝜋)
d
2 |Σu| 1

2

(41)

with d the dimension of the VF vector, which in our case is twice as large as the dimension of the MF and SV,
and Σu the velocity covariance matrix chosen to enforce the spatial smoothness of the flow. For this purpose,
we impose that

uTΣ−1
u u = ∫Ω

(|∇𝐇
(
∇𝐇 ⋅ u

) |2 + |∇𝐇
(
𝐫 × ∇𝐇 ⋅ u

) |2
)

d𝜔

+ 𝛼2 ∫Ω
|u|2d𝜔 . (42)

The right-hand side of equation (41) is composed of two different norms on u, namely the Bloxham’s “strong
norm” [Bloxham, 1988; Jackson et al., 1993] for the first one and the standard L2 norm for the second one. The
domain of integration Ω is the surface of the sphere describing the CMB, and the balance factor 𝛼2 is chosen
to be small enough not to modify the correlation length induced by the Bloxham norm. Furthermore, the
covariance is rescaled such as the averaged standard deviation of the velocity field intensity is 20 km/yr. This
implies that at any location of the core-mantle boundary, the probability for the flow intensity to exceed the
value of 50 km/yr, an upper limit calculated by Finlay and Amit [2011], is of the order of 0.01.

As for the velocity field, the magnetic field b is also assumed to be normally distributed, but with a mean
b0 corresponding to the resolved MF, and a covariance Σb. Its prior distribution can therefore be expressed
as follows:

p(b) =
exp

[
− 1

2

(
b − b0

)T Σ−1
b

(
b − b0

)]
(2𝜋)

d
4 |Σb| 1

2

. (43)

In this equation the two parts of the MF b = b< + b> have different behaviors. The truncated field b< is taken
from the GRIMM-2 model with E[b<] = b0 whereas the unknown MF b> is characterized by the averaged
value E[b>] = 0. Since in the GRIMM-2 model, the core field and the lithospheric field overlap at large scales,
this latter field can be viewed as a source of uncertainties on b<. We propose therefore to use the theoretical
spectrum of the lithospheric field given by Thebault and Vervelidou [2013] to build the covariance matrix Σb<

for the resolved scales magnetic field. This spectrum reads the following:

EL
B(l) = (l + 1)

(
𝜇0|M|Fa

l (𝜖)
)2

l−𝛿Cl (44)

with |M| = 0.4225 A m−1 the averaged crust magnetization, 𝜖 = 27 km the equivalent magnetized layer
thickness, and the constants 𝜇0 = 4𝜋10−7, 𝛿 = 1.28, and a = 6371.2 km. The two functions Fa

l (𝜖) and Cl are
given by the following:

Cl =
l(l + 1)(160l5 + 264l4 − 192l3 − 130l2 + 96l − 9)

6(2l + 3)2(2l + 1)2(2l − 1)2

Fa
l (𝜖) =

1 − (1 − 𝜖∕a)(l−1)

l − 1
.

Letting the truncated MF b< being linked to its spectral counterpart g<l,m through the relation b< = FPg<l,m,
where the operator P projects the coefficients in physical space, and the operator F filters the field, and
assuming that the lithospheric field is isotropically distributed, the covariance of the truncated MF is
the following:

Σb< = E
[(

b< − b0

) (
b< − b0

)T
]

(45)

= E

[
PF

(
g<l,m − g0

l,m

)(
g<l,m − g0

l,m

)T
FT PT

]
(46)

= PF
EL

B(l)
(l + 1)(2l + 1)

FT PT , (47)

where g0
l,m are the spherical harmonics coefficients associated with b0.
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The extrapolated SH coefficients of the MF g>l,m are assumed to individually have a 0 mean and a vari-
ance depending on the extrapolated spectrum EB

B>
(l) from Buffett and Christensen [2007] as shown in

equation (10). Therefore, in physical space, the MF also has a 0 mean at any spatial location and a covariance
given by the following:

Σb> = PF
EB

B>
(l)

(l + 1)(2l + 1)
FT PT . (48)

By combining Σb< with Σb> , one gets the total covariance Σb for the MF.

The last distribution to characterize is the likelihood distribution which measures the discrepancies between
the model (the filtered frozen flux equation) and the data (the secular variation). It reads the following:

p(𝛾|b, u) =
exp

[
− 1

2

(
𝛾 + Aub

)T Σ−1
𝛾

(
𝛾 + Aub

)]
(2𝜋)

d
4 |Σ𝛾 | 1

2

, (49)

where the operator Au, when applied to b, allows to calculate the nonlinear term of the filtered frozen flux
equation

(
∇𝐇 (ub + 𝜏)

)<
, and the covariance matrix Σ𝛾 is the SV posterior covariance of the GRIMM-2 model.

All the distributions entering the velocity field posterior distribution being detailed, this latter can be evalu-
ated. The integral given in equation (38) has already been calculated by Jackson [1995], so we only present
the result which reads as follows:

p(u|𝛾) = p(u)
p(𝛾) ∫ p(𝛾|b, u)p(b)db

∼ 1|N| d
4

exp
[
−1

2

(
c − rT N−1r + uTΣ−1

u u
)] (50)

with

N = AT
uΣ

−1
𝛾

Au + Σ−1
b , (51)

r = Σ−1
b b0 − AT

uΣ
−1
𝛾
𝛾 , (52)

c = 𝛾TΣ−1
𝛾
𝛾 + bT

0Σ
−1
b b0 . (53)

Since expression (50) does not allow an easy understanding of the effects arising from the modeling of the
MF variations on the posterior distribution of the velocity field, we decided to rewrite it into a more intuitive
form. It reads as follows:

p(u|𝛾) = (2𝜋)−
3d
4

|Σ�̃� | d
4

exp
[
−1

2

(
𝛾 + Aub0

)T Σ−1
�̃�

(
𝛾 + Aub0

)]
× 1|Σu| d

2

exp
[
−1

2
uTΣ−1

u u
]
× 1

p(𝛾)
(54)

Σ�̃� = Σ𝛾 + AuΣbAT
u . (55)

This formulation is very similar to the posterior distribution of the velocity field in the case where the
magnetic field is exactly known. Indeed, this latter distribution can be obtained by simply replacing the
covariance matrix Σ�̃� by Σ𝛾 . One can therefore observe that accounting for the small-scale magnetic field
and the lithospheric field when formulating the inverse problem in a Bayesian framework leads to an
increase of the secular variation uncertainties through the quantity AuΣbAT

u . Because of the dependency
of this latter term on the velocity field u, the maximum of the posterior distribution cannot be analytically
calculated as already mentioned by Jackson [1995]. Nevertheless, it is numerically possible to extract the
main statistical characteristics of this posterior distribution using a Markov chain Monte Carlo method [see
Mosegaard and Rygaard-Hjalsted, 1999; Rygaard-Hjalsted et al., 2000]. The algorithm we chose to explore the
posterior distribution and the results we obtained are presented in the next section.
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Figure 2. Discrete CMB after four steps in the refinement of
the initial icosahedron.

3. Numerical Method and Results

The SV, MF, and VF are expressed in physical
space; therefore, the surface of the CMB has been
discretized by recursively dividing an initial icosa-
hedron (see Figure 2). The grid construction and
its properties, as well as the approximation of the
differential operators are detailed in Appendix B.

Given that the grid is composed of N nodes, the
vectors b, 𝛾 , and u are given by the following:

bT =
(

b0...bi...bN−1

)
,

𝛾T =
(
𝛾0...𝛾i...𝛾N−1

)
,

uT =
(

u0..., ui, ..., uN−1

)
.

3.1. Evaluation of the Filtered Frozen
Flux Model
To evaluate the FFF model, an inversion of this

equation was performed using GRIMM-2 as well as artificially generated MF and SV models. The large-scale
magnetic field was taken from the GRIMM-2 model at the epoch 2001.0, whereas the small scales were ran-
domly generated for SH degree lying between 14 and 160 according to the exponential law (11). The MF
was then filtered (with Δ = 80 km) such as its smallest scales, which cannot be properly represented on
the grid, exhibited a low-energy level. This MF is referred as b0. To create a SV associated with this MF, we
drew randomly a velocity field and used it to advect the MF with the FF equation (3). The velocity field was
decomposed into a poloidal and a toroidal part such as the following:

𝐮 = ∇Φ + 𝐞𝐫 × ∇𝜓 . (56)

In spectral space, the spherical harmonics coefficients for the poloidal and toroidal field, respectively, read
Φl,m and 𝜓l,m. In order to promote interactions between small and large scales, Φl,m and 𝜓l,m were extended
up to spherical harmonic degree 80 with the following statistical properties:

E[Φl,m] = E[𝜓l,m] = 0 ∀l,m (57)

E[Φl,mΦl′ ,m′ ] = Cl−14∕3|m|−11∕3𝛿ll′𝛿mm′ (58)

E[𝜓l,m𝜓l′ ,m′ ] = Cl−14∕3|m|−11∕3𝛿ll′𝛿mm′ (59)

E[Φl,m𝜓l′ ,m′ ] = 0 ∀l, l′,m,m′ , (60)

where C is a normalization constant. The choice of a l−14∕3 power law imposed onto the poloidal and toroidal
field correlation allowed to generate a flow with similar statistical properties than a two-dimensional
turbulent flow [see Sukoriansky et al., 2002].

To directly simulate the advection of the MF, a fourth-order Runge-Kutta scheme had been implemented.
The integration time was taken to be 0.05 year, and the computation was performed on a grid refined 7
times (with 163, 842 nodes).

In Figure 3, the spectrum of the resulting secular variation is plotted. As it can be observed, the energy of the
SV is maximum at scales lying between l = 60 and l = 100 indicating that the MF is strongly affected by the
velocity field at these scales.

To mimic an analogous situation as the one encountered when using models fitting satellite data where
both the MF and SV cannot be entirely taken into account, but in a less unfavorable case, the artificial fields
were truncated at degree l = 40. The resulting MF and SV are respectively referred as 𝛾 and b<0 . These fields
were then used as an input for the inversion of the FFF equation. Two different filter widths were tested,
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Figure 3. Spectrum of the secular variation generated by advecting the
GRIMM-2 extrapolated MF at the epoch 2001.0 with an artificial velocity
field.

Δ = 500 km and Δ = 0 km. Note that
in the latter case, the equation reduces
then to the usual FF approximation.
Since the statistical properties of the
velocity field were exactly known, they
were directly injected in the prior infor-
mation p(u). No measurement errors on
the secular variation and the magnetic
field had been generated; therefore, the
likelihood and the MF prior distributions,
respectively, read as follows:

p (𝛾|u, b) = 𝛿
(
𝛾 + ∇𝐇(bu + 𝜏)

)
, (61)

p(b) = 𝛿(b − b<0 ) . (62)

Multiplying together these two distributions and marginalizing the result with respect to b leads to
the following:

p (𝛾|u) = 𝛿
(
𝛾 + ∇𝐇

(
b<0 u + 𝜏

(
b<0

)))
, (63)

with 𝜏(b<0 ) the subgrid stress tensor evaluated with b<0 . The posterior distribution of the velocity field is then
proportional to:

p (u| 𝛾) ∼ p (𝛾|u) p(u) . (64)

The Bayesian formulation of the problem being described, the discrete velocity field that maximizes the
posterior distribution could be determined for the two cases. To do this, a particular solution of the equation
𝛾 + ∇𝐇

(
b<0 u + 𝜏

(
b<0

))
= 0 was calculated. In addition, the null space of the operator Ab<0

defined such

as Ab<0
u = ∇

H

(
b<0 u + 𝜏

(
b<0

))
was parametrized. The final solution corresponded then to the sum of the

particular solution with the null space one which minimized the prior information on the VF. The grid used
to realize the computation was composed of 10, 242 nodes (approximately 16 times less than the one taken
to advect the MF). For the results to be comparable, the three different velocity fields were truncated at SH
degree l = 40. Furthermore, the artificially generated field and the velocity field obtained by inverting the
FF approximation (Δ = 0) were filtered with Δ = 500 km.

On the left side of Figure 4, the poloidal and toroidal spectra, respectively, defined by the following:

EΦ = l(l + 1)
m=l∑

m=−l

(Φl,m)2 (65)

E𝜓 = l(l + 1)
m=l∑

m=−l

(𝜓l,m)2 , (66)

are plotted for the three velocity fields. The behavior of the spectra associated with the artificial velocity field
(full line) is correctly reproduced at large scale (1 ≤ l ≤ 23) by both the FF (crosses) and the FFF (circles)
flow models, whereas at SH degree close to the cutoff lc = 40, the discrepancies between the exact spectra
and the spectra of the inverted velocity fields become larger. Nevertheless, the spectra of the difference
between exact and inverted velocity fields, displayed on the right side of Figure 4, show that the use of the
FFF equation allows to reproduce more accurately the artificial velocity field at almost any scale.

To quantify the spatial error of the two inverted velocity fields, the following quantities were computed:

FF =
∫ |u − u

FF
|2dΩ

∫ dΩ
= 4, 92 km2. yr−2 (67)
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Figure 4. (top) Poloidal and (bottom) toroidal (left) energy spectra and (right) error spectra. The full line is associated
with the exact field, the plus symbols correspond to the field solution of the FF inversion, and the circles are assigned to
the field solution of the FFF inversion.

FFF =
∫ |u − u

FFF
|2dΩ

∫ dΩ
= 2, 83 km2. yr−2 (68)

Etot =
∫ |u|2dΩ
∫ dΩ

= 130 km2. yr−2 , (69)

where the integration domain is the surface of the CMB, u is the exact filtered velocity field, uFF and uFFF

are, respectively, the filtered velocity field obtained by inverting the FF and the FFF equations. The result of
these computations shows that although the energy associated to the error fields is weak in comparison to
the total energy of the exact flow, performing an inversion of FFF approximation reduces the global error
on the VF.

3.2. Sampling of the Velocity Posterior Distribution
In this part we present a method to sample the posterior distribution p(u|𝛾) given in equation (54). Since this
distribution exhibits a complex form with respect to the velocity field u, directly drawing sample from it is
impossible. Nevertheless, by building an appropriate Markov chain on the VF, one can map the distribution
(for a complete description of Markov chain Monte Carlo methods, see Gamerman and Lopes [2006]). For this
study we chose an algorithm of the Metropolis-Hastings type to construct the chain. The principle of the
method is the following:

1. In the initial step, a VF un with n = 0 is generated. No particular property has to be imposed on this field,
but choosing a field which is as close as possible to the one maximizing the target distribution will allow
the chain to converge faster.

2. From un, a field un+1 is constructed according to some arbitrary transition kernel q(un+1, un).
3. The next step consists of accepting or rejecting the move from un to un+1. Therefore, an acceptance prob-

ability 𝛼(un+1, un) is defined. In the case of the Metropolis-Hastings algorithm, this probability is expressed
as follows:

𝛼(un+1, un) = min

{
1,

p(un+1|𝛾)q(un+1, un)
p(un|𝛾)q(un, un+1)

}
. (70)

4. The process returns then to step 2 with un+1 if the move from un to un+1 is accepted, and
with un otherwise.
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Figure 5. (top) Magnetic field energy spectra. GRIMM-2 MF for the epoch
2004.0 (thick line), extrapolated MF (plus symbols), and GRIMM-2 MF con-
taminated with a randomly generated lithospheric field (circles). (bottom)
Secular variation energy spectra. Artificially generated SV (thick line), error
field (plus symbols), and combination of the two fields (circles).

The ensemble is then assumed to
be representative of the posterior
distribution, once its averaged veloc-
ity field has converged towards a
fixed vector.

Note that this algorithm has already
been employed by Mosegaard and
Rygaard-Hjalsted [1999]; Rygaard-
Hjalsted et al. [2000] for sampling
the posterior distribution given in
equation (50), but with a different
parametrization of the magnetic field
and the velocity field. In particular,
only the uncertainties on the large
scale MF were considered in these
two studies.

As already mentioned previously, ana-
lytically calculating the maximum
of the posterior distribution p(u|𝛾)
is not feasible. We therefore decided
to approximate it by taking the
averaged VF of the ensemble gen-
erated by the Markov Chain, such as
the following:

arg max
u

p(u|𝛾) ∼ ∫ u p(u|𝛾)du .

(71)

3.2.1. Evaluation and Comparison of the Method With Artificial Data
To evaluate our method, we generated artificially a secular variation field and a magnetic field and then
performed the inversion of the FFF equation using these latter. We also compared our results to the ones
obtained with alternative approaches. The construction of the synthetic fields was performed as follows:

Artificial magnetic field. The large-scale MF (between spherical harmonic degree 1 ≤ l ≤ 13) was taken
from the GRIMM-2 model at the epoch 2004.0. Its spectrum (the thick black line in Figure 5, top) was then
extrapolated up to degree l = 30 according to the formulation (11) of Buffett and Christensen [2007]. From
this small-scale spectrum, and under the assumption of isotropy and 0 mean of the field, a MF was randomly
generated and added to the GRIMM-2 large-scale field. In Figure 5 (top), the spectrum of the small-scale MF
is represented by the plus symbols.

Artificial velocity field. The coefficients, in spectral space, of the poloidal (Φ) and toroidal (𝜓 ) fields were
assumed to be isotropically distributed with a 0 mean and a covariance Σ̃u derived from the following power
law spectrum:

EΦ(l) = E𝜓 (l) = A2l−5∕3 , (72)

where the value of the amplitude A was chosen such as the averaged velocity intensity at the CMB was of
17 km yr−1. The choice of an isotropic spectrum to characterize the flow behavior was dictated by usual
inversion methods where the regularization term is derived under this hypothesis. A velocity field extending
up to degree l = 26 was then randomly drawn accordingly to these statistical properties.

Artificial secular variation. To generate an artificial large-scale SV (extending up to degree l = 13), the MF was
advected by the VF through the nonlinear term of the frozen flux approximation (3). The energy spectrum of
the resulting SV is presented with the thick line in Figure 5 (bottom).

The next step of this evaluation was to recover the velocity field according to the magnetic field and the
secular variation. But for this inverse problem to be more realistic, uncertainties were added to the data. A
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large-scale lithospheric field (1≤ l≤13) was randomly generated accordingly to the theoretical spectrum
EL

B of E. Thebault and F. Vervelidou (submitted manuscript, 2013) (see equation (44)) and added to the arti-
ficial MF. This contaminated field was then truncated at degree l = 13. It is referred as b0 and its energy
spectrum is plotted in Figure 5 (top) with circles. The uncertainties on the secular variation were built by ran-
domly drawing a field from a Gaussian distribution with a 0 mean and a covariance given by the posterior
covariance matrix of the GRIMM-2 secular variation Σ𝛾 . The resulting field was then superimposed on the
artificial field. The spectrum associated with the total SV is shown with circles in Figure 5 (bottom).

Except for the prior distribution of the velocity field p(u), all the distributions derived in section 2.6.1 are
consistent to describe the posterior distribution of the velocity field in this test. We recall that they read
the following:

p(𝛾|u, b) =  (
−
(
∇𝐇 (ub + 𝜏)

)<
,Σ𝛾

)
, (73)

p(b) =  (b0,Σb) , (74)

where  (x0,Σx) corresponds to the normal distribution centered in x and with covariance Σx , and Σb is the
covariance of the MF in which are included the uncertainties due to the lithospheric field and the modeling
of the unresolved MF. For this evaluation phase, the prior distribution of the VF was given by the following:

p(u) =  (0, Σ̃u) , (75)

with Σ̃u the covariance of the VF derived from the power laws (72).

The estimation of the flow with respect to the artificial MF and SV was then realized with the five algorithms
presented below.

MCMC method. In this approach, the full posterior distribution of the velocity field p(u|𝛾) is explored with the
Metropolis-Hastings algorithm described in the beginning of the section. The transition kernel q(un+1, un)
entering the algorithm (step 2) is derived from the prior distribution of the VF as follows:

q(un+1, un) =
exp

[
− 1

2𝜆2 (un+1 − un)T Σ̃−1
u (un+1 − un)

]
(2𝜋)

d
2 |Σ̃u| 1

2

, (76)

where the factor 𝜆 allows to rescale the covariance Σ̃u in order to limit the distance of the move from
one velocity field to the other. Since this kernel is symmetric with respect to un+1 and un, the acceptance
probability 𝛼(un+1, un) of equation (70) reduces to the following:

𝛼(un+1, un) = min
{

1,
p(un+1|𝛾)

p(un|𝛾)
}
. (77)

The initial field was set to 0 and an ensemble of Nm = 230, 000 VF ui was generated. We then approximated
the flow maximizing the posterior distribution through the averaging operation:

u0 = 1
Nm

i=Nm∑
i=1

ui . (78)

Least square method. In this method, the magnetic field b is assumed to be exactly known such as
the following:

p(b) = 𝛿(b − b0) . (79)

As a consequence, the posterior distribution of the velocity field becomes proportional to the following:

p(u|𝛾) ∼ exp
[
−1

2

(
𝛾 + Ab0

u
)T Σ−1

𝛾

(
𝛾 + Ab0

u
)]

× exp
[
−1

2
uT Σ̃−1

u u
]
, (80)
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where Ab0
is the operator allowing to evaluate the nonlinear term of the FFF equation when it is applied to u.

The maximum of this distribution can be calculated analytically and corresponds to the usual least square
solution as follows:

u0 = −(AT
b0
Σ−1
𝛾

Ab0
+ Σ̃−1

u )−1AT
b0
Σ−1
𝛾
𝛾 . (81)

Ensemble method. This approach was developed by Gillet et al. [2009] and consists in generating an ensem-
ble of magnetic field and calculating their associated velocity field. In this test, the ensemble of MF was
randomly drawn from the distribution p(b) given in equation (74). In total, we generated Ne = 100 mag-
netic fields bi (with 1..i..Ne) extending up to degree l = 30. Each velocity field ui was then determined by
the relation:

ui = −(AT
bi
Σ−1
𝛾

Abi
+ Σ̃−1

u )−1AT
bi
Σ−1
𝛾
𝛾 . (82)

where the operator Ab now depends on each realization bi of the magnetic field. The flow solution of the
complete inverse problem is given by the following:

u0 = 1
Ne

i=Ne∑
i=1

ui . (83)

Iterative method. In this approach, Lesur et al. [2013] proposed to determine the CMB velocity field through
the following iterative process:

un+1 = −(AT
b0

(
Σn
�̃�

)−1
Ab0

+ Σ̃−1
u )−1AT

b0

(
Σn
�̃�

)−1
𝛾 (84)

where n is the index of the iteration, and the covariance Σn
�̃�

is given by the following:

Σn
�̃�
= Σ𝛾 +

(
Aun

)
Σb

(
Aun

)T
(85)

with Aun the operator depending on the velocity field un, and which allows to evaluate the nonlinear term of
the FFF equation when it is applied to b. In the numerical implementation of this method, the initial field u0

was taken as the one solution of the least square approach.

Note that this algorithm provides an estimation of the maximum of the posterior distribution given in
equation (54) if the quantity AuΣbAu is assumed to vary slowly with respect to u.

Iterative (Bloxham). To evaluate the impact of the velocity field prior information on the solution of the
inverse problem, we implemented the iterative method introduced in the previous paragraph with a dif-
ferent covariance matrix for the velocity field. Instead of taking into account Σ̃u given in equation (84), we
considered the covariance matrix Σu based on the Bloxham “strong norm,” and defined in section 2.6.1
equation (41).

In the previous section, we mentioned the algorithm of Pais and Jault [2008] which also allows to take into
account the variations of the MF in the inverse problem. We decided not to implement it in this evaluation
since it is an approximation of the method proposed by Lesur et al. [2013].

To compare the different approaches, the artificial velocity field u is decomposed into a toroidal (𝜓 ) and a
poloidal (Φ) field, with 𝜓l,m and Φl,m their respective spectral counterpart. The same operation is performed
on the velocity fields u0 given by the four inversion methods. Their toroidal and poloidal parts are then
referred as 𝜓0 and Φ0 in physical space, and 𝜓0

l,m and Φ0
l,m in spectral space.

We recall that to perform these different inversions, the artificial secular variation and the artificial magnetic
field are truncated at spherical harmonic degree l = 13, the velocity field is extended up to degree l = 26,
and the covariance matrix for the magnetic field (when taken into account) is defined up to degree l = 30.
The filter width Δ is set to 500 km.

BAERENZUNG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2709



Journal of Geophysical Research: Solid Earth 10.1002/2013JB010358

Figure 6. (top) Poloidal and (bottom) toroidal energy spectra for the
artificial VF (thick lines) and for the different error fields (symbols).

To measure the accuracy of the var-
ious velocity fields, we define the
poloidal and toroidal error fields
as follows:

𝜖Φl,m = Φl,m − Φ0
l,m (86)

𝜖
𝜓

l,m = 𝜓l,m − 𝜓0
l,m , (87)

and their associated energy spectra
as follows:

E𝜖Φ = l(l + 1)
m=l∑

m=−l

(𝜖Φl,m)
2 (88)

E𝜖𝜓 = l(l + 1)
m=l∑

m=−l

(𝜖𝜓l,m)
2 . (89)

In Figure 6, the spectra of the error
fields (symbols) are plotted together
with the poloidal and toroidal spec-
tra of the artificial velocity field (solid
lines). The first observation one can
make is that above the SH degree
l = 10, the energy associated with the
error fields is of the same order than
the energy of the artificial poloidal
and toroidal fields. This implies that
above this degree, the estimation of

the flow is not reliable whatever the method employed to determine it. At large scale, the performance of
the different approaches varies strongly. Whereas the flow obtained with the least square method (triangles)
is the one which deviates the most from the artificial flow, the velocity fields evaluated with the iterative
method (circles) and the MCMC algorithm (plus symbols) are the ones presenting the lowest error intensi-
ties. In between, in terms of accuracy, lies the ensemble method (crosses), and the iterative method with
prior velocity covariances based on the Bloxham’s strong norm (squares). For this latter approach, whereas
at very large scales, the level of error (1≤ l≤7) is comparable to the one observed in the least square case;
above degree 7, the error energies diminish and coincide with the ones the MCMC and iterative flows
exhibit. It can be noticed that at degree l = 4 for the ensemble method and between l = 4 and l = 5 for
the least square and iterative (Bloxham) methods, the energy associated with the toroidal error field is larger
than the energy of the artificial velocity field itself. This is not the case anymore when using the iterative or
MCMC approaches.

To evaluate the different models in physical space, the coefficients associated with the poloidal and toroidal
error fields (equations (86) and (87)) were truncated at degree l = 10, since at smallest scales the uncer-
tainties are maximal and projected in real space. Figure 7 shows the intensity of these velocity fields at the
level of the CMB below America for the five approaches. Although the locations of the errors are similar,
their intensities differs strongly from one flow to the other. A computation of the averaged energy associ-
ated with the poloidal and toroidal error fields (see Table 1) shows that globally, the best approximation of
the artificial velocity field is provided by the MCMC algorithm, followed in order by the iterative, ensemble,
iterative (Bloxham), and least square methods. Note that the differences between the MCMC and iterative
approach are very low, and since the computation time required to sample the full posterior distribution
is much larger than the one to approximate its maximum with the iterative method, if one wants to deter-
mine the flow without its underlying uncertainties, using the algorithm of Lesur et al. [2013] is certainly
more appropriate.
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Figure 7. Intensity, in km yr−1, of the difference between the artificial velocity field and the velocity fields evaluated with
the following approaches: (top left) MCMC, iterative (top right) from Lesur et al. [2013] ensemble (middle left) from Gillet
et al. [2009], (middle right) least square, and (bottom left) iterative with velocity prior covariances based on the Bloxham’s
strong norm.

Since the MCMC algorithm provides an information on the flow uncertainties, we extracted the standard
deviation of the velocity intensity 𝜎|u|, from the variance 𝜎2

u as following:

𝜎2
u = ∫ diag

[(
u − u0

) (
u − u0

)T
]

p(u|𝛾)du (90)

where the term diag means that only the diagonal elements of the matrix lying within the brackets are kept.
At each node of the discrete CMB, the VF u is composed of a polar and an azimuthal component, so to get
the variance associated with the velocity intensity 𝜎2|u|, the variance of each component has to be summed
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Table 1. Averaged Energy of the Error in km2 yr−2 Associated With the Different
Inverted Velocity Fieldsa

MCMC Iterative Ensemble Least Square Iterative (Bloxham)

Poloidal Field 2.20 2.42 3.04 3.72 3.45

Toroidal Field 6.45 6.72 8.69 10.1 9.23

aThese values have to be compared with the averaged energies of the artificial
poloidal and toroidal fields which are, respectively, of 48.07 km2 yr−2 and 45.28 km2

yr−2.

up. In Figure 8 (left), the quantity 2𝜎|u|, corresponding to the 95% confidence interval on the flow intensity, is
displayed in the region of the CMB below America. This picture presents a pessimistic view of the uncertain-
ties to be expected when evaluating the flow maximizing the posterior distribution. Because the probability
for the real flow to lie within the tails of the posterior distribution is very low, the predicted error will globally
be larger than the effective one. Nevertheless, locations where the differences between the solution flow
and the real one are important in corresponding to areas of high posterior variance.

In spectral space, the MCMC ensemble of velocity fields is used to evaluate the scale-by-scale variance of
the poloidal and toroidal flow components, respectively, 𝜎2

Φ(l) and 𝜎2
𝜓
(l). After rescaling these quantities by

the factor l(l + 1), they were plotted, in Figure 8 (right), together with the poloidal (Figure 8, right, top) and
toroidal (Figure 8, right, bottom) spectra of the artificial velocity field (black lines) and the MCMC error fields
(plus symbols). On this figure, it can be seen that although the variance cannot exactly describe the effective
error associated with the MCMC flow, it allows a good estimation of the velocity field uncertainties to be
expected. It can also be observed that according to the sample of the posterior distribution, the reliability of
the toroidal field is questioned at very low SH degree (l ≥ 5).

Different conclusions can be drawn from this evaluation phase. First, modeling the unresolved part of the
magnetic field when performing the inversion of the FFF equation allows to considerably improve the accu-
racy, at any scale, of the calculated flow. Then, this test showed that at large scales (up to SH degree l = 10),
the posterior distribution is dominated by the likelihood distribution, whereas at small scales, the prior dis-
tribution prevails. This is why the evaluation of the flow with a “wrong” prior velocity covariance matrix
remains acceptable. Finally, we could demonstrate that the MCMC algorithm we developed to explore the
posterior distribution is an appropriate tool to quantify the flow uncertainties.

Figure 8. (left) 95% confidence interval on the velocity intensity in km yr−1 according to the MCMC flow ensemble.
(right, top) Poloidal and (right, bottom) toroidal spectra of the artificial velocity field (black lines), spectra of the MCMC
error fields (plus symbols), and rescaled scale-by-scale variance deriving from the MCMC flow ensemble (gray lines).
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Figure 9. Velocity field û and its intensity for the epoch 2005.0.

3.2.2. Application of the MCMC Algorithm for the Epoch 2005.0
In the flow calculation, we realized, the MF and the SV as well as the covariance for the SV, are given up to
SH degree l = 13 by the GRIMM-2 model of Lesur et al. [2010] for the epoch 2005.0. For the magnetic field,
the covariance associated with its large scales (0 < l ≤ 13) is derived from the theoretical spectrum of
the lithospheric field of E. Thebault and F. Vervelidou (submitted manuscript, 2013) as shown in equations
(44)–(47), whereas the extrapolation of the MF spectrum proposed by Buffett and Christensen [2007] is used
to build the covariance matrix of the small-scale MF (13 < l ≤ 30) as presented in equation (48). The velocity
field is extended up to SH degree l = 26, and its prior distribution is given by the relation (41). The width of
the filter has been set to Δ = 500 km, and the initial field of the Markov chain u0 is the velocity field solution
of the least square approach:

u0 = −
(

AT
BΣ

−1
𝛾

AB + Σ−1
u

)−1
AT

BΣ
−1
𝛾
𝛾 (91)

with ABu =
(
∇𝐇 (ub + 𝜏)

)<
.

As for the synthetic test of section 3.2.1, the transition kernel q(un+1, un) was derived from the prior
distribution of the VF as shown in equation (76).

The Metropolis-Hastings algorithm was then numerically simulated on a discrete CMB refined 4 times. An
ensemble of 130, 000 VF u mapping the posterior distribution have been generated. The velocity field û
maximizing the posterior is approximated by taking the average velocity field of the ensemble we created.

In Figure 9, the vector field û and its intensity are displayed in different locations of the core-mantle bound-
ary. Many features of the flow we obtained have already been reported in previous studies. In particular, the
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Figure 10. Velocity field û for the epoch 2005.0 and its associated uncertainties on (left) the intensity 𝜎|u| in km yr−1

and (right) orientation 𝜎Γ in degree.

eccentric and planetary scale anticyclonic gyre observed by Pais and Jault [2008] and Gillet et al. [2009] is
also present in the flow we calculated. This observation reinforces the hypothesis that the fluid motions in
the outer core can be well described by the compressible quasi-geostrophic assumption, a constraint a pri-
ori applied in both studies. Nevertheless, according to our results, deviations from quasi-geostrophy have
also to be expected. Indeed, under this hypothesis, the flow is forced to be symmetric with respect to the
equator outside the tangential cylinder, a condition which is not fulfilled everywhere in our case. Although
the symmetric part of the velocity field is dominant in our simulation (82% of the energy of the total VF is
concentrated in its symmetric components), certain patterns such as the flow crossing the equator below
India or the larger intensity of the westward drift in the Southern Hemisphere are violating this property.
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Figure 11. (top) Poloidal and (bottom) toroidal energy spectra associated
with the velocity field û (thick line), and with the spectral uncertainties
(circles).

The flow we obtained also exhibits
a much smoother spatial behavior
than the ones presented by Pais and
Jault [2008] and Gillet et al. [2009].
This is certainly due to the choice
we made to characterize a priori the
velocity field. Through the Bloxham’s
strong norm, we imposed a very
steep spectrum (in l−5) to both the
poloidal and toroidal field; as a con-
sequence, the intermediate scales of
the VF were probably overdamped in
our simulation.

Possessing the full posterior distribu-
tion of the VF allows the extraction
of much useful information on the
flow. In particular, the uncertainties
on the velocity field intensity and ori-
entation (with respect of course to
the prescribed modeling) can be eval-
uated at any spatial location on the
grid. To compute the standard devi-
ation of the velocity field intensity
𝜎|u|, we followed the protocol given
in section 3.2.1, whereas the standard
deviation of the velocity orientation
𝜎Γ is derived from the formula:

𝜎2
Γ = ∫ diag

[
ΓΓT

]
p(u|𝛾)du , (92)

where Γ is the angle, in degree, between the velocity field u and û. The quantities 𝜎|u| and 𝜎Γ are displayed
in Figure 10 (on the left for the 𝜎|u| and on the right for the 𝜎Γ). This figure first shows that a strong (respec-
tively weak) uncertainty on the intensity coincides with a strong (resp. weak) uncertainty on the orientation
of the flow. Second, one can notice that the uncertainties are not homogeneously distributed on the sur-
face of the CMB. While the planetary scale eccentric gyre seems to be very robust, the VF in the region of
the CMB below the Pacific Ocean is much more uncertain. It is known that in this latter area, the magnetic
field activity is moderate [Hulot et al., 2002]. As a consequence, the secular variation is low, and its associated
uncertainties, due to the inaccuracy of the measurements and to the interactions between the unresolved
MF and the VF, may be larger than the signal itself. It is therefore very difficult to evaluate the velocity field
in this region. Nevertheless, this figure shows that there is a large part east of Australia and around the lon-
gitude of New Zealand where the VF can be accurately estimated under our prior assumptions. Another
particular feature can be noticed at the level of the North-Atlantic ocean, where the uncertainties on both
the flow intensity and orientation are very large. As already questioned by Finlay et al. [2010], the robustness
of the clockwise gyre usually observed in this area by models assuming tangential-geostrophy seems to be
very weak according to our results.

Since we are using truncated MF and SV, it may be interesting to investigate the spectral properties of the
posterior VF. The poloidal Φ and toroidal 𝜓 part of the VF u are expanded in spherical harmonics. The result-
ing fields are, respectively, referred as Φl,m and 𝜓l,m. The same operation is performed on û = 𝛁Φ̂ + 𝐞𝐫 × 𝛁�̂� ,
with Φ̂l,m and �̂�l,m its poloidal and toroidal SH coefficients. In Figure 11 are plotted the spectra associated
with Φ̂l,m and �̂�l,m and the variance on these coefficient summed up over the order m and rescaled by the
factor l(l+1). We can observe that the largest scales of the flow are dominated by its toroidal part. A compu-
tation of the poloidal and toroidal energy shows that more than 88% of the total energy is of toroidal nature.
The other information which can be extracted from Figure 11 is that, as for the synthetic test we realized pre-
viously, above the SH degree l = 10, the intensity of the flow uncertainties becomes larger than the intensity
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of the flow itself. As a consequence, the evaluation of the small-scale velocity field cannot be considered as
reliable. For the largest velocity scales (1 ≤ l ≤ 10), the uncertainties exhibit a very low level of intensity,
particularly when these latter are compared to the ones observed in the synthetic case (see Figure 8). This
is certainly a consequence of the strong regularization constraint we employed and the rescaling factor we
applied to it.

It has to be emphasized that all the results we obtained are conditioned by the choice of the prior
information imposed to the flow and should not be considered as absolute.

4. Conclusions

In this study we have presented a new method to determine the velocity field at the Earth’s core mantle
boundary according to an outer core magnetic field and secular variation model. We showed that using an
appropriate dynamical equation to prescribe the large-scale magnetic field evolution in the inverse prob-
lem, permitted to reduce the modeling errors arising from the truncated nature of the available fields. We
also demonstrated that the Bayesian formalism we developed to account for the large-scale uncertain-
ties on the magnetic field and to model the unresolved small-scale MF, allowed to properly describe the
inverse problem as soon as the information introduced a priori were accurate. Through the evaluation of our
method and the comparison with other approaches, we could indirectly confirm that the unresolved part
of the magnetic field contributed significantly to the observed secular variation and that its modeling was
necessary to obtain a more accurate description of the flow at the core-mantle boundary.

When we applied our method to the GRIMM-2 magnetic field and secular variation models for the epoch
2005.0, we could recover many features of the flow already observed in previous studies where a different
prior information on the velocity field had been considered. In particular, we could retrieve the planetary
scale eccentric gyre characteristic of flow evaluated under the compressible quasi-geostrophy assumption
[see Pais and Jault, 2008; Gillet et al., 2009]. Nevertheless, according to our simulation, the flow crosses the
equator below India and the intensity of the westward drift is the larger in the Southern Hemisphere, indi-
cating that the equatorial symmetry imposed by the quasi-geostrophy hypothesis is broken. Through this
observation, one can conclude that deviations from quasi-geostrophy should be allowed to occur when this
latter constraint is imposed in the inverse problem. Another specific feature of the velocity field we obtained
is its very smooth spatial behavior. This property is certainly induced by the prior distribution of the velocity
field we chose, since this latter imposes a very steep spectrum to both the poloidal and toroidal part of the
velocity field.

Finally, thanks to the ensemble of velocity field we generated to map the posterior distribution, we could
evaluate the uncertainties, depending nevertheless on the prior assumptions we chose, of the flow solution
of the inverse problem. According to our results, whereas on the one hand, the robustness of the flow is
questioned in many area, and particularly in almost the entire Pacific Ocean, and in the northern part of the
Atlantic Ocean, on the other hand, the planetary scale eccentric gyre seems to be a very robust structure.
From the evaluation of the uncertainties in spectral space, we could confirm that the flow at the CMB could
only be accurately estimated at large scales (between spherical harmonics degree 1 and 10).

Appendix A: Spherical Diffusion

In Cartesian space, applying a Gaussian filter to a scalar or a vector field, or letting the field evolve through
a diffusion process can be interpreted as being similar operations. Indeed, the kernel of the Gaussian filter is
as follows:

G(𝐱 − 𝐱′) =
(

𝛾

𝜋Δ
2

) d
2

exp

(
− 𝛾|𝐱 − 𝐱′|2

Δ
2

)
, (A1)

where d corresponds to the spatial dimension, Δ is the filter width, and 𝛾 is a constant usually set to 6. The
solution of the diffusion equation:

𝜕t𝜉(𝐱, t) = DΔ𝜉(𝐱, t) , (A2)
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where D is a diffusion coefficient and t the time, is the convolution between the scalar field 𝜉(𝐱′, t = 0), and
the Green function:

G(𝐱 − 𝐱′, t) = 1

(4𝜋Dt)
d
2

exp
(
− |𝐱 − 𝐱′|2

4Dt

)
. (A3)

So if one sets Dt = Δ
2

4𝛾
, diffusing a scalar field through equation (A2) is equivalent to filtering that field with

the convolution kernel expressed in (A1). Based on this observation, Bülow [2004] derived a Gaussian-like
filter on the surface of a sphere of radius R, by determining the convolution kernel of the spherical
diffusion equation:

𝜕t𝜉(𝐱, t) = DΔ
H
𝜉(𝐱, t) . (A4)

which reads as follows:

G =
∑
l𝜖N

√
2l + 1

4𝜋
Yl0 exp

(
− l(l + 1)Dt

R2

)
, (A5)

where Yl0 is the spherical harmonic of degree l and order m = 0. So in spectral space, the filtering operation
of a scalar field 𝜉 expanded in spherical harmonics:

𝜉 =
∑
l𝜖N

m=l∑
m=−l

𝜉l,mYlm (A6)

simply reduces to the operation:

𝜉 l,m = 𝜉l,m exp

(
− l(l + 1)Δ

2

24R2

)
. (A7)

Appendix B: Discretization of the Core-Mantle Boundary

B1. Construction of the Grid
The grid describing the core-mantle boundary is obtained by recursively subdividing an initial icosahedron
as explained in Baumgardner and Frederickson [1985] and Stuhne and Peltier [1999]. For each grid refine-
ment procedure, a node is added in the middle of the geodesic arc linking every two neighboring points.
The refinement degree rd of the grid corresponds to the number of time this procedure has been applied.
Therefore, rd = 0 corresponds to the icosahedron itself which possess Np = 12 nodes, and Nc = 20 spherical
triangle cells. As the refinement degree increases, the number of grid points and cells increases as follows:

Np = 2 + 10 × 4rd (B1)

Nc = 20 × 4rd . (B2)

To approximate differential operators, a Voronoi-based finite volume method is chosen. This approach has
been widely used in advection-diffusion problems such as in Heikes and Randall [1995], Lazarov et al. [1996],
and Satoh et al. [2008] and has proven to be efficient to tackle these kind of problems. Since in finite vol-
ume methods, differential operators are converted to surface integrals, control volumes (or Voronoi cells)
surrounding each grid points have to be defined.

As shown in Figure B1a, each grid point is surrounded by 6 (or 5 when the point corresponds to a genera-
tor of the initial icosahedron) nodes in its direct neighborhood. From this cluster of node, one can build an
ensemble of spherical triangle cells P0PiPi+1 all connected together by the common vertex P0. Taking the
gravity center Gi of each cell allow then to draw a hexagonal (or pentagonal) volume control around the
central node P0.

Tomita et al. [2001] and Du et al. [2003b] have shown that moving the grid points in a manner they coincide
with the gravity center of their control volume, allow to improve the accuracy of the differential opera-
tors to the second order. The procedure employed here is the Constrained Centroidal Voronoi Tessellations
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a) b)

Figure B1. (a) Voronoi cell delimited by the gravity centers Gi of the different spherical triangles P0, Pi, Pi+1. n⃗i and t⃗i
denote, respectively, the unit vectors normal and tangential to the Voronoi cell contour. (b) Spherical triangle formed by
the three nodes P0, Pi , and Pi+1. Gi corresponds to the gravity center of the triangle, and 𝛼i , 𝛽i , and 𝛾i are the area of the
three subtriangles.

developed by Du et al. [2003a]. The principle of this procedure as we implemented it, known as the Lloyd’s
method, is the following: (1) starting with an initial distribution of nodes on the sphere, taken here as the
different subdivision of the icosahedron, as explained previously in this part; (2) building the Voronoi cells
associated with each grid point; (3) moving each node to the gravity center of the cell it is belonging to; and
(4) returning to Step 2 until some convergence criteria is reached. In our case, we imposed that the averaged
geodesic distance between the node and the gravity center of the Voronoi cell has to be smaller than 10−10.

B2. Approximation of the Differential Operators
The horizontal divergence and curl applied to a vector field 𝐮(𝐱), and the gradient applied to a scalar field Φ
can be expressed in their integral form as follows:

∇𝐇 ⋅ 𝐮(𝐱) = lim
Ω→0

1
Ω ∫𝛿Ω 𝐮(𝐱) ⋅ 𝐭 d𝛿Ω (B3)

∇𝐇 × 𝐮(𝐱) = lim
Ω→0

1
Ω ∫𝛿Ω 𝐮(𝐱) ⋅ 𝐧 d𝛿Ω (B4)

∇𝐇Φ = lim
Ω→0

1
Ω ∫𝛿Ω Φ𝐧 d𝛿Ω (B5)

where the control surface as an area Ω, delimited by the contour 𝛿Ω, and the unit tangential and normal
vector to the contour are, respectively, 𝐭 and 𝐧.

On the discrete sphere, vector and scalar fields are known on the nodes; therefore, to differentiate them, one
need to approximate them on the contour of the Voronoi cells. First, the different quantities are evaluated
on the corners of the cells:

𝐮(Gi) =
𝛼i𝐮(P0) + 𝛽i𝐮(Pi) + 𝛾i𝐮(Pi+1)

𝛼i + 𝛽i + 𝛾i
(B6)

Φ(Gi) =
𝛼iΦ(P0) + 𝛽iΦ(Pi) + 𝛾iΦ(Pi+1)

𝛼i + 𝛽i + 𝛾i
, (B7)

where the areas 𝛼i, 𝛽i , and 𝛾i are shown in Figure B1b.

BAERENZUNG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2718



Journal of Geophysical Research: Solid Earth 10.1002/2013JB010358

Then, following the notation of Figure B1a, the discrete approximation of the different differential operators
becomes the following:

∇𝐇 ⋅ 𝐮(𝐱) ∼ 1
A(P0)

NG∑
i=1

G̃iGi+1

(
𝐮(Gi) + 𝐮(Gi+1

)
2

⋅ 𝐧i

∇𝐇 × 𝐮(𝐱) ∼ 1
A(P0)

NG∑
i=1

G̃iGi+1

(
𝐮(Gi) + 𝐮(Gi+1

)
2

⋅ 𝐭i

∇𝐇Φ ∼
NG∑
i=1

G̃iGi+1
1

A(P0)
(Φ(Gi) + Φ(Gi+1)

2
𝐧i

−
Φ(P0)
A(P0)

NG∑
i=1

G̃iGi+1𝐧i

where A(P0) corresponds to the area of the control volume, G̃iGi+1 is the geodesic length between the
points Gi and Gi+1, and NG is the number of vertices of the control volume. Note that when the subscript
i + 1 = NG + 1, then i + 1 = 1.
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