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Abstract. The rewetting of drained peatlands alters peat
geochemistry and often leads to sustained elevated methane
emission. Although this methane is produced entirely by mi-
crobial activity, the distribution and abundance of methane-
cycling microbes in rewetted peatlands, especially in fens,
is rarely described. In this study, we compare the com-
munity composition and abundance of methane-cycling mi-
crobes in relation to peat porewater geochemistry in two
rewetted fens in northeastern Germany, a coastal brackish
fen and a freshwater riparian fen, with known high methane

fluxes. We utilized 16S rRNA high-throughput sequenc-
ing and quantitative polymerase chain reaction (qPCR) on
16S rRNA, mcrA, and pmoA genes to determine microbial
community composition and the abundance of total bacte-
ria, methanogens, and methanotrophs. Electrical conductiv-
ity (EC) was more than 3 times higher in the coastal fen
than in the riparian fen, averaging 5.3 and 1.5 mS cm−1, re-
spectively. Porewater concentrations of terminal electron ac-
ceptors (TEAs) varied within and among the fens. This was
also reflected in similarly high intra- and inter-site varia-
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tions of microbial community composition. Despite these
differences in environmental conditions and electron ac-
ceptor availability, we found a low abundance of methan-
otrophs and a high abundance of methanogens, represented
in particular by Methanosaetaceae, in both fens. This sug-
gests that rapid (re)establishment of methanogens and slow
(re)establishment of methanotrophs contributes to prolonged
increased methane emissions following rewetting.

1 Introduction

Rewetting is a technique commonly employed to restore
ecological and biogeochemical functioning of drained fens.
However, while rewetting may reduce carbon dioxide (CO2)
emissions (Wilson et al., 2016), it often increases methane
(CH4) emissions in peatlands that remain inundated follow-
ing rewetting. On a 100-year timescale, CH4 has a global
warming potential 28 times stronger than CO2 (Myhre et al.,
2013), and the factors that contribute to the magnitude and
duration of increased emissions are still uncertain (Joosten
et al., 2015; Abdalla et al., 2016). Thus, elucidating the dy-
namics of post-rewetting CH4 exchange is of strong interest
for both modeling studies and peatland management projects
(Abdalla et al., 2016). Although a recent increase in rewet-
ting projects in Germany and other European countries has
prompted a number of studies of methane cycling in rewetted
peatlands (e.g., Jerman et al., 2009; Hahn-Schöfl et al., 2011;
Urbanová et al., 2013; Hahn et al., 2015; Vanselow-Algan et
al., 2015; Zak et al., 2015; Emsens et al., 2016; Putkinen et
al., 2018), the post-rewetting distribution and abundance of
methane-cycling microbes in rewetted fens has seldom been
examined (but see Juottonen et al., 2012; Urbanová et al.,
2013; Putkinen et al., 2018).

Peat CH4 production and release is governed by a complex
array of interrelated factors including climate, water level,
plant community, nutrient status, site geochemistry, and the
activity of microbes (i.e., bacteria and archaea) that use or-
ganic carbon as an energy source (Segers, 1998; Abdalla et
al., 2016). To date, the vast majority of studies in rewetted
fens have focused on quantifying CH4 emission rates in as-
sociation with environmental variables such as water level,
plant community, and aspects of site geochemistry (Abdalla
et al., 2016). Site geochemistry indeed plays an important
role for methanogenic communities, as methanogenesis is
suppressed in the presence of thermodynamically more fa-
vorable terminal electron acceptors (TEAs, Blodau, 2011).
Due to a smaller pool of more favorable electron acceptors
and high availability of organic carbon substrates, organic-
rich soils such as peat rapidly establish methanogenic con-
ditions post-rewetting (Segers, 1998; Keller and Bridgham,
2007; Knorr and Blodau, 2009). Despite their decisive role as
producers (i.e., methanogens) and consumers (i.e., methan-
otrophs) of CH4 (Conrad, 1996), only a few studies have

combined a characterization of the CH4-cycling microbial
community, site geochemistry, and observed trends in CH4
production. Existing studies have been conducted in olig-
otrophic and mesotrophic boreal fens (e.g., Juottonen et al.,
2005, 2012; Yrjälä et al., 2011), alpine fens (e.g., Liebner
et al., 2012; Urbanová et al., 2013; Cheema et al., 2015;
Franchini et al., 2015), subarctic fens (Liebner et al., 2015),
and incubation experiments (e.g., Jerman et al., 2009; Knorr
and Blodau, 2009; Urbanová et al., 2011; Emsens et al.,
2016). Several studies on CH4-cycling microbial communi-
ties have been conducted in minerotrophic temperate fens
(e.g., Cadillo-Quiroz et al., 2008; Liu et al., 2011; Sun et
al., 2012; Zhou et al., 2017), but these sites were not subject
to drainage or rewetting. Direct comparisons of in situ abun-
dances of methanogens and methanotrophs in drained versus
rewetted fens are scarce (Juottonen et al., 2012; Putkinen et
al., 2018), and the studied sites, so far, are nutrient-poor fens
with acidic conditions.

While studies of nutrient-poor and mesotrophic boreal
fens have documented post-rewetting CH4 emissions com-
parable to or lower than at pristine sites (Komulainen et al.,
1998; Tuittila et al., 2000; Juottonen et al., 2012), studies
of temperate nutrient-rich fens have reported post-flooding
CH4 emissions dramatically exceeding emissions in pris-
tine fens (e.g., Augustin and Chojnicki, 2008; Hahn et al.,
2015). These high emissions typically occur together with
a significant dieback in vegetation, a mobilization of nu-
trients and electron acceptors in the upper peat layer, and
increased availability of dissolved organic matter (Zak and
Gelbrecht, 2007; Hahn-Schöfl et al., 2011; Hahn et al., 2015;
Jurasinski et al., 2016). High CH4 fluxes may continue for
decades following rewetting, even in bogs (Vanselow-Algan
et al., 2015). Hence, there is an urgent need to characterize
CH4-cycling microbial communities and geochemical condi-
tions in rewetted minerotrophic fens. In this study, we there-
fore examined microbial community composition and abun-
dance in relation to post-flooding geochemical conditions in
two rewetted fens in northeastern Germany. In both fens,
CH4 emissions increased dramatically after rewetting, to
over 200 gCm−2 a−1 (Augustin and Chojnicki, 2008; Hahn-
Schöfl et al., 2011; Hahn et al., 2015; Jurasinski et al., 2016).
Average annual CH4 emissions have decreased in both fens
since the initial peak (Franz et al., 2016; Jurasinski et al.,
2016). Nevertheless, fluxes remained higher than under pre-
flooding conditions (ibid.) and higher than in pristine fens
(Urbanová et al., 2013; Minke et al., 2016). In the Hütelmoor
in 2012, average CH4 emissions during the growing season
were 40 gm−2 (Koebsch et al., 2015). In Zarnekow, average
CH4 emissions were 40 gm−2 for the year 2013 (Franz et al.,
2016). In comparison, a recent review paper (Abdalla et al.,
2016) estimated an average flux of 12± 21 gCm−2 a−1 for
pristine peatlands.

We expected patterns in microbial community composi-
tion would reflect the geochemical conditions of the two sites
and hypothesized a high abundance of methanogens relative
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Figure 1. Location of study sites in northeastern Germany (a) and sampling locations within sites (b) Hütelmoor and (c) Zarnekow. Maps (b)
and (c) are drawn to the same scale. Image source: (a) QGIS; (b) and (c) Google Earth via QGIS OpenLayers Plugin. Imagery date:
9 August 2015.

to methanotrophs in both fens. We also expected acetoclas-
tic methanogens, which typically thrive in nutrient-rich fens
(Kelly et al., 1992; Galand et al., 2005), to dominate the
methanogenic community in both fens.

2 Methods

2.1 Study sites

The nature reserve Heiligensee and Hütelmoor (“Hütel-
moor” in the following; approx. 540 ha; 54◦12′36.66′′ N,
12◦10′34.28′′ E) is a coastal, mainly minerotrophic fen com-
plex in Mecklenburg-Vorpommern (NE Germany) that is
separated from the Baltic Sea by a narrow (∼ 100 m and less)
dune dike (Fig. 1a and b). The climate is temperate in the
transition zone between maritime and continental, with an
average annual temperature of 9.1 ◦C and an average annual
precipitation of 645 mm (data derived from the grid prod-
uct of the German Weather Service, reference climate period
1981–2010). Episodic flooding from storm events delivers
sediment and brackish water to the site (Weisner and Sch-
ernewski, 2013). The vegetation is a mixture of salt-tolerant
macrophytes, with dominant to semi-dominant stands of
Phragmites australis, Bolboschoenus maritimus, Carex acu-
tiformis, and Schoenoplectus tabernaemontani. The domi-
nating plants are interspersed with open water bodies that
are colonized by Ceratophyllum demersum in summer (Koch

et al., 2017). Intense draining and land amelioration prac-
tices began in the 1970s, which lowered the water level to
1.6 m below ground surface and caused aerobic decomposi-
tion and concomitant degradation of the peat (Voigtländer et
al., 1996). The upper peat layer varies in depth between 0.6
and 3 m and is highly degraded, reaching up to H10 on the
von Post humification scale (Hahn et al., 2015). Active drain-
ing ended in 1992, but dry conditions during summertime
kept the water table well below ground surface (Schönfeld-
Bockholt et al., 2008; Koebsch et al., 2013) until concerns
of prolonged aerobic peat decomposition prompted the in-
stallation of a weir in 2009 at the outflow of the catchment
(Weisner and Schernewski, 2013). After installation of the
weir, the site has been fully flooded year-round with an av-
erage water level of 0.6 m above the peat surface, and annual
average CH4 flux increased∼ 186-fold from 0.0014±0.0006
to 0.26± 0.06 kgCH4 m−2 a−1 (Hahn et al., 2015).

The study site polder Zarnekow (“Zarnekow” in the fol-
lowing; approx. 500 ha; 53◦52′31.10′′ N, 12◦53′19.60′′ E) is
situated in the valley of the river Peene in Mecklenburg-
Vorpommern (NE Germany, Fig. 1a and c). The climate is
slightly more continental compared to the Hütelmoor, with
a mean annual precipitation of 544 mm and a mean annual
temperature of 8.7 ◦C (German Weather Service, meteoro-
logical station Teterow, 24 km southwest of the study site;
reference period 1981–2010). The fen can be classified as a
river valley mire system consisting of spring mires, wider
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percolation mires, and flood mires along the river Peene.
Drainage and low-intensity agricultural use began in the 18th
century when land use changed to pastures and grassland.
This was intensified by active pumping in the mid-1970s.
Due to land subsidence of several decimeters, after rewetting
(October 2004) the water table depth increased to 0.1–0.5 m
above the peat surface. The upper horizon is highly decom-
posed (0–0.3 m), followed by moderately decomposed peat
to a depth of 1 m and a deep layer of slightly decomposed
peat up to a maximum depth of 10 m. The open water bod-
ies are densely colonized by Ceratophyllum spp. and Typha
latifolia is the dominant emergent macrophyte (Steffenhagen
et al., 2012). Following flooding, CH4 flux rates increased to
∼ 0.21 kgm−2 a−1 (Augustin and Chojnicki, 2008). No pre-
rewetting CH4 flux data were available for the Zarnekow site,
but published CH4 flux rates of representative drained fens
from the same region have been shown to be negligible, and
many were CH4 sinks (Augustin et al., 1998).

2.2 Collection and analysis of peat cores and porewater
samples

Peat and porewater samples were collected at four different
locations (n= 4) in Hütelmoor (October 2014) and at five lo-
cations (n= 5) in Zarnekow (July 2015) and spanned a dis-
tance of 1200 and 250 m, respectively, to cover the whole lat-
eral extension at each site (Fig. 1b and c). Sampling depths
in the Hütelmoor were 0–5, 5–10, 10–20, 20–30, 30–40, and
40–50 cm below the peat surface, except for core numbers 1
and 4 where samples could only be obtained up to a depth
of 10–20 and 30–40 cm, respectively. Sampling depths in
Zarnekow were 0–5, 25–30, and 50–55 cm below the peat
surface. Previous work at Zarnekow has revealed little vari-
ation in peat properties with depth (e.g., Zak and Gelbrecht,
2007); hence, a lower depth resolution in Zarnekow cores
(ZCs) was chosen for this study. Peat cores were collected
with a Perspex liner (ID: 60 mm, Hütelmoor) and a peat
auger (Zarnekow). In order to minimize oxygen contamina-
tion, the outer layer of the peat core was omitted. Subsamples
for molecular analysis were immediately packed in 15 mL
sterile Falcon tubes and stored at −80 ◦C until further pro-
cessing.

Pore waters in the Hütelmoor were collected with a
stainless-steel push-point sampler attached to a plastic sy-
ringe to recover the samples from 10 cm depth intervals.
Samples were immediately filtered with 0.45 µm membrane,
sterile, disposable syringe filters. Pore waters in Zarnekow
were sampled with permanently installed dialysis sam-
plers consisting of slotted polypropylene (PP) pipes (length:
636 mm, ID: 34 mm) surrounded with 0.22 µm polyethersul-
fone membrane. The PP pipes were fixed at distinct peat
depths (surface level, 20 and 40 cm depth) and connected
with PP tubes (4× 6 mm ID×AD). Water samples were
drawn out from the dialysis sampler pipes with a syringe
through the PP tube. Due to practical restrictions in acces-

sibility and sampling, permanent dialysis samplers could not
be installed at the desired locations in the Hütelmoor, result-
ing in the different sampling techniques described above.

At both sites, electrical conductivity (EC), dissolved oxy-
gen (DO), and pH were measured immediately after sam-
pling (Sentix 41 pH probe and a TetraCon 325 conductiv-
ity measuring cell attached to a WTW multi 340i hand-
held; WTW, Weilheim). In this paper, EC is presented
and was not converted to salinity (i.e., psu), as a con-
version would be imprecise for brackish waters. A sim-
plified equation for conversion can be found in Schemel
(2001). Headspace CH4 concentrations of porewater sam-
ples were measured with an Agilent 7890A gas chromato-
graph (Agilent Technologies, Germany) equipped with a
flame ionization detector and a Carboxen PLOT Capillary
Column or HP-Plot Q (Porapak-Q) column. The measured
headspace CH4 concentration was then converted into a dis-
solved CH4 concentration using the temperature-corrected
solubility coefficient (Wilhelm et al., 1977). Isotopic com-
position of dissolved CH4 for Hütelmoor was analyzed using
the gas-chromatography–combustion technique (GC-C) and
the gas-chromatography–high-temperature-conversion tech-
nique (GC-HTC). The gas was directly injected in a gas
chromatograph (Agilent 7890A), CH4 was quantitatively
converted to CO2, and the δ13C values were then mea-
sured with the isotope ratio mass spectrometer MAT-253
(Thermo Finnigan, Germany). The δ13C of dissolved CH4
in Zarnekow was analyzed using a laser-based isotope ana-
lyzer equipped with a small sample isotope module for anal-
yses of discrete gas samples (cavity ring-down spectroscopy,
CRDS; Picarro G2201-I, Santa Clara, CA, USA). Calibration
was carried out before, during, and after analyses using certi-
fied standards of known isotopic composition (obtained from
Isometric Instruments, Victoria, BC, Canada; and from West-
falen AG, Münster, Germany). Reproducibility of results was
typically ±1 ‰. In the presence of high concentrations of
hydrogen sulfide interfering with laser-based isotope anal-
ysis, samples were treated with iron(III) sulfate to oxidize
and/or precipitate sulfide. For both sites, sulfate and nitrate
concentrations were analyzed by ion chromatography (IC,
Thermo Fisher Scientific Dionex) using an IonPac AS-9-HC
4 column, partly after dilution of the sample. Dissolved metal
concentrations were analyzed by inductively coupled plasma
optical emission spectrometry (ICP-OES, iCAP 6300 DUO,
Thermo Fisher Scientific). Accuracy and precision were rou-
tinely checked with a certified CASS standard as previously
described (Kowalski et al., 2012).

For the incubation experiments, peat cores were collected
from Zarnekow in March 2012 using a modified Kajak Corer
with a plexiglass tube. The intact cores were placed in a cool
box and immediately transported to the Leibniz Institute of
Freshwater Ecology and Inland Fisheries in Berlin, where
they were sectioned into a total of 12 samples. Fresh, surfi-
cial organic sediment (0–10 cm depth, 6 individual samples)
was separated from the bulk peat (10–20 cm depth, 6 indi-
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vidual samples) and the samples were placed in 60 mL plas-
tic cups. The cups were filled completely and closed with
air-tight caps to minimize oxygen contamination. The sam-
ples were then express-shipped (< 24 h) to the lab at the
Netherlands Institute of Ecology for immediate processing
and analysis. For CH4 production incubations, 5 g of mate-
rial and 10 mL of nitrogen (N2)-flushed MilliQ water were
weighed into three (n= 3) 150 mL flasks for both surficial
organic sediment and bulk peat. The flasks were capped with
rubber stoppers, flushed with N2 for approximately 1 h, and
then incubated stationarily at 20 ◦C in the dark. For CH4
oxidation incubations, 5 g of fresh material and 10 mL of
MilliQ water were weighed into three 150 mL flasks for both
surficial organic sediment and bulk peat. The flasks were
capped with rubber stoppers and 1.4 mL of pure CH4 was
added to obtain a headspace CH4 concentration of approxi-
mately 10 000 ppm. Incubations were performed in the dark
at 20 ◦C on a gyratory shaker (120 rpm). For all incubations,
headspace CH4 concentration was determined using a gas
chromatograph equipped with a flame ionization detector on
days 1, 3, 5, and 8 of the incubation. Potential CH4 produc-
tion and oxidation rates were determined by linear regression
of CH4 concentration over all sampling times.

2.3 Gene amplification and phylogenetic analysis

Genomic DNA was extracted from 0.2–0.3 g of duplicates
of peat soil per sample using an EurX GeneMATRIX soil
DNA Purification Kit (Roboklon, Berlin, Germany). DNA
concentrations were quantified with a Nanophotometer P360
(Implen GmbH, Munich, Germany) and Qubit 2.0 Fluo-
rometer (Thermo Fisher Scientific, Darmstadt, Germany).
Polymerase chain reaction (PCR) amplification of bacte-
rial and archaeal 16S rRNA genes was performed us-
ing the primer combination of S-D-Bact-0341-b-S-17/S-D-
Bact-0785-a-A-21 (Herlemann et al., 2011) and S-D-Arch-
0349-a-S-17/S-D-Arch-0786-a-A-20 (Takai and Horikoshi,
2000), respectively, with barcodes contained in the 5′ end.
The PCR mix contained 1× PCR buffer (Tris q Cl, KCl,
(NH4)2SO4, 15 mM MgCl2; pH 8.7) (QIAGEN, Hilden, Ger-
many), 0.5 µM of each primer (Biomers, Ulm, Germany),
0.2 mM of each deoxynucleoside (Thermo Fisher Scien-
tific, Darmstadt, Germany), and 0.025 UµL−1 hot start poly-
merase (QIAGEN, Hilden, Germany). PCR samples were
kept at 95 ◦C for 5 min to denature the DNA, with amplifi-
cation proceeding for 40 cycles at 95 ◦C for 1 min, 56 ◦C for
45 s, and 72 ◦C for 90 s; a final extension of 10 min at 72 ◦C
was added to ensure complete amplification. PCR products
were purified with a Hi Yield Gel/PCR DNA fragment ex-
traction kit (Süd-Laborbedarf, Gauting, Germany). To reduce
amplification bias, PCR products of three individual runs per
sample were combined. PCR products of different samples
were pooled in equimolar concentrations and compressed to
a final volume of 10 µL with a concentration of 200 ngµL−1

in a vacuum centrifuge Concentrator Plus (Eppendorf, Ham-
burg, Germany).

Illumina sequencing was performed by GATC Biotech AG
using 300 bp paired-end mode and a 20 % PhiX Control v3
library to counteract the effects of low-diversity sequence li-
braries. Raw data were demultiplexed using our own script
based on CutAdapt (Martin, 2011). Ambiguous nucleotides
at sequence ends were trimmed and a 10 % mismatch was al-
lowed for primer identification, whereas barcode sequences
needed to be present without any mismatches and with a min-
imum Phred score of Q25 for each nucleotide. After sort-
ing, overlapping paired-end reads were merged using PEAR
(Q25, p. 0.0001, v20) (Zhang et al., 2014). The orienta-
tion of the merged sequences was standardized according
to the barcode information obtained from demultiplexing.
Low-quality reads were removed using Trimmomatic (SE,
LEADING Q25, TRAILING Q25, SLIDINGWINDOW 5 :
25; MINLEN 200) (Bolger et al., 2014). Chimeric sequences
were removed using USEARCH 6.1 and the QIIME script
identify_chimeric_seqs.py (Caporaso et al., 2010). Prepro-
cessed sequences were taxonomically assigned to opera-
tional taxonomic units (OTUs) at a nucleotide sequence iden-
tity of 97 % using QIIME’s pick_open_reference_otus.py
script and the GreenGenes database 13.05 (McDonald et al.,
2012) as reference. The taxonomic assignment of represen-
tative sequences was further checked for correct taxonom-
ical classification by phylogenetic tree calculations in the
ARB environment referenced against the SILVA database
version 119 (Quast et al., 2013). The resulting OTU table
was filtered for singletons, for OTUs assigned to chloro-
plasts or mitochondria, and for low-abundance OTUs (be-
low 0.2 % within each sample). Archaeal and bacterial sam-
ples were processed separately while only OTUs that were
assigned to the respective domain were considered for fur-
ther analysis. For archaea, a total of 6 844 177 valid se-
quences were obtained, ranging from 60 496 to 398 660 in
individual samples. These sequences were classified into
402 OTUs. For bacteria, a total of 2 586 148 valid se-
quences were obtained, ranging from 22 826 to 164 916 in
individual samples. These sequences were classified into
843 OTUs. The OTU tables were then collapsed at a higher
taxonomic level to generate the bubble plots. The 16S
rRNA gene sequence data have been deposited at NCBI
under the BioProject PRJNA356778. The Hütelmoor se-
quence read archive accession numbers are SRR5118134-
SRR5118155 for bacterial and SRR5119428-SRR5119449
for archaeal sequences. The Zarnekow accession num-
bers are SRR6854018-SRR6854033 and SRR6854205-
SRR6854220 for bacterial and archaeal sequences, respec-
tively.

2.4 qPCR analysis

Quantitative polymerase chain reaction (qPCR) for the de-
termination of methanotrophic and methanogenic functional
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Figure 2. Depth profiles of oxygen, nitrate, total iron, manganese, and sulfate (a), and profiles of pH, EC, dissolved methane, and the
isotopic signature of methane-bound carbon (b) in both study sites. Solid lines connect the respective means of individual wetlands (n= 4
for Hütelmoor and n= 5 for Zarnekow).

gene copy numbers and overall bacterial 16S rRNA gene
copy numbers was performed via SYBR Green assays on
a Bio-Rad CFX instrument (Bio-Rad, Munich, Germany)
with slight modifications according to Liebner et al. (2015).
The functional methanotrophic pmoA gene was amplified
with the primer combination A189F/Mb661 (Kolb et al.,
2003) suitable for detecting all known aerobic methan-
otrophic Proteobacteria. Annealing was done at 55 ◦C after
a seven-cycle-step touchdown starting at 62 ◦C. The func-
tional methanogenic mcrA gene was amplified with the mlas
and mcrA-rev primer pair (Steinberg and Regan, 2009), with
annealing at 57 ◦C. The bacterial 16S rRNA gene was quanti-
fied with the primers Eub341F/Eub534R according to Degel-
mann et al. (2010), with annealing at 58 ◦C. Different DNA
template concentrations were tested prior to the qPCR runs
to determine optimal template concentration without inhi-
bitions through co-extracts. The 25 µL reactions contained
12.5 µL of iTaq Universal SYBR Green Supermix (Bio-Rad,
Munich, Germany), 0.25 µM concentrations of the primers,
and 5 µL of DNA template. Data acquisition was always
done at 80 ◦C to avoid quantification of primer dimers. The
specificity of each run was verified through melt-curve anal-
ysis and gel electrophoresis. Only runs with efficiencies
between 82 % and 105 % were used for further analysis.

Measurements were performed in duplicates. The ratio of
methanogens to methanotrophs was determined based on
gene abundances of mcrA and pmoA. The marker gene for
the soluble monooxygenase, mmoX, was neglected due to the
absence of Methylocella in the sequencing data (Fig. 4).

2.5 Data visualization and statistical analysis

All data visualization and statistical analysis were done in
R (R Core Team, 2017). The taxonomic relative abundances
across samples were visualized through bubble plots with
the R package ggplot2 (Wickham, 2009). Differences in mi-
crobial community composition were visualized with two-
dimensional non-metric multidimensional scaling (NMDS)
based on Bray–Curtis distances. The NMDS ordinations
were constructed using R package vegan (Oksanen et al.,
2017). An environmental fit was performed on the ordi-
nations to determine the measured geochemical parameters
that may influence community composition. The geochemi-
cal data were fitted to the ordinations as vectors with a sig-
nificance of p < 0.05. Depth profiles were constructed with
the porewater geochemical data, as well as with the micro-
bial abundances, to elucidate depth-wise trends and assess
whether differences in microbial community and abundances
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among the two fens are related to differences in their respec-
tive geochemistry.

3 Results

3.1 Environmental characteristics and site
geochemistry

The two rewetted fens varied substantially in their environ-
mental characteristics (e.g., proximity to the sea) and pore-
water geochemistry (Fig. 2, Tables 1 and 2). EC was more
than 3 times higher in Hütelmoor than in Zarnekow, averag-
ing 5.3 and 1.5 mS cm−1, respectively. Mean values of pH
were approximately neutral (6.5 to 7.0) in the upper peat
profile and comparable in both fens until a depth of about
30 cm where pH decreased to ∼ 6 in the Hütelmoor. Con-
centrations of the TEAs nitrate and sulfate were lower in
Zarnekow and near zero in the pore water at all depths, while
nitrate and sulfate were abundant in the upper and lower peat
profile in Hütelmoor at ∼ 1.5 to 3.0 mM and ∼ 4 to 20 mM,
respectively (Fig. 2). Iron concentrations were higher in the
Hütelmoor pore water, while manganese concentrations were
higher in Zarnekow pore water. Dissolved oxygen concen-
trations in the upper peat profile (i.e., 0 to 25 cm depths)
were much higher in Hütelmoor than in Zarnekow (Fig. 2).
Here DO concentrations averaged ∼ 0.25 mM until a depth
of 15 cm at which they dropped sharply, reaching concen-
trations slightly below 0.05 mM at 25 cm. In Zarnekow, DO
concentrations did not exceed 0.1 mM and varied little with
depth. Regarding geochemical conditions, Hütelmoor core
(HC) 1 differed from all other Hütelmoor cores and was
more similar to Zarnekow cores. In HC 1 – the core taken
nearest to potential freshwater sources (Fig. 1b) – pore water
EC and DO concentrations were lower while pH was slightly
higher than in all other Hütelmoor cores. Moreover, this was
the only Hütelmoor core where nitrate concentrations were
below the detection limit (0.001 mM) (Fig. 2). In all cores
we found high concentrations of dissolved CH4 that varied
within and among fens and were slightly higher in Zarnekow
pore water. Stable isotope ratios of ∂13C-CH4 (Fig. 2) in the
upper peat (approx. −59 ‰) suggest a predominance of ace-
toclastic methanogenesis, with a shift to hydrogenotrophic
methanogenesis around−65 ‰ in the lower peat profile. Ad-
ditionally, the observed shifts toward less negative ∂13C-CH4
values in the upper peat layer, as in HC 1 and HC 2, could
indicate partial oxidation of CH4 occurred (Chasar et al.,
2000).

3.2 Community composition of bacteria and archaea

Bacterial sequences could be affiliated into a total of 30 bac-
terial phyla (Fig. 3). Among them, Proteobacteria, Acidobac-
teria, Actinobacteria, Chloroflexi, Nitrospirae, and Bac-
teroidetes were present in all samples. With mean rela-
tive abundance of 48 %, Proteobacteria was the most abun-

dant phylum. Some taxa (e.g., Verrucomicrobia; Atribacte-
ria, OP9; and AD3) were present only in Hütelmoor. Vari-
ation in community composition was larger in Hütelmoor
samples than in Zarnekow. Within Proteobacteria, the al-
pha subdivision was the most dominant group, having con-
tributed 26.7 % to all the libraries on average (Fig. 4).
The family Hyphomicrobiaceae dominated the Alphapro-
teobacteria and was distributed evenly across samples but
missing in the surface and bottom peat layers in HC 2.
In addition, methanotrophs were clearly in low abundance
across all samples, representing only 0.06 % and 0.05 % of
the bacterial community in Hütelmoor and Zarnekow, re-
spectively. Of the few methanotrophs that were detected,
type II methanotrophs (mainly Methylocystaceae) outcom-
peted type I methanotrophs (mainly Methylococcaceae) in
the community, while members of the genus Methylocella
were absent (Fig. 4).

Within the archaeal community, Bathyarchaeota were
mostly dominating over Euryarchaeota (Fig. 5). The mis-
cellaneous Crenarchaeota group (MCG; mainly the order
of pGrfC26) in Bathyarchaeota prevailed across all sam-
ples but was especially abundant in HC 2 samples. In ad-
dition to Bathyarchaeota, methanogenic archaea were im-
portant and on average contributed 30.6 % to the whole ar-
chaeal community. Among the methanogens, acetoclastic
methanogens were more abundant in most of the samples
and Methanosaetaceae (24.8 %) were the major component.
They were present in most samples and much more dom-
inant than Methanosarcinaceae (2.0 %). Hydrogenotrophic
methanogens, such as Methanomassiliicoccaceae (1.6 %),
Methanoregulaceae (1.2 %), and Methanocellaceae (0.6 %),
albeit low in abundance, were detected in many samples.
Hütelmoor samples displayed greater variability in archaeal
community composition compared to Zarnekow samples.
The putative anaerobic methanotrophs of the ANME-2d
(Raghoebarsing et al., 2006) clade occurred in patchy abun-
dance with dominance in single spots of both sites. In HC 1
they represented a mean relative abundance of 40.9 % of total
archaeal reads but were almost absent in all other Hütelmoor
cores. In Zarnekow core 3, ANME-2d represented up to ap-
proximately 30 % of all archaea but were otherwise low in
abundance.

3.3 Environmental drivers of microbial community
composition

Bacterial and archaeal population at both peatland sites
showed distinct clustering (Fig. 6) with similarly high intra-
and inter-site variations but greater overall variation in com-
munity composition in the Hütelmoor. Community compo-
sition varied much more strongly in HC 2 than in any other
core (Fig. 6). Bacterial communities in HC 1 were more simi-
lar to communities in all Zarnekow cores than in other Hütel-
moor cores (Fig. 6a). The archaeal community in HC 1 was
more similar to Zarnekow cores as well (Fig. 6b). Environ-
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Figure 3. Relative abundances of different bacterial lineages in the study sites. Along the horizontal axis samples are arranged according to
site and depth. The rank order along the vertical axis is shown for the phylum level.

mental fit vectors suggest pH, oxygen, and alternative TEA
availability as important factors influencing microbial com-
munity composition. The EC vector suggests the importance
of brackish conditions in shaping microbial communities in
the Hütelmoor (Fig. 6a–c).

3.4 Total microbial and functional gene abundances

Quantitative PCR results show that, in both fens, mcrA abun-
dance is up to 2 orders of magnitude greater than pmoA abun-
dance (Fig. 7, Tables 1 and 2). Gene copy numbers of mcrA
are overall higher and spatially more stable in Zarnekow than
in Hütelmoor. Total microbial abundance declined with depth
more strongly in Hütelmoor than in Zarnekow (Fig. 7). There
was a pronounced decrease in microbial abundances at 20 cm
depth in the Hütelmoor. For example, 16S rRNA gene and
pmoA gene copy numbers in deeper samples (below 20 cm
depth) are 1 order of magnitude lower than in upper samples
on average, while the mcrA gene abundances are approxi-
mately 2 orders of magnitude lower. Hütelmoor samples also
exhibited larger heterogeneity in terms of abundances than
Zarnekow samples. Contrary to previous studies, methan-
otroph abundance did not correlate with dissolved CH4 or
oxygen concentrations.

4 Discussion

4.1 Fen geochemistry and relations to microbial
community composition

The rewetting of drained fens promotes elevated CH4 pro-
duction and emission, which can potentially offset carbon
sink benefits. Few studies have attempted to link microbial
community dynamics and site geochemistry with observed
patterns in CH4 production and/or emission in rewetted fens,
while such data are crucial for predicting long-term changes
to CH4 cycling (Galand et al., 2002; Yrjälä et al., 2011; Juot-
tonen et al., 2012). In this study, we show that CH4-cycling
microbial community composition is related to patterns in
site geochemistry in two rewetted fens with high CH4 emis-
sions, high methanogen abundances, and low methanotroph
abundances. Our results suggest that high methanogen abun-
dances concurrent with low methanotroph abundances are
characteristic of rewetted fens with ongoing high CH4 emis-
sions. Thus, we present microbial evidence for sustained ele-
vated CH4 emissions in mostly inundated rewetted temperate
fens.

The environmental conditions and associated geochem-
istry of the two rewetted fens were largely different. Depth
profiles of porewater geochemical parameters show the fens
differed in EC throughout the entire peat profile, while pH
and concentrations of alternative TEAs differed at certain
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Figure 4. Relative abundances within Proteobacteria phylum in the study sites. Along the horizontal axis samples are arranged according to
site and depth. The rank order along the vertical axis is shown for the family level. If an assignment to the family level was not possible the
next higher assignable taxonomic level was used.

depths. In general, concentrations of TEAs oxygen, sulfate,
nitrate, and iron were higher in the Hütelmoor. In Zarnekow,
geochemical conditions varied little across the fen and along
the peat depth profiles (Fig. 2). As expected, the geochemical
heterogeneity was reflected in microbial community struc-
ture in both sites, suggesting the importance of environmen-
tal characteristics and associated geochemical conditions as
drivers of microbial community composition (Figs. 2, 3, 4,
6). The NMDS ordinations (Fig. 6) show large variation in
archaeal and bacterial community composition in the coastal
brackish fen and much less variation in the freshwater ripar-
ian fen. Environmental fit vectors (Fig. 6) suggest that salin-
ity (indicated by the EC vector), pH, oxygen, and alternative
TEA availability are the most important measured factors in-
fluencing microbial communities in the two fens. Patterns
in microbial community composition have previously been
linked to salinity (e.g., Chambers et al., 2016; Wen et al.,
2017), pH (e.g., Yrjälä et al., 2011; Wen et al., 2017), and
TEA availability in peatlands (e.g., He et al., 2015).

Comparing the geochemical depth profiles (Fig. 2) with
the relative abundance of bacteria and archaea (Figs. 3 and
4) provides a more complete picture of the relationships be-
tween microbial communities and site geochemistry, partic-
ularly with respect to TEA utilization. While the porewa-
ter depth profiles suggest there is little nitrate available for

microbial use in HC 1, the relative abundance plot for Ar-
chaea showed that this core was dominated by ANME-2d.
ANME-2d were recently discovered to be anaerobic methan-
otrophs that oxidize CH4, performing reverse methanogen-
esis using nitrate as an electron acceptor (Haroon et al.,
2013). However, ANME-2d has also been implicated in the
iron-mediated anaerobic oxidation of methane (Ettwig et al.,
2016), and the HC 1 site showed slightly higher total iron
concentrations. The relevance of ANME-2d as CH4 oxidiz-
ers in terrestrial habitats is still not clear (Winkel et al., 2018).
Rewetting converts the fens into widely anaerobic condi-
tions, thus providing conditions suitable for the establish-
ment of anaerobic oxidation of methane, but this has yet to be
demonstrated in fens. The patchy yet locally high abundance
of ANME-2d both in Hütelmoor and in Zarnekow suggests
an ecological relevance of this group. Shifts towards less neg-
ative δ13C-CH4 signatures in the upper peat profile, for ex-
ample, from −65 ‰ to −60 ‰ in HC 1 (where ANME-2d
was abundant), may indicate that partial oxidation of CH4 oc-
curred, but we could only speculate whether or not ANME-
2d are actively involved in this CH4 oxidation.

Although TEA input may be higher in the Hütelmoor,
here, methanogenic conditions also predominate. This find-
ing contrasts the measured oxygen concentrations in the up-
per peat profile, as methanogenesis under persistently oxy-
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Figure 5. Relative abundances of different archaeal lineages in the study sites. Along the horizontal axis samples are arranged according to
site and depth. The rank order along the vertical axis is shown for the family level. If an assignment to the family level was not possible, the
next higher assignable taxonomic level was used.
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genated conditions is thermodynamically not possible. How-
ever, seasonal analysis of oxygen concentrations in both
sites suggests highly fluctuating oxygen regimes both spa-
tially and temporary (data not shown). Such nonuniform
distribution of redox processes has already been described
elsewhere, in particular for methanogenesis (Hoehler et al.,

2001; Knorr et al., 2009). It is possible that oxygen lev-
els in both fens are highly variable, allowing for both aer-
obic and anaerobic carbon turnover processes. Recent stud-
ies from wetlands also show that methanogenesis can occur
in aerobic layers, driven mainly by Methanosaeta (Narrowe
et al., 2017; Wagner, 2017), which were detected in a high
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abundance in this study (Fig. 5). Further, oxygen may not
necessarily be available within aggregates entailing anaero-
bic pathways and, thus, the existence of anaerobic microen-
vironments may also partially explain the seemingly con-
tradictory co-occurrence of oxygen and the highly abundant
methanogens. Anaerobic conditions are also reflected by the
extensive and stable occurrence of the strictly anaerobic syn-
trophs (e.g., Syntrophobacteraceae, Syntrophaceae) in most
samples, even in the top centimeters. This suggests that syn-
trophic degradation of organic material is taking place in
the uppermost layer and the fermented substances are read-
ily available for methanogens. As geochemistry and micro-
bial community composition differ among the sites in this
study, it is thus notable that a similarly high abundance of
methanogens, and low abundance of methanotrophs, was de-
tected in both fens. The dominance of methanogens implies
that readily available substrates and favorable geochemical
conditions promote high anaerobic carbon turnover despite
seasonally fluctuating oxygen concentrations in the upper
peat layer.

4.2 Low methanotroph abundances in rewetted fens

Methanogens (mainly Methanosaetaceae) dominated nearly
all of the various niches detected in this study, while methan-
otrophs were highly under-represented in both sites (Figs. 3
and 4). Functional and ribosomal gene copy numbers not
only show a high ratio of methanogen to methanotroph abun-
dance (Fig. 7), irrespective of site and time of sampling, but
also a small contribution of methanotrophs to total bacte-
rial population in both sites. Methanotrophs constitute only
∼ 0.06 % of the total bacterial population in the Hütelmoor
and ∼ 0.05 % at Zarnekow. It should be noted that in this
study we measured only gene abundances and not transcript
abundances, and the pool both of active methanogens and

methanotrophs was likely smaller than the numbers pre-
sented here (Freitag and Prosser, 2009; Freitag et al., 2010;
Cheema et al., 2015; Franchini et al., 2015). Also, as we
were unable to obtain microbial samples from before rewet-
ting, a direct comparison of microbial abundances was not
possible. This was, therefore, not a study of rewetting ef-
fects. For this reason, we performed an exhaustive literature
search on relevant studies of pristine fens. Compared to pris-
tine fens, we detected a low abundance of methanotrophs.
Liebner et al. (2015), for example, found methanotrophs rep-
resented 0.5 % of the total bacterial community in a pristine,
subarctic transitional bog–fen palsa, while mcrA and pmoA
abundances were nearly identical. In a pristine Swiss alpine
fen, Liebner et al. (2012) found methanotrophs generally out-
numbered methanogens by an order of magnitude. Cheema
et al. (2015) and Franchini et al. (2015) reported mcrA abun-
dances higher than pmoA abundances by only 1 order of
magnitude in a separate Swiss alpine fen. In the rewetted
fens in our study, mcrA gene abundance was up to 2 or-
ders of magnitude higher than pmoA abundance (Fig. 7). Due
to inevitable differences in methodology and equipment, di-
rect comparisons of absolute gene abundances are limited.
Therefore, only the abundances of methanotrophs relative
to methanogens and relative to the total bacterial commu-
nity were compared, rather than absolute abundances. We
are confident that this kind of “normalization” can mitigate
the bias of different experiments and allows a comparison of
sites. Further, all primers and equipment used in this study
were identical to those used by Liebner et al. (2012, 2015),
making the comparison more reliable.

As most methanotrophs live along the oxic–anoxic bound-
ary of the peat surface and plant roots therein (Le Mer and
Roger, 2001), the low methanotroph abundances in both
fens could be explained by disturbances to this boundary
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zone and associated geochemical pathways following inun-
dation. In rewetted fens, a massive plant dieback has been
observed along with strong changes in surface peat geochem-
istry (Hahn-Schöfl et al., 2011; Hahn et al., 2015). In addition
to substrate (i.e., CH4) availability, oxygen availability is the
most important factor governing the activity of most methan-
otrophs (Le Mer and Roger, 2001; Hernandez et al., 2015).
The anoxic conditions at the peat surface caused by inun-
dation may have disturbed existing methanotrophic niches –
either directly by habitat destruction and/or indirectly by pro-
moting the growth of organisms that are able to outcompete
methanotrophs for oxygen. Heterotrophic organisms, for ex-
ample, have been shown to outcompete methanotrophs for
oxygen when oxygen concentrations are greater than 5 µM
(van Bodegom et al., 2001). Our microbial data support this
conclusion, as Hyphomicrobiaceae, most of which are aer-
obic heterotrophs, was the most abundant bacterial family
in both fens. Incubation data from Zarnekow (Fig. S1 in the
Supplement) show that the CH4 oxidation potential is high;
however, incubations provide ideal conditions for methan-
otrophs and thus only potential rates. It is likely that, in situ,
the activity of methanotrophs is overprinted by the activ-
ity of competitive organisms such as heterotrophs. It is also
possible that methane oxidation may occur in the water col-
umn above the peat surface, but this was beyond the scope
of this study. Nevertheless, oxidation rates are low enough
that emissions remain high, as demonstrated by the high dis-
solved CH4 concentrations and ongoing high fluxes.

Comparable studies have so far been conducted in
nutrient-poor or mesotrophic fens where post-rewetting CH4
emissions, though higher than pre-rewetting, did not exceed
those of similar pristine sites (e.g., Yrjälä et al., 2011; Juot-
tonen et al., 2005, 2012). Nevertheless, there is mounting
evidence linking CH4-cycling microbe abundances to CH4
dynamics in rewetted fens. Juottonen et al. (2012), for exam-
ple, compared pmoA gene abundances in three natural and
three rewetted fens and found them to be lower in rewetted
sites. The same study also measured a lower abundance of
mcrA genes in rewetted sites, which was attributed to a lack
of available labile organic carbon compounds. In peatlands,
and especially fens, litter and root exudates from vascular
plants can stimulate CH4 emissions (Megonigal et al., 2005;
Bridgham et al., 2013; Agethen and Knorr, 2018), and ex-
cess labile substrate has been proposed as one reason for sub-
stantial increases in CH4 emissions in rewetted fens (Hahn-
Schöfl et al., 2011). Future studies should compare pre- and
post-rewetting microbial abundances along with changes in
CH4 emissions, plant communities, and peat geochemistry
to better assess the effect rewetting has on the CH4-cycling
microbial community.

5 Conclusion

Despite a recent increase in the number of rewetting projects
in northern Europe, few studies have characterized CH4-
cycling microbes in restored peatlands, especially fens. In
this study, we show that rewetted fens differing in geochem-
ical conditions and microbial community composition have
a similarly low abundance of methanotrophs, a high abun-
dance of methanogens, and an established anaerobic carbon-
cycling microbial community. Comparing these data to pris-
tine wetlands with lower CH4 emission rates, we found that
pristine wetlands have a higher abundance of methanotrophs
than measured in the fens in this study, suggesting the in-
undation and associated anoxia caused by flooding may dis-
turb methanotrophic niches and negatively affect the ability
of methanotrophic communities to establish. The abundances
of methane producers and consumers are thus suggested as
indicators of continued elevated CH4 emissions following
the rewetting of drained fens. Management decisions regard-
ing rewetting processes should consider that disturbances to
methanotrophic niches are possible if rewetting leads to long-
term inundation of the peat surface.

Data availability. The 16S rRNA gene sequence data have been de-
posited at NCBI under the BioProject PRJNA356778. The Hütel-
moor sequence read archive accession numbers are SRR5118134-
SRR5118155 for bacterial and SRR5119428-SRR5119449 for
archaeal sequences. The Zarnekow accession numbers are
SRR6854018-SRR6854033 and SRR6854205-SRR6854220 for
bacterial and archaeal sequences, respectively (https://www.
ncbi.nlm.nih.gov/bioproject/PRJNA356778, last access: 25 Octo-
ber 2018).
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