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Abstract Modelers can improve a model by addressing the causes for the model errors (data errors and
structural errors). This leads to implementing model enhancements (MEs), for example, meteorological
data based on more monitoring stations, improved calibration data, and/or modifications in process
formulations. However, deciding on which MEs to implement remains a matter of expert knowledge. After
implementing multiple MEs, any improvement in model performance is not easily attributed, especially
when considering different objectives or aspects of this improvement (e.g., better dynamics vs. reduced
bias). We present an approach for comparing the effect of multiple MEs based on real observations and
considering multiple objectives (MMEMO). A stepwise selection approach and structured plots help to
address the multidimensionality of the problem. Tailored analyses allow a differentiated view on the
effect of MEs and their interactions. MMEMO is applied to a case study employing the mesoscale
hydro-sedimentological model WASA-SED for the Mediterranean-mountainous Isábena catchment,
northeast Spain. The investigated seven MEs show diverse effects: some MEs (e.g., rainfall data) cause
improvements for most objectives, while other MEs (e.g., land use data) only affect a few objectives or even
decrease model performance. Interaction of MEs was observed for roughly half of the MEs, confirming the
need to address them in the analysis. Calibration and increasing the temporal resolution showed by far
stronger impact than any of the other MEs. The proposed framework can be adopted in other studies to
analyze the effect of MEs and, thus, facilitate the identification and implementation of the most promising
MEs for comparable cases.

1. Introduction

Uncertainty is an inevitable phenomenon in modeling the response of water and matter fluxes in complex
geosystems (Beven, 2007; Guzman et al., 2015). According to Matott et al. (2009), two groups of uncertainty
can be distinguished: input uncertainty and model uncertainty. The former comprises input data, response
data, and parameter uncertainty. The latter covers model structure, resolution, spatiotemporal correspon-
dence, and code. The identification and the quantification of the different sources of uncertainty among
these groups in a specific model application are crucial steps for improving model performance. This assess-
ment is difficult, however, due to the complexity of the models, the different and often unknown character-
istics of the features, and the interactions among them. For these reasons, deciding on how to improve the
model performance and which features to implement (e.g., meteorological data based on more monitoring
stations, improved calibration data, and/or modifications in process formulations) remains in many cases a
matter of expert knowledge. The aim of this study is to present a practical and efficient approach to assess
and select betweenmultiple possible changes in the model that could help in supporting model applications
and further improvements. Since these features are assembled to enhance the model, they are called model
enhancements (MEs) henceforward. Arguably, this contributes to the confusion in taxonomies in that regard
(Matott et al., 2009), but equivalent terms like model component (Guzman et al., 2015), scenario (Droogers
et al., 2008), and factor (Pechlivanidis et al., 2011) struck us as being ambiguous. Here,ME does not imply that
they are indeed improving the model (indeed, some may turn out to be detrimental) nor does it mean they
are only related to the model itself (i.e., process formulation): instead, better input data, better resolution, and
so forth are also considered MEs.
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In this context, a broad range of diagnostic tools for exploring the relationship of the input and output space
of a model is already available for different purposes (Matott et al., 2009; Uusitalo et al., 2015). Among these,
sensitivity analyses have received much attention in recent decades as a tool to quantify the relative impor-
tance of the different sources of uncertainty (Ferretti et al., 2016). In this context, numerous methods have
been developed that are presented and discussed in several review papers (Pianosi et al., 2016; Razavi &
Gupta, 2015; Saltelli et al., 2007; Song et al., 2015).

The simplest methods rely on scenario-based realizations for which One-at-A-Time (OAT) approaches are
implemented. In this approach, one feature is changed while keeping the others constant (e.g., Loosvelt
et al., 2013; Paton et al., 2013). Studies within this category usually compare a limited number of MEs
(<5), and the MEs are usually represented by real (i.e., practically implementable) enhancements intro-
duced in the model application, such as rainfall measurements or refined land use maps (Chen et al.,
2011; Paton et al., 2013). Similarly, different model structures can be compared (e.g., Fenicia et al., 2008),
especially when using flexible modeling frameworks (Clark et al., 2008, 2015; Kneis, 2015). Overall, the num-
ber of simulations is usually limited (<20 simulations) allowing their use also for computationally demand-
ing models. While OAT is relatively easy to implement and is still used in many studies (Ferretti et al., 2016),
it has some limitations due to the nonlinear response of many models as well as interacting effects among
the enhancements analyzed (Saltelli & Annoni, 2010). To overcome these limitations, other methods such
as global sensitivity analyses methods based on extensive sampling of multiple combinations of features
are applied (e.g., Borgonovo et al., 2017; Pianosi & Wagener, 2015; Rakovec et al., 2014; Razavi & Gupta,
2016). Here MEs are usually described by a priori statistical assumptions, and the analysis is based on sam-
pling a defined probabilistic distribution that is supposed to describe the uncertainty of the specific ME. For
this reason, this approach originally focused on the effects of different parameters on the model response,
that is, parameter uncertainty. More recently, however, these strategies have also been extended to
account for other sources of uncertainty (Baroni & Tarantola, 2014; Lilburne & Tarantola, 2009; Savage
et al., 2016; Shoaib et al., 2016; Stahn et al., 2017). Thus, different model structures could be also evaluated
in the assessment, especially when combined with flexible modeling frameworks (e.g., Clark et al., 2008,
2015; Kneis, 2015). In addition, the tools were integrated in practical code packages (Iooss et al., 2016;
Pianosi et al., 2015) and can now be easily integrated in any modeling applications (Shin et al., 2013).
Still, the main drawback of these types of approaches is the large computational requirement (e.g., >500
runs) that could quickly become unfeasible when the number of sources of uncertainty or their probability
range is relatively high (Sarrazin et al., 2016).

This discontinuity between OAT and global sensitivity analyses approaches motivated us to propose an inter-
mediate approach that could also be applied when the model computational effort is high (i.e., in the order of
hours) and/or the number of MEs is relatively large (i.e., >5). This new framework for analyzing the effect of
MEs yields quantitative information and ranks the effect of the implemented enhancements. It extends the
OAT approach to two (and potentially more) starting points to explore the possible interactions between
the features considered. All sources of model uncertainty (input data, response, process representation,
etc.) can be integrated in the analysis. Finally, the assessment of the performance is conducted on different
objectives of themodel response to provide a comprehensive view of themodel performance. In general, the
framework could also be applied to synthetic perturbations of each ME (defined by a priori statistical distri-
bution). However, the choice of these distributions can strongly affect the outcome and the respective con-
clusions (Baroni et al., 2017; Haghnegahdar & Razavi, 2017; Zhang et al., 2015). For this reason, we decided to
demonstrate the method using practically implementable features as MEs (e.g., better rainfall data). The
method is demonstrated on an example of water and sediment modeling in a mesoscale catchment in NE
Spain for which several enhancements were derived from long-term monitoring, extensive field campaigns,
and remote sensing data. Where applicable, the MEs are also quantified for guiding the definition of a priori
ranges in similar studies.

The paper is structured as follows: section 2 explains the general concept of the proposed method. As an
example, the method is applied to a specific case study in section 3. In section 4, the results are presented,
while potential and limitations are discussed in section 5, both in terms of the method and in relation to
the specific application. In section 6, we summarize and present concluding remarks. The paper is comple-
mented by an extensive annex.
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2. The Multidimensional Framework

The proposed method relies on the multidimensional analysis of both multiple model enhancements and
multiple objectives. Henceforward, it is referred to as MMEMO.

2.1. Forward and Backward Selection

MMEMO focuses on quantifying the effect of explicit changes of features on the model performance.
Although the framework could also be applied to synthetical perturbations of these features, we aim to
use concrete realizations of them, that is, as resulted from a measurement campaign.

Each ME can change the model performance P. However, these changes may be different whether the ME is
added to (withheld from) the base (full) configuration. For this reason, the evaluation of the effect of an ME
is done in two ways: a forward selection and a backward elimination. In the former, each ME is added to the
base configuration (A, Figure 1, left). Any change in performance is compared with respect to A. In the latter,
each ME is withheld from the configuration, including all available MEs (B, Figure 1, right). Change in perfor-
mance is compared with respect to B. These configurations are depicted in Figure 1 as “A+” and “B�”,
respectively. In contrast to the standard OAT approach, this aims at allowing a more differentiated assess-
ment of the role of the individual ME with regard to their interaction (e.g., Campolongo et al., 2007;
Morris, 1991). Assumingmmax MEs to be assessed and k couples of reference configurations (A and B), a total
of N = (mmax + 1) · 2 · k configurations is treated. A minimum of two reference configurations (i.e., k = 1)
needs to be considered, however, for a more detailed analysis, an increased number of couples k can be
also included.

2.2. Quantifying the Effect of an ME on Different Objectives

The effect of an MEm is reflected in a change in the performance measure P. It can be expressed as a relative
change of Pm when compared to the reference configuration Pref (scenario impact; Droogers et al., 2008),
normalized by the maximum achieved improvement among all mmax MEs:

IPm ¼ s ·
Pref � Pm

maxmmax
j¼1 Pref � Pj

� � ; (1)

with s: sign correction (s = 1 for adding an ME as in the A+ configurations; s =�1 for withholding an ME as in
the B� configurations). Thus, a positive value of IP marks an improvement of the model, while a negative
one indicates degradation. The configuration with the largest gain in performance will get the value of 1.
The resulting values allow a ranking of the MEs (similar to Chen et al., 2011).

Additionally to forward or backward selection of an ME (A or B configuration), we can consider no different
objectives (aspects of improvement) by choosing different expressions for the model performance Pi, with

Figure 1. Forward and backward selection of model enhancements to and from configurations A and B, respectively.
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i ∈{1, …, no}. These objectives depend on the target variable (e.g., water or sediment), the chosen perfor-
mance measure (e.g., focus on dynamics or bias), the spatial focus (e.g., output at subcatchment or basin out-
let), the temporal focus (e.g., daily or seasonal prediction), and so forth. Thus, a given ME may increase the
performance of the model for a specific objective i, while its effect may be detrimental when looked at from
a different point of view for objective i’. Therefore, each of the configurations depicted in Figure 1 is evaluated
with regard to the different objectives selected. Accordingly, corresponding performance measures Pm,i, and
their related indices IP,m,i need to be calculated through all no objectives.

2.3. Interpretation and Visualization of IP Values

To facilitate the recognition of patterns and improve the detailed interpretation of the results, the IP values
can be color-coded and plotted in matrices.

For a less detailed assessment of the effect of an ME m, following reasoning presented in Morris (1991), the
resulting IP values can also be aggregated to allow for a more general assessment.

Similarly, for quantifying the degree of interaction and nonlinear effects of an ME, we use the spread of its
effects: we computed the absolute standardized difference ASDm as a measure of relative range of the IP
values between the corresponding configurations (e.g., A + 5 vs. B � 5):

ASDm ¼ IPm Að Þ � Im Bð Þj j
mean IPm Að Þ; IPm Bð Þð Þ (2)

3. Case Study
3.1. Materials and Methods

The MMEMO method is applied to a case study using the WASA-SED model on the mesoscale
Isábena catchment.

The following sections describe the study area (section 3.1.1), introduce the WASA-SED model (section 3.1.2),
the general model setup (section 3.1.3), the specific MEs (section 3.1.4), and objectives (section 3.1.5) consid-
ered in the analysis.
3.1.1. Study Area
The study is conducted on the Isábena basin located in the Southern Central Pyrenees and their foothills
(NE Iberian Peninsula). The River Isábena is the main tributary of the River Ésera. Both constitute the most
important tributaries of the River Cinca, in turn the second largest tributary of the Ebro (Figure 2). The
Isábena drains an area of 445 km2 and can be divided into six subbasins: Cabecera (146 km2, representing
33% of the total catchment area), Villacarli (42 km2, 9%), Carrasquero (25 km2, 6%), Ceguera (28 km2, 6%),
Lascuarre (45 km2, 10%), and the remaining outlet subbasin Capella.

The Isábena basin is characterized by heterogeneous relief (450–2,720 m above sea level) and pronounced
topography. This leads to marked temperature and precipitation gradients (Verdú, 2003) and a high spatial
variability in precipitation (annual precipitation: 450–1,600; mean: 770 mm). The area has a Continental
Mediterranean climate, wet and cold, with both Atlantic and Mediterranean influences (García-Ruiz et al.,
2001). The hydrology of the basin is characterized by a rain-snow-fed regime. Floods typically occur in
spring (i.e., frontal precipitation events and snowmelt) and in late summer and autumn (i.e., localized thun-
derstorms). The mean annual discharge estimated at the outlet of the basin (Capella gauging station,
Figure 2) is 4.1 m3/s, with a maximum instantaneous discharge of 370 m3/s recorded in August 1963
(return period of 94 years calculated by the Gumbel method from the series of annual maximum instan-
taneous discharge for the period 1945–2009).

The Isábena drains together with the Ésera into the Barasona Reservoir, delivering large amounts of sus-
pended sediments which are responsible for its severe siltation problem. Instantaneous suspended sediment
concentrations of up to 350 g/L have been measured at the basin outlet (López-Tarazón et al., 2009), gener-
atingmean suspended sediment loads above 250,000 t/year (i.e., period 2005–2010; López-Tarazón & Batalla,
2014) and yielding specific values of ~600 t·km�2·year�1. These values can be considered very high in com-
parison with similarly sized catchments in this and other regions (de Vente et al., 2006; López-Tarazón et al.,
2012). Sediments mainly originate from the middle part of both basins (viz., in Villacarli and Carrasquero
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subbasins in the case of the Isábena; Figure 2), from a corridor consisting of valleys excavated over Eocene
marls with sandstones. At the surface, these marls form typical badland structures, which are the main source
of sediment yield. Vegetation is mainly composed of deciduous woodland, agriculture, pasture, and bushes
in the valley bottoms with evergreen oaks, pines, and bushes on higher ground.

The Isábena catchment has been subject to intensive hydro-sedimentological monitoring over the past
decade (e.g., Bronstert et al., 2014), resulting in a favorable instrumentation situation (Figure 2), which
enabled testing the multidimensional analysis presented. The time-series data used have been published
and described by Francke et al. (2017b).
3.1.2. The Hydro-Sedimentological Model WASA-SED
WASA-SED (Güntner & Bronstert, 2004; Mueller et al., 2010) is a process-oriented hydro-sedimentological
model with a multiscale approach to reflect catchment complexity.

The hydrological module calculates interception losses, evaporation, and transpiration using the modified
Penman-Monteith approach (Shuttleworth & Wallace, 1985) and infiltration with the Green-Ampt approach
(Green & Ampt, 1911) in a multilayer scheme. Snow, infiltration-excess and saturation-excess runoff as well
as its lateral redistribution and subsurface runoff between the model’s spatial components are considered.
WASA-SED represents ground water with a linear storage approach.

The sediment module in WASA-SED provides four erosion equations of sediment generation by using deriva-
tives of the Universal Soil Loss Equation (USLE; Williams, 1995; Wischmeier & Smith, 1981). These estimates of
gross erosion can optionally be coupled to a transport-capacity limitation constrained by overland flow or a
sediment delivery ratio prespecified on the scale of landscape units.

Subcatchment runoff is routed through the river network considering river exfiltration and evaporation. The
water routing is based on the kinematic wave approximation after Muskingum (e.g., as described in Chow

Figure 2. (a) Location of the Isábena catchment in the Ebro basin and in the Iberian Peninsula. (b) Location of the Isábena,
the Ésera, and the Cinca Catchments within the Ebro River Basin. (c) Digital elevation model of the Isábena Basin, where
the main subbasins, the location of the badland areas, the Barasona Reservoir, and the meteo and gauging stations are
shown (see Table A1 of annex for station Ids used in the map).
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et al., 1988). River flow, velocity, and flow depth are calculated for each river stretch and each time step using
the Manning equation.

Reservoirs can be accounted for in a lumped or explicit mode. Both modes include the reservoirs’ hydrologi-
cal and sediment balance to a different degree of detail (Mamede, 2008).WASA-SED is tailored for the use at
themesoscale (~100–105 km2). To preserve landscape variability in an efficient manner, WASA-SED employs a
hierarchical discretization approach: subcatchment, landscape unit, terrain component, and soil-vegetation
component. At the subcatchment level, flow routing and water abstractions as well as reservoir management
are performed. Each subcatchment contains several landscape units (LUs). These LUs group typical topose-
quences and similar lithology and land-surface form. They consist of terrain components (TCs) decomposing
the LUs into homogenous parts. Each TC is characterized by a different slope gradient and by a specific com-
position of soil-vegetation-components, which combine soil types and vegetation classes. These different
discretization units can be derived with an automatic catena-based discretization method (Francke,
Güntner, et al., 2008).
3.1.3. General Model Setup and Experimental Design of MMEMO
The modeling period spans January 2009 till April 2016. The model’s initial configuration is based on mostly
publicly available input data summarized in supporting information Table A2 of the annex. It is referred to as
(base) configuration A. The model is run in hourly and daily resolution, both in uncalibrated and calibrated
mode resulting in a total of k = 2 · 2 = 4 reference configurations A (details in section 3.1.4, last paragraph).
The calibration was performed for the target variables water and sediment. Each combination of MEs was
calibrated separately. Guided by previous studies (Francke, 2009; Güntner, 2002), the most influential para-
meters for the target variables were selected for calibration (see Table A6). The objective function used in
the optimization was based on the root-mean-square error (RMSE). When the configuration included flux
data at the subbasin level (i.e., with ME 2), themean of all subbasin RMSEs was used; otherwise, only the fluxes
at the outlet were considered. For water, this concerns measured and modeled discharge; for sediment,
monthly sediment yields (cf. Table 4). We employed the heuristic, gradient-free optimization algorithm dyna-
mically dimensioned search (Tolson & Shoemaker, 2007) as implemented in the ppso-package (Francke,
2015; see details in see section 9.5.8 of annex).

Starting from these four configurations A, we evaluate the impact of mmax = 7 selected MEs. These MEs are
listed in Table 1 and briefly summarized in the following. The annex (A10.5) contains further technical details
on their derivation. The MEs have been chosen to correspond to all relevant sources of uncertainty as identi-
fied by Matott et al. (2009) and comprise the findings and developments of the SESAM-II project (Bronstert
et al., 2014). Configuration B refers to the model setup in which all these are implemented, that is, added
to the base configuration A (see Figure 1). Intermediate configurations originate from adding an ME to A
or withholding it from B. This resulted in a total of N = (mmax + 1) · 2 · k = 64 configurations.
3.1.4. Description of Implemented MEs
3.1.4.1. ME 1, Rainfall—Additional Gauges
The official rain gauge network was complemented by 12 rain gauges, thus increasing rain gauge density
from 1.1 to 3.6 gauges per 100 km2. The resulting changes for the modeled subcatchments are summar-
ized in Table 2. Besides changes in the mean, configuration B features higher spatial variability in rainfall

Table 1
Overview of Model Enhancements

ID Model enhancement Configuration A (base) Configuration B (all MEs) Description Source of uncertaintya

ME 1 Rainfall Official gauges + Research gauges Additional rain gauges id, mc
ME 2 Discharge Outlet only + Subbasin gauges Additional stream gauges ir, mc
ME 3 Land use Official data 9>>>>>>=

>>>>>>;

Remote sensing based Refined Land-use data ip, mc
ME 4 LAI/C-factor values Literature Refined LAI/C data, no seasonality ip
ME 5 LAI/C seasonality None Seasonality in LAI/C ip, ms
ME 6 Connectivity index None SDRb Refined sediment connectivity ms
ME 7 Flow concentration Classic WASA Fc index Refined water connectivity ms

Note. ME = model enhancement; LAI = leaf-area index; C-factor = cover factor.
aClassification of source of uncertainty (Matott et al., 2009): Input uncertainty: id = input data; ir = response; ip = parameter; model uncertainty: mc = correspon-
dence; mr = resolution; ms = structure. bSediment delivery ratio after Vigiak et al. (2012).
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and more intense peak rainfall, as attested by the decrease in mean station correlation and increase in the
99% percentile.
3.1.4.2. ME 2, Discharge and Sediment Flux at Subbasin Level
The flux measurements at the outlet were complemented by monitoring data from the five subcatchments.
This increased the total length of discharge time series from 1,961 to 5,526 days (+182%).

Sediment fluxes were aggregated to the monthly level. Here adding data from subcatchment monitoring
increases coverage from 33 to 156 months.
3.1.4.3. ME 3, Land Use—Improved Map
The use of satellite images, ground-truthing campaigns, and an object-oriented approach for classification
allowed for the derivation of an improved land use map. Differences to the base configuration A are espe-
cially pronounced in the assignment of the grassland, shrub, and forest classes (Table 3).
3.1.4.4. ME 4, LAI-/C-Factor Values—Derivation From Remote Sensing
Fractional cover of green vegetation was assessed from optical remote sensing imagery and a multiple end-
member spectral mixture analysis (MESMA) supported by extensive ground truthing. This allowed the estima-
tion of leaf-area index (LAI). In comparison to the base configuration A, values differed by�2.3 to +2.7 m2/m2

(mean: �0.54 m2/m2; see Table A4 of annex).

Using additional field survey data for cover fractions of rocks and dry vegetation, the USLE C-factor (cover
factor) was calculated for the land use classes agricultural, shrubland, grassland, and badland, resulting in
changes of the updated values of �0.33 to +0.17 (mean: �0.04). Spatially and temporally constant C-factor
values from the literature were assigned to the remaining classes and no-data pixels (see Table A5 of
the annex).

3.1.4.5. ME 5, LAI-/C-Factor Seasonality—Derivation From
Remote Sensing
Based on the maps of LAI and C-factor derived for the entire study area for
several dates during the growing season, an average seasonal cycle of LAI
and C-factor for each land use class was obtained. This was done by fitting
a cyclic linear piecewise regression to mean LAI and C-factor data for all
dates and for the four most important land use classes agricultural, shrub-
land, grassland, and badland. Compared to configuration A, this resulted in
changes of�1.6 to 1.8 m2/m2 (mean: 0.52 m2/m2) for the LAI and�0.36 to
0.01 (mean: �0.09) for the C-factor. The resulting values as used in the
configurations are listed in Tables A4 and A5 in the annex.
3.1.4.6. ME 6, SDR—Enhanced Representation of Sediment Retention
and Delivery
The sediment delivery ratio (SDR) was computed according to Vigiak et al.
(2012). This computation is based on the index of connectivity (Borselli

Table 2
Subbasin Statistics for Annual Rainfall and Discharge (1 January 2009 to 6 January 2014) Based on Official (Config. A) and
Complemented Rain Gauge Network (Config. B) and Stream Gauges, Respectively (see Figure 2)

Subbasin

Mean annual rainfall Discharge

Config. A (mm) Config. B (mm) +/� (%) Mean (m3/s) Max (m3/s)

Cabecera 859 903 5.1 2.07 91.4
Villacarli 765 852 11.4 0.27 14.3
Carrasquero 736 796 8.2 0.24 9.0
Ceguera 671 620 �7.6 0.21 22.4
Lascuarre 575 584 1.6 0.08 13.0
Capella 646 637 �1.4 4.18 123.9
q991 5 6 22.7
q9924 32 36 11.9
Mean (ρ1) 0.87 0.74 �15.5
Mean (ρ24) 0.95 0.90 �4.7

Note. q99xx = 99 percentile; mean (ρxx) = mean Pearson correlation among the time series for resolution of xx hours.

Table 3
Land Use Classification Results for Improved Land Use Map

Land use class

Areal fraction (%)
Difference
(B � A)Config. A Config. B

Agricultural 12.9 10.5 �2.5
Badland 0.6 1.9 1.3
Forest dec. + mixed 22.8 32.2 9.4
Forest con. 6.5 18.0 11.4
Shrubland 0.0 1.7 1.7
Open soil 32.7 29.1 �3.6
Grassland 22.2 6.2 �16.0
Rocks 1.6 0.5 �1.1
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et al., 2008), which, in turn, relies on DEM analysis and the spatially derived C-factor (see ME 4). For the use in
the model, the SDR values were averaged for each landscape unit to match the model input structure. The
resulting values range from 0.002 to 0.01 (mean: 0.005).
3.1.4.7. ME 7, Flow Concentration Index—Approximating Flow Convergence
The concentration of overland flow on hillslopes has various implications for hydrological and sediment
connectivity.

Its original representation in WASA-SED (configuration A) uses a static empirical estimation (a specific fraction
fsheet2rill of the overland flow is considered channelized and not subject to further interaction with the lower
TCs, depending on the areal fractions of the TCs; see Güntner, 2002).

We extended the model by refining the estimation of fsheet2rill and also allowing for flow divergence by the
factor frill2sheet. Both coefficients were parameterized using topography-driven algorithms. Thus, the respec-
tive mean values of fsheet2rill/frill2sheet are 0.28/0 (configuration A) and 0.82/0.22 (configuration B).
3.1.4.8. Benchmarks Calibration and Temporal Resolution
As explained in the previous section, the analysis includes k = 4 couples of reference configurations (hourly
and daily resolution and both in uncalibrated and calibrated mode). This allows looking at the different effect
of each ME within these settings, which we found of special interest from the application point of view and
because modifying them is standard practice in model studies. More details on the calibration in section
10.5.8 of the annex.

By additionally employing comparisons between the four couples, we could also isolate the effect of calibrat-
ing and increasing the temporal resolution on the IP values. This was done by pairwise comparison of all cor-
responding uncalibrated and calibrated (daily and hourly) configurations, respectively, and aggregating the
results. As this slightly differs from the treatment of the other MEs, calibration and temporal resolution are
formally not treated as MEs here, although this also could be done in other settings.

The employed optimization algorithm includes stochastic components. To account for the resulting random
effects, we replicated the calibration of the four reference base configurations 10-fold. The scatter in the
resulting performance measures must be considered as inherent noise in this case, that is, changes in perfor-
mance below this threshold should not be interpreted. Consequently, the respective 95 percentile ranges
served to denote IP values falling below these thresholds (insignificant improvements).
3.1.5. Differentiating Model Performance: Looking at Different Objectives
Following the rationale of MMEMO, the effect of theMEs is measured with regard to different objectives. They
include different target variables (water vs. sediment flux), spatial (at the catchment outlet vs. at the
subbasins), and temporal (dynamics vs. yield) foci. Dynamics were assessed with the RMSE (equation (3));
agreement in total yield was quantified using the absolute bias PBias (equation (4)):

PRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑nt

i¼1ð Qobs ið Þ � Qsim ið Þð Þ2
nt

vuut
; (3)

PBias ¼ Δt · ∑
nt

i¼1
Qobs ið Þ � Qsim ið Þ

������

������
; (4)

PBias;rel ¼ PBias

Δt ·∑nt

i¼1Qobs ið Þ
; (5)

where nt is the number of time steps in the simulation period, Qsim simulated flux, and Qobs observed flux of
water or sediment. For each objective, the corresponding performance measure P is chosen as shown in
Table 4. The relative bias PBias,rel (equation (5)) solely serves for reporting the model performance in the refer-
ence configurations (see section 4.1).

To ensure direct comparability with the metrics from the daily configurations, the results of the configura-
tions in hourly resolution aggregated to daily resolution before the metrics are computed.
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4. Results
4.1. Model Performance in the Reference Configurations

The following analysis focuses on the improvements resulting from the different MEs, that is, the changes
they caused. For putting these into perspective, the performances of the reference configurations are given
in Table 5. The full list of calculated performance measures can be found in the Supporting Information S1.

For all objectives, the performance measures vary greatly. Although calibration used only a single objective
function targeting dynamics, the calibrated configurations outperform their uncalibrated counterparts in all
other objectives, too. The B configurations usually do not yield a higher performance than the A configura-
tions, despite comprising all considered MEs. This already reveals that at least some of the MEs do no improve
model performance. Applying the MMEMO methodology as described in the following sections provides
further insights.

4.2. Effect of a Single Model Enhancement on Multiple Objectives

As showcase, we present the effect of one ME (ME 1, improved rainfall) on all considered objectives of
improvement. Figure 3 shows that the denser rain gauge network mostly leads to an improved model
performance. This improvement is apparent for all water-related metrics, especially concerning yield.
Conversely, the sediment metrics mainly experience insignificant (hashed cells) or negative changes in per-
formance. This degradation is especially apparent for the dynamics at the outlet, for both water and
sediment metrics.

Table 4
Improvement Aspects (Objectives and Associated Change in Performance) Considered in the Case Study and Performance
Measures Used

Improvement aspect
(category of objective) States Number of states

Modifications to performance
measure P = P (Qsim, Qobs)

Target variable Water 2 Qsim = Qwat
Sediment Qsim = Qsed

a

Spatial focus Subcatchment 2 P = mean(P(subbasins))
Outlet P = P(outlet)

Temporal focus Dynamics 2 P = PRMSE
Yield P = PBias

Note. The total number of objectives considered is 23 = 8.
P = performance measure, Qwat = simulated discharge; Qsed = simulated sediment flux; units = water: (V/T);
sediment = (M/T).
aFor sediment, Qsim and Qobs are aggregated to monthly values to reduce the effect of intermediate storage in
the riverbed.

Table 5
Performance P of Reference Configurations

Water Sediment

Objective

Sub Out Sub Out

Dynamicsa Yieldb Dynamicsa Yieldb Dynamicsc Yieldb Dynamicsc Yieldb

A Daily Uncalibrated 1.19 0.38 3.86 0.40 13,244 10.60 33,213 1.37
Calibrated 1.02 0.44 2.84 0.29 7,479 4.59 12,755 0.12

Hourly Uncalibrated 1.32 0.40 4.11 0.45 7,560 2.05 19,976 0.42
Calibrated 1.22 0.44 3.29 0.37 7,031 6.27 11,513 0.00

B Daily Uncalibrated 1.34 0.47 4.42 0.55 8,048 0.95 26,331 0.99
Calibrated 1.13 0.45 3.34 0.44 7,907 0.83 25,893 0.96

Hourly Uncalibrated 1.46 0.46 4.60 0.58 8,102 0.99 26,523 1.00
Calibrated 1.31 0.43 3.82 0.49 6,973 2.45 16,916 0.40

Note. Performance measures of dynamics expressed as PRMSE (equation (3)), yield as PBias,rel (see equation (5) and Table 4).
a[m3/s]. b[�]. c[t/month].
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The other MEs also show quite diverse effects on the different objectives (see 10.6 in annex). Generalizable
patterns are rare among the investigated MEs.

Thus, the effect of any MEmust be assessed separately for each objective of interest; a positive effect of anME
for one objective does not necessarily correspond to the improvement of another.

The matrices are arranged such that the effect of an ME concerning a certain objective is plotted in a contig-
uous way (see scheme on the right).

Thus, while such complex matrices provide detailed information for each single ME and for assessing the
effect of interactions (see section 4.3), comparing the effect of multiple MEs requires assessments aggregated
by the A/B configurations (see section 4.4) or by the metrics (see section 4.5). Figure 4 illustrates these steps.

Figure 3. Effect of model enhancement ME 1 (rainfall) expressed as IP value. The IP values are color-coded, with the max-
imum and minimum added in black. IP values below the noise level are displayed with a line pattern. The matrices are
arranged such that the effect of an ME concerning a certain objective is plotted in a contiguous way (see scheme on the
right). ME = model enhancement.

Figure 4. Schematic illustration of aggregating the detailed results. The numbers refer to the following paper sections.
ME = model enhancement.
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4.3. Quantifying Interaction

Differences between the A and B configurations are a result of the interaction of the MEs: the effect of an ME
can be different, whether it is applied to a base configuration A or to full configuration B. To quantify the
apparent high degree of interaction between the MEs, we employed the ASD, that is, the difference between
the IP values of corresponding configurations (e.g., “A + 5” vs. “B � 5”, see equation (2)).

Figure 5 suggests that this interaction varies considerably between the different objectives: while water-
related objectives seem to be less affected, the calibrated sediment model in daily resolution shows the
largest effects with ASD values of over 500.

Likewise, the ASD values for the other MEs show great variability without appreciable patterns (Figure 13,
annex). This implies that interactions were observed for some objectives, while they were absent for others.

Figure 5. ASD values (relative range of the IP values between the corresponding A and B configurations) for all considered
metrics as arranged in Figure 5) for ME 1. ME = model enhancement.

Figure 6. IP values of all objectives, grouped by ME and forward/backward selection (A+/B�). The numbers above the
panel report the percentage of the positive IP value in the respective group. The values below the bottom line show
median ASD values for each ME. ME = model enhancement.

10.1029/2018WR022813Water Resources Research

FRANCKE ET AL. 8604



However, the values suggest that for roughly half of the MEs, pronounced effects of interaction must be
expected, which cannot be inferred from traditional OAT approaches. For this reason, these results point at
the difficulties to generalize the effect of a specific ME for other case studies and emphasize the need for
identifying such interactions. The following section summarizes these findings to allow the comparison of
the MEs.

4.4. Intercomparison of MEs and Their Interaction

Figure 6 summarizes the two previous sections, that is, it aggregates the ME’s impacts over all objectives.
There is large scatter in the IP values caused by the different MEs. Most IP values fall within the range between
�1 and 1. Especially for MEs 2, 4, 6, and 7, this range is considerably smaller, suggesting a generally limited
influence of the respective MEs.

In about 40% of the cases, the effect of an ME is positive (i.e., improving model performance) with A config-
urations (43%) benefitting more than B configurations (36%). With around 50% of the configurations being
improved by rainfall (ME 1), this ME provokes the most beneficial effects on its introduction. However, some
MEs (e.g., ME 3) only rarely cause an improvement of the model, such as 31% of the A configurations and only
3% of the B configurations (see top axis of Figure 6). In contrast, calibrating the model or increasing its resolu-
tion yields much higher IP values. With their value exceeding 1, this suggests that the associated model
improvement is often much stronger than of any ME. They also cause much more consistent improvements,
with 100% and 50% improved configurations, respectively.

The median ASD values per MEs (Figure 6, bottom line numbers) are a measure of an ME’s interactions. A low
value suggests low interaction, for example, ME 6, whereas a high value indicates high interactions. For exam-
ple, ME 4, 5, and 7 have high ASD values. Thus, their impact depends strongly on the configuration context.

4.5. Ranking of MEs

From the point of model application, it may be of interest to know (I) which ME is most promising to improve
a given objective; or, conversely, (II) which objective is most improved by an ME. These questions are
addressed in Figure 7, which ranks the MEs according to median IP values.

Concerning (I), Figure 7 (colored bars at left of cells) suggests that for many objectives, improved rainfall data
(ME 1) and subbasin fluxes (ME 2) are the most improving MEs, while the modeling benefits the least from
improved land use data (ME 3). Specifically for sediments, surprisingly connectivity index (ME 6) causes the
least improvement. All improvements obtained by the MEs are considerably lower than the effect of calibra-
tion. Regarding sediments, also increased resolution yields greater benefits than any of the MEs.

Concerning (II), Figure 7 (colored bars at bottom of cells) shows that ME 1 has its largest positive impact on
water yield metrics. Its most detrimental effect concerns water dynamics, which also applies to ME 2–5.

Thus, despite the multidimensionality of the improvements, in the current case, some MEs like rainfall (ME 1)
clearly provide the greatest benefit to the model. Figure 8 visualizes this in detail for every objective
separately by displaying the two most beneficial MEs. Again, rainfall (ME 1) scores the highest number of
objectives, especially regarding water fluxes, namely, water yield. LAI/C-factor values (ME 4) and LAI/C-
seasonality (ME 5) also seem to play some role in the B and A configurations, respectively.

For sediment, the picture is less clear: Land use (ME 3), connectivity index (ME 6), and flow concentration
(ME 7) seem to predominate but each for specific objectives only (A configurations, uncalibrated daily,
and uncalibrated B configurations, respectively).

Many objectives could be improved only by as single ME (viz., ME 1 or 2), that is, all other MEs did not yield any
improvement at all (cells without circles in the matrix). For nine objectives, none of the MEs had a positive
effect (white cells). For these, the performance was only increased by calibration (two objectives) or temporal
resolution (three objectives). Four objectives of the calibrated hourly configurations were never improved.

5. Discussion
5.1. Toward Further Improvements of the Model—What Can We Learn?

The presented case study benefitted from a favorable data situation which allowed the comparison of multi-
ple, very diverse MEs with the MMEMO approach. Including both water and sediment in the modeling shed
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additional light on some of the MEs. Still, some characteristics of the case study must be acknowledged that
could affect specific conclusions drawn thereof (see 10.8 of annex).

Applying the MMEMO approach revealed that the resulting effect of adding or withholding these MEs on
performance metrics was very diverse and depended on the metric and context. Thus, it confirmed the
necessity of this multidimensional approach to identify the different behaviors of the MEs.

Figure 8. The two most beneficial model enhancements for each objective. Each cell of the colored matrices denotes the
most beneficial model enhancement (color of cell) and the second-to-best (colored circle). The layout is the same as in
Figure 3. Example: Top-left cell: The performance for modeling of water fluxes in the A configuration at the subbasin
level, in daily resolution, in terms of dynamics, for the uncalibrated model was most improved by model enhancement 1
(rainfall, light blue cell color). No other model enhancement caused any improvement for this constellation (no colored
circle in this cell). LAI = leaf-area index; C-factor = cover factor.

Figure 7. Comparative effect of model enhancements, expressed by median IP values (cf. bottom line summaries in
Figures 3 and 12 in the annex). Bars at the bottom/left cell margin indicate the two highest (green) and lowest (red) IP
values of each row/column. Thick bars mark the highest (green)/lowest (red) value; thin bars mark the second highest
(green) /second lowest (red) value.
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Ranking first among the MEs, additional rainfall (ME 1) proved beneficial for roughly half of the objectives.
This ME also showed one of the least tendencies of interaction, suggesting that a gain in model performance
can be expected for similar model setups. This corroborates the common assumption that precipitation is
generally the biggest driver of uncertainty (Guzman et al., 2015). However, as pointed out by Fenicia et al.
(2008), improved model performance due to improved rainfall data has mainly been confirmed for virtual
experiments, while studies using real data are less common.

On average, land use information (ME 3) and improved LAI/C-factor values and their dynamics (MEs 4 and 5)
yielded little or no benefit. However, the detailed analysis revealed that these MEs still can be among the
most powerful for very specific objectives (see Figure 8).

In virtually all cases, calibration caused considerably larger improvements than any of the MEs; for sediment
metrics, this was also true for increasing the temporal resolution. In other words, although the employed
model WASA-SED is a semiprocess-based model (Bronstert et al., 2014; Mueller et al., 2010) for data-scarce
situations, the additional information contained in the added MEs never produced the same increase in per-
formance as did calibration and changed resolution. A similar conclusion was gained by Butts et al. (2004),
who found by comparing 10 different model structures, that model calibration was always essential to yield
a goodmodel performance. This suggests that for the used model, the additional information content of the
tested MEs is still quite low when compared to calibration. Consequently, even for this catchment with rela-
tively good input data situation, calibration is required to achieve high model performance. In addition, a
wide range of observations can enable both modelers and field observers to identify dominant hydrological
systems dynamics and thus constrain not only parameter but also structural model uncertainty (e.g., Blazkova
& Beven, 2009; Graeff et al., 2009). Thus, sufficient observations of the target variable are paramount.

However, prediction (i.e., maximummodel performance) is not the sole purpose of modeling (Epstein, 2008).
Especially regarding explanation, process understanding, and the verification of theories, the abovemen-
tioned phenomena deserve further discussion.

Considering the fidelity of represented processes, we would expect better rainfall data (ME 1) to result in a
representation of related processes closer to reality. This is not necessarily the case for calibration, which
may overfit a model to observations at the cost of the adequate representations of processes (process fide-
lity = “right” answer for the “right” reason). In this sense, the apparent improvement of sediment modeling
due to the connectivity index (ME 6) for some objectives is an improvement in model performance but
not of process fidelity: in the WASA-SED, the SDR concept is an effective formulation of sediment delivery
at the scale of the landscape unit that necessarily decreases process fidelity. Without SDR values, the model
calculates sediment delivery based on surface runoff, surface roughness, and intrahillslope flow convergence
at a smaller model unit scale. Consequently, it constitutes a more process-oriented approach. In this sense,
the effect of ME 6 being the strongest for uncalibrated configurations is conclusive.

Conversely, land use (ME 3) and LAI/C-factor seasonality have a very close process-related correspondence in
the employed model. Still, their effect on the water metrics is predominantly negative. This could be related
to (a) deficits in the presumably improved data or (b) inadequacies in the model concept. Concerning (a),
uncertainties associated with the remote sensing data must be expected (see classification accuracies in
Table A3). Furthermore, for each land use class, the areal fraction differences between the two configurations
must be seen in relation to the parameters associated with the respective land use classes, which can amplify
or dampen the effect. Probably even more severe is the class-wise spatial averaging in preprocessing the
model input. Thus, the full level of spatial detail as obtained from remote sensing was not fully utilized in
the study. Regarding (b), simplifications in the process description come to mind. Specifically, for the study
area, the real seasonal dynamics in land cover are driven by temperature, water availability, and agricultural
management practices. Thus, they depend on both weather patterns and crop cycles and may vary between
years, as opposed to an invariant seasonal cycle based on a limited number of tie points assumed in
the employed model. Furthermore, the seasonality of other cycles (rooting depth, macroporosity, soil
cohesion, …) may be predominant but was not included in the data. Thus, this ME especially qualifies for
improvements in the next iteration of model refinement.

For the calibration, we chose uni-objective functions for water and sediment. Evidently, this choice will result
in models optimized in a fashion that the respective objective function aims at (e.g., goodmatch of dynamics
and high flows). Thus, MEs that potentially improve other objectives (i.e., low flows) are not exploited in their
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full potential and may therefore have appeared less beneficial. Choosing other objective functions or multi-
objective optimization could remedy this shortcoming, if the additional computation times are feasible.
Likewise, observational data uncertainty should be considered to prevent sheer numerical overfitting.
Several studies have shown that observation uncertainties can be at least in the same range as model uncer-
tainties, be it the errors related with discharge rating curve (Blazkova & Beven, 2009), sediment yield compu-
tation (Francke, López-Tarazón, et al., 2008), inaccuracies of soil moisture (Zehe et al., 2010), or uncertain
evapotranspiration rates or groundwater levels. Besides using observation values (more or less hard data),
recently, some authors have proposed to include soft data into the analysis andmodeling of hydrological sys-
tems, such as Seibert and McDonnell (2002), who use field hydrologists’ estimates to improve the realism of
conceptual models, Hartmann et al. (2015), who use a priori information to constrain modeling uncertainty
on a continental scale, and Sebok et al. (2016), who integrated expert knowledge to restrict the uncertainty
in the mesoscale catchment water balance. All these refinements could be accommodated in MMEMO and
further sharpen its outcomes.

The results of the case study cannot be generalized. They depend on the specific catchment, the chosen tar-
get variables, performance measures, degree of detail and quality of the data, and the model used. However,
connectivity index, rainfall, and calibration showed the least tendency of interaction. Thus, they are the most
promising candidates to transferring the findings of this study to comparable model setups. Therefore, we
encourage other researchers to evaluate their MEs using MMEMO and report the results. We hypothesize that
a collection of such reports could become a valuable guideline for setting up catchment models and moni-
toring schemes. Such a guideline could provide a sound basis for estimating benefits of different model
enhancements versus incurred efforts in data collection and modeling. If at all, so far, such an advice can only
be obtained from subjective expert judgments and the results of only partly transferable studies.

5.2. Merits, Limitations, and Potential Improvements of the Framework

The MMEMO approach aims to compare the potential of different model enhancements in terms of increas-
ing the model performance. The approach explicitly accounts for the high dimensionality of the problem.
Some additional features still merit further discussion.

MMEMO is capable of dealing with MEs concerning different sources of uncertainty, for example,
input data, parametric, structural (see Table 1). Regarding structural uncertainties, elaborate approaches
targeting this issue exist, for example, FUSE (Clark et al., 2008), ECHSE (Kneis, 2015) or SUMMA
Alternatives (Clark et al., 2015). MMEMO could be combined with these to allow for more complex assess-
ments in that matter.

The proposed framework is capable of quantifying interactions between MEs. We assume that the existence
of such interactions are not specific to our case study but are, in fact, quite common. Thus, the findings of any
OAT approach for an ME are unlikely to be generalizable per se. Conversely, identifying MEs showing a low
tendency of interaction in different model setups would enable one to generalize the findings of existing
OAT studies with greater confidence.

Forward selection and backward elimination were performed only on the two most extreme configurations
(i.e., base configuration A and configuration B with all MEs), which effectively resembles an OAT approach
with two starting points. This revealed the pronounced interaction of some MEs. Nevertheless, even more
intermediate configurations do exist. These could also be sampled, but computational demand increases tre-
mendously (for this case study, it would have increased the computational load 16-fold). Similarly, we only
considered MEs in binary states, that is, added or withheld (A+ vs. B�). However, for some MEs, a gradual
information could be desirable, for example “until what number of additional rain gauges is model perfor-
mance still improving?”. A more comprehensive strategy would include all these possible combinations of
MEs exhaustively. This would clearly cover all possible interactions of MEs. But while performing such an ana-
lysis for a single ME is trivial, it becomes quickly unmanageable to implement in an exhaustive way, as the
number of model configurations grows exponentially. At this stage, MMEMO constitutes a compromise
and can be considered as a screening approach before conducting extensive sampling design as requested
in global sensitivity analysis. Its results can support the need (or not) for further analysis where more specific
objectives and model enhancements are required.

For the case study, we evaluated improvement regarding the objectives listed in Table 4.
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We assume that the selected objectives already yield a relatively differentiated view of the MEs included.
However, this table could be further extended in the number of states considered (through more target vari-
ables if measurements exist; intermediate temporal resolutions, etc.). Our choice of performance measures
focused on two general categories of objectives, namely, dynamics and yield on two spatial scales. Other
more specific measures could be easily implemented, as they are only evaluated on the calibrated models
and do not require more simulations. Likewise, computing the performance measures also from a validation
data set can additionally reduce the effect of overfitting. However, with these extensions, some of the more
detailed visualization schemes and their interpretation would become more difficult or impossible, as the
proposed way of using colored matrices can hardly accommodate more measures. Nevertheless, the aggre-
gated assessments (median of the IP and ASD values) could still work.

We assessed the effect of the MEs on the entire time series. However, various studies have shown that this
may change over time or as a function of the condition of the catchment (Ghasemizade et al., 2017;
Herman et al., 2013; Pianosi & Wagener, 2016; Reusser et al., 2011). Computing the proposed IP and ASD
values for a moving window would enable related analyses, although the results will likely depend on the
choice of the window size. However, the postprocessing of the results could be refined concerning temporal
variability of the effects, if of interest.

We considered an ME beneficial, whenever the IP value exceeded the noise that was inherent in the random-
ness of the calibration. Still, as we used crisp performance measures, the resulting IP values may be affected
by sheer numerical changes in the performance measure, which may not always reflect a true and significant
improvement of the model, for example, regarding uncertainty of the observations. In this regard, combining
uncertainty analysis and sensitivity analysis in a unified framework could be considered to remedy this short-
coming (Baroni & Tarantola, 2014). Methods assessing the significance of difference in model performance
(e.g. Craig et al., 2016) could also be included in the approach.

6. Summary and Conclusions

This study proposes a method (MMEMO) to quantify the effect of different model enhancements (MEs) on the
performance of an environmental model. This approach aims to fill a niche among the available methods
toward a transparent and straightforward evaluation of the effects of multiple MEs on model performance
with regard to different evaluation objectives. By extending the OAT approach to the two (extreme) starting
positions, it allows the identification of interaction effects. MMEMO specifically considers nonscalar sources of
uncertainty expressed as concrete realizations (MEs) of the specific features. In contrast to making numerical
exercises based on strong assumptions, MMEMO is tailored for and demonstrated with an example of real
observations. Themethod emphasizes themultiple aspects (i.e., objectives) of model performance and allows
ranking the corresponding importance of the MEs. This can prevent wrong conclusions on the importance of
MEs that may arise from simple OAT approaches.

The method is demonstrated using a real-world case study of hydro-sedimentological modeling for a mesos-
cale mountainous catchment in NE Spain. Built on extensive previous studies, seven MEs had been selected
as the most relevant enhancements to potentially improve model performance based on an existing base
model configuration. Additional rainfall (ME 1) proved to yield the most improvement of the model with
regard to several objectives, while calibration and increased temporal resolution mostly outperformed all of
the MEs. This underlined the role of sufficient observations and tailored calibration approaches to obtain cor-
rect process representations.

While these specific results may not be directly transferrable to other study areas or models, MMEMOmay be
adopted in other modeling studies to analyze the effect of MEs. Such findings will provide useful guidance in
efficiently allocating resources when a model needs to be improved. With its focus on real observations, it
could potentially strengthen collaborations between experimentalists (by guiding monitoring) and modelers
(by understanding processes and the model predictive capability).

Data and Software Availability and Requirements

The model used data described in Francke et al. (2017b), also available in CUAHSI format via http://hiscentral.
cuahsi.org/pub_network.aspx?n=5622 or Francke et al. (2017a).
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The scripts to conduct the analysis and visualization are freely available under github.com/TillF/
MMEMO and are described in the Supporting Information, which also contain the central file of the
results (Francke_collected_performance_measures.xlsx).

Additional FOSS software used in the study includes the GIS GRASS 6.4.1 (GRASS Development Team, 2012)
and the statistical software R 3.3.x (R Core Team, 2016) and its packages. Simulations were performed with
WASA-SED (Bronstert et al., 2014; Mueller et al., 2010), revision 250 (https://github.com/TillF/WASA-SED).
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