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S U M M A R Y
Non-classical nonlinear elasticity in micro-inhomogeneous materials such as rocks and cracked
or granular materials leads to a number of phenomena ranging from hysteresis and memory to a
transient response of elastic properties to perturbations in dynamic or quasi-static experiments.
Dynamic acousto-elastic testing (DAET) provides very detailed observations of some of these
phenomena that are still not fully understood in terms of their physical origin. We suggest that
the observations of non-classical nonlinear elasticity can be related to the physics of friction. We
propose a conceptual model for the nonlinear elasticity based on friction of internal interfaces
and the process of contact aging that leads to an increase of friction with increasing contact
time. The central element of the model is the continuous interplay between (1) softening
that occurs as small-scale damage due to shear motion of internal contacts and (2) stiffening
(healing) as a thermally activated process of establishing connections across the contact at the
current strain state. Chemical bonds, mineral fibres or capillary bridges are the most likely
candidates for the physical nature of these connections. Our model qualitatively describes
dynamic softening, hysteresis, slow dynamics and the shape of DAET loops including the
absence of cusps and the loop orientation that leads to a stiffening at both maxima and minima
of the dynamic strain.

Key words: Elasticity and anelasticity; Friction; Wave propagation; Acoustic properties;
Rheology and friction of fault zones; Plasticity, diffusion, and creep.

1 I N T RO D U C T I O N

Micro-inhomogeneous materials such as rocks, granular material or
damaged structures containing cracks exhibit non-classical nonlin-
ear elasticity that originates in the change of material properties at
cracks or grain boundaries caused by deformation or other distur-
bances (Guyer & Johnson 1999, 2009; Ostrovsky & Johnson 2001).
Due to its origin on a spatial scale between the microscopic inter-
nal structure of grains and the macroscopic scale of observation,
this property is often referred to as nonlinear mesoscopic elastic-
ity (NME; Guyer & Johnson 1999, 2009). Compared to classical
elastic nonlinearity caused by the anharmonic shape of the atomic
potentials, NME has far stronger effects and a transient response
that can be observed in static and dynamic experiments (Guyer &
Johnson 2009).

A classic observation of NME comes from the measurement of
the stress–strain relation in slowly performed load experiments.
Quasi-static load experiments on cast iron were already performed
by Berliner (1906) and showed hysteresis, endpoint memory and
slow transient after-effects. Hysteresis introduces memory in the
system since the stress depends not only on the strain but also on
the strain history. Endpoint memory refers to the following property:

if the material is moved along one curve in the stress–strain space, it
will evolve along another curve when the loading is reversed at state
(A) due to hysteresis. If now the loading is reversed again at state
(B) the system will evolve along a third curve that will pass through
the earlier endpoint at state (A) again and continue the initial curve
as if the excursion A → B → A had not happened. In geomaterials
these properties were intensively studied, for example, by Guyer
et al. (1995, 1997).

Resonant bar experiments were typically used to study the NME-
response to dynamic excitations with fast cyclic variations of strain
(Guyer et al. 1998; TenCate et al. 2000, 2004; Pasqualini et al.
2007). In these experiments, a rock bar is excited by longitudinal
oscillations close to its resonance frequency which is determined by
the amplitude peak during frequency sweeps across the resonance.
NME leads to a nonlinear decrease of the resonance frequency
with increasing amplitude of the excitation, a distinct response for
upward- and downward-frequency sweeps (hysteresis) and a tran-
sient re-increase of the resonance frequency after termination of the
high-amplitude excitation (Johnson et al. 1996; TenCate et al. 2000;
Ostrovsky & Johnson 2001). The recovery process is often called
slow dynamics (TenCate 2011) and refers to a linear increase of
the elastic moduli on a logarithmic timescale. Similar observations
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have been made using cross-modulation experiments that record
the amplitude variations of a probe wave induced by a pump wave
of higher amplitude and different frequency (Zaitsev et al. 2005).
Waveform changes of a travelling wave due to NME were studied by
Remillieux et al. (2017). The elastic nonlinearity of NME materials
that is expressed by (1) coupling of wave propagation at different
frequencies through cross-modulation, (2) excitation of harmon-
ics, (3) decrease of the modulus and (4) increase of attenuation
is sometimes termed anomalous fast dynamics. These phenomena
have been shown to occur together with slow dynamics (Johnson &
Sutin 2005).

The variation of the elastic moduli that underlies the change of the
resonance frequency can also be observed with high accuracy as a
change of the acoustic wave speed (Larose & Hall 2009; Tremblay
et al. 2010). Such measurements that can be performed in seis-
mology on a much larger scale (Sens-Schönfelder & Wegler 2011)
show a decrease of the elastic moduli in near surface materials at the
time of earthquake shaking and a post-seismic transient recovery
over months to years (Brenguier et al. 2008; Hobiger et al. 2013;
Gassenmeier et al. 2016).

Various models have been suggested for different aspects of
NME. An early model for the hysteresis, endpoint memory and
relaxation in load experiments was proposed by Prandtl (1928a).
It relates the mentioned observations to the behaviour of chemical
bonds across grain contacts that slide through a sinusoidal potential
when the contact is sheared. Known as Prandtl–Tomlinson model
(Tomlinson 1929; Popov 2010), it is now frequently used in the
physics of friction. To reproduce the endpoint memory, Prandtl
(1928a) assumes that a number of such sliding interfaces with a
range of amplitudes of the sinusoidal potentials is present in the
material.

A review of early models of the nonlinear acoustic behaviour
of rocks is included in Ostrovsky & Johnson (2001). The classical
approach to the description of elastic nonlinearity is the extension
of the stress–strain relation to higher orders in strain (Landau et al.
1986). This accounts for atomic nonlinearity, but it fails to ac-
count for the time dependence and hysteresis observed in NME.
A phenomenological model for the hysteresis and endpoint mem-
ory in quasi-static experiments is the Preisach–Mayergoyz (PM)
space (Guyer et al. 1995, 1997) that uses a set of bistable hys-
teretic elements that flip at different stress levels back and forth
between two states with different contribution to the material’s
modulus. Due to the lack of a relaxation mechanism the PM-
space model fails to reproduce slow dynamics. This has been fixed
by including Arrhenius-type transition probabilities between the
states in the PM space (Gusev & Tournat 2005). The hysteretic
elements of the PM space have been used in to model wave propa-
gation by Delsanto & Scalerandi (2003) and Vanaverbeke & Abeele
(2007).

Lyakhovsky et al. (1997) presented a damage rheology model
for load experiments that did not focus on acoustic observations
at small strains but leads to interesting results. The model uses a
single damage state parameter that affects the elastic moduli of the
damaged material. The kinetics of the damage parameter is based on
thermodynamic principles and leads to regimes of healing and frac-
turing depending on the strain invariant ratio. A damage parameter
that scales the tension–compression asymmetry of the stress–strain
relation in a cracked medium was used by Lyakhovsky et al. (2009)
to describe quasi-static observations as well as the decrease of the
resonance frequency with increasing drive amplitude in dynamic
experiments.

Vakhnenko et al. (2006) presented the soft ratchet model for
longitudinal vibrations in a rock bar. The model uses the interac-
tion between a fast and a slow subsystem, where the fast system is
responsible for the wave propagation and the slow subsystem repre-
sents the response of the cohesive bond system to the deformation.
The bonds break and are re-established at different rates that depend
on the applied stress. The soft ratchet model involves a number of
timescales for breaking and reforming the bonds. Vakhnenko et al.
(2006) arrive at a comprehensive description of NME including the
shape of resonance curves and the amplitude-dependent frequency
shift, that is, softening.

Zaitsev et al. (2014) assume adhesive Hertzian contacts that can
exist in open and closed configurations depending on the distance
of the surfaces of soft contacts. A range of energy barriers between
the two states of these bistable contacts is required to reproduce
the correct dynamics. However, the model assumes tensile shocks
as excitation and it does not predict the response to symmetric
perturbations.

A physical connection between hysteretic elements and adhesive
asperities in rough contacts under longitudinal deformation was pro-
posed in a model by Aleshin & Van Den Abeele (2005, 2007) . The
distribution of forces for closing and opening the adhesive asperi-
ties results from a range of curvatures in the rough contact surfaces.
Aleshin & Van Den Abeele (2007) show that the stress–strain curves
in quasi-static load experiments as well as the resonance frequency
shift in resonant bar experiments could result from the adhesion
forces on the micro/nanoscopic scale of individual asperities.

Lieou et al. (2017) modelled the material softening observed in
granular material as the number of ‘shear transformation zones’,
which represent soft spots in the medium. The number of these
soft spots, which reflect locations of strain concentrations depends
on the dynamic strain amplitude and correlates with the modulus
reduction. This model can account for the modulus reduction with
increasing dynamic excitation but does not explain the time depen-
dency of healing.

In Li et al. (2018), we presented a model for hysteresis and
bifurcation in resonance experiments that takes into account the
feedback of dynamic softening on the excitation amplitude. This
model is based on the variable thermodynamic equilibrium of a
bistable system in an energy landscape that is perturbed by normal
strain. It does not consider shear deformation and is unable to repro-
duce some of the observations in dynamic acousto-elastic testing
(DAET) experiments that will be discussed in Section 1.1.

In summary, this limited overview of existing models for NME
shows that some models depend on longitudinal excitation and oth-
ers on shear excitation. But all models are based on bistable struc-
tures with different contributions to the elastic moduli and strain-
dependent transition probabilities. Often a range of energy barriers
for the transitions is used to describe the transient response of NME
which is a simple mechanism for the log (t) recovery in slow dy-
namics (Snieder et al. 2017). It indicates that a number of processes
with different characteristic times are active during the recovery
period.

Of particular value for the investigation of dynamic softening are
DAET experiments, that are similar to a resonant bar experiment
with the additional possibility to track the modulus of the material
during each cycle of the strain (Renaud et al. 2012). While the
traditional set-up measures the resonance frequency and thereby
averages over the changing properties during several strain cycles,
DAET can resolve the dynamics of the elastic properties during
the change from compression over maximum strain rate to dilation
and back. This makes it possible to separate processes depending
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on their timescale. Fast processes instantaneously adapt to chang-
ing conditions while slow processes do not respond to the changes
within a cycle. The observed dynamics, therefore, reflects predom-
inantly the processes with timescales equal to the inverse of the
excitation frequency. This provides valuable information about the
physics of the individual processes that is otherwise hidden in their
collective response observed with resonant bar or quasi-static load
experiments.

In this manuscript, we show that DAET observations suggest an
important role of shear deformation and friction in NME. We present
a conceptional model to explain various observations of NME in-
cluding DAET with frictional processes on internal interfaces such
as cracks or grain boundaries.

1.1 DAET experiments

A series of DAET experiments investigated the detailed nonlinear
behaviour of different rocks (Renaud et al. 2012, 2013; Rivière
et al. 2013, 2015). Longitudinal, shear (Lott et al. 2017) and com-
plex flexural deformation from impacts (Eiras et al. 2016) have been
used as excitation. The response of a single fatigue crack was in-
vestigated (Rivière et al. 2014) as well as the in situ nonlinearity of
soil on the scale of metres using seismic equipment and a vibrator
truck (Renaud et al. 2014). Rivière et al. (2016) studied the fre-
quency, pressure and strain dependency of the nonlinear response.
Finally, the spectrum of recovery times for a number of materials
was measured by Shokouhi et al. (2017). DAET experiments are
performed with a pump and a probe wave of a certain wave type
and polarization. This allows to investigate the complex anisotropic
response of the material as a function of propagation directions
and polarizations of the two participating waves (Lott et al. 2017).
A variant of the typical DAET set-up that measures the response
during steady-state oscillation of a standing wave was used by Ten-
Cate et al. (2016). In their set-up, two travelling waves are sent
through the sample in perpendicular directions and the time delay
of the small-amplitude probe wave is measured at different phases
of the perturbing pump wave. With this approach TenCate et al.
(2016) could infer variations in the nonlinear response depending
on the propagation directions with respect to the symmetry axis of
an anisotropic sample.

For the following discussion, it is essential to understand the prin-
ciple of the DAET experiments that separate the perturbation pro-
cess induced by a low-frequency pump wave (up to several kilohertz)
from the observation typically performed with a low-amplitude ul-
trasonic pulse of MHz frequency. While the low-frequency pump
oscillation is longitudinal along the rock bar, the probe wave is
transmitted across the bar perpendicular to the pump oscillation to
sense a well-defined state of the spatially varying strain. The main
observation of DAET is the velocity of the probe wave as func-
tion of time, or alternatively as function of the pump strain during
steady-state oscillation. For easy comparison of our model with the
experimental observations, we reproduce the relevant figure from
Renaud et al. (2013) in Fig. 1.

Each of the loops in Fig. 1 was measured by Renaud et al. (2013)
in a different experiment during steady-state oscillation with a peak
pump strain indicated by the horizontal extent of the loops. The
excitation frequency was 4.5 kHz in all cases. We do not intend
to model these loops in quantitative detail but present a model
that is able to reproduce the main features of the observations in
Fig. 1. These are (1) decrease of the average modulus of the loops
for increasing peak amplitude of the pump strain, (2) existence of

hysteresis, (3) absence of cusps at the strain maxima (4) orientation
of the loops with increasing modulus at both positive and negative
peak strain, (5) generally higher modulus at lower strain and (6)
transition of the shape from sloping loops at large-peak strain to
parabolic shapes at small strains. As we will see, the observations
(5) and (6) can be modelled as functions of the strain. The main focus
here is on observations (1)–(4) that are neither functions of strain
nor strain rate and involve some more complex process. Additional
to the properties of the DAET loops, the slow dynamic recovery of
the modulus is a standard observation that should result from the
model.

Attempts to model the nonlinear signatures of DAET experi-
ments were published by Gliozzi & Scalerandi (2014), Pecorari
(2015), Trarieux et al. (2014) and Favrie et al. (2015). Gliozzi &
Scalerandi (2014) perform a wavefield simulation in a 2-D medium
that includes hysteretic elements similar to the PM space. While this
model reproduces the dynamic softening, it does not reproduce the
shape of the loops including the orientation with increasing modulus
at maximum absolute strain. The model of Pecorari (2015), which
is based on the interaction of dislocations with point defects and
microcracks, reproduces the softening and the shape and orientation
of the DAET signatures reasonably well but exhibits a discontinuity
of the modulus at zero strain and does not reproduce the healing.

Trarieux et al. (2014) used a third-order expansion of the complex
elastic modulus to explain the nonlinear signatures of water, silicon
oil and water saturated glass beads. They are able to reproduce the
observed hysteresis, and tension–compression asymmetry also of
hollow air-filled glass beads that behave strongly nonlinearly similar
to rocks. Even though this approach is useful to quantify the non-
linear behaviour, it does not provide insight into the physics and it
fails to reproduce the dynamic softening as a significant component
of the mesoscopic nonlinearity expressed by the overall drop of the
velocity in response to dynamic excitation. A numerical scheme for
1-D wave propagation is developed by Favrie et al. (2015) that com-
bines the soft ratchet model (Vakhnenko et al. 2006) for creation
and destruction of defects with a nonlinear extension of Hook’s law
and viscoelasticity to model fast and slow dynamic effects. Even
though the authors obtain some qualitative agreement with DAET
observations, their model shows only very small amount of soft-
ening (slow dynamics) in the presence of strong-fast nonlinearity
reflected by large modulus changes. Also, it is not clear whether the
orientation of DAET loops is correctly reproduced. An overview
of models that attempt to describe the nonlinear elasticity and its
relation to damage is given by Broda et al. (2014).

2 S H E A R E D C O N TA C T M O D E L F O R
N O N L I N E A R E L A S T I C I T Y

Examination of the patterns in the DAET signatures in Fig. 1 leads us
to identify three independent components of the nonlinear response.
We first note that the DAET signatures in Fig. 1 can be separated into
the difference between the branches of increasing and decreasing
strain on the one hand and their average on the other hand.

The average signal can be modelled with simple functions of the
axial strain amplitude ε that we assume to be representative for the
average compressional strain on the ensemble of contacts on the
one hand and the average shear strain on the other hand. We assume
here that the shear strain averaged over the ensemble of randomly
oriented internal contacts can be represented by the absolute value
of the axial strain |ε|. The average of the increasing and decreasing
branches of the DAET signals is then composed of a linear trend
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Figure 1. Variation of the elastic modulus of Berea sandstone during a cycle of the pump wave (from Renaud et al. 2013). The different closed curves
correspond to different experiments with different pump amplitudes.

Figure 2. Schematic illustration of the components of DAET signatures.
�M is the combined effect with an additional offset of the mean modulus.

(green dashed line marked �Ml in Fig. 2) of decreasing modulus
for increasing strain (tension) and an approximately Gaussian con-
tribution of fixed width with a parabolic maximum in the centre that
flattens out towards large strain (red dash-dotted line marked �Mc in
Fig. 2). Low-strain experiments sense its central parabolic part that

causes a high modulus at smallest absolute strain. Large-amplitude
experiments sense the whole shape of the Gaussian which causes a
bump centred at the unstrained situation.

The difference signal (hysteresis of the loops in Fig. 1) is more
complicated. It is neither a simple function of strain nor of strain rate.
Empirically it approximately resembles a bow tie shape illustrated
in Fig. 2 with the �Ms curve in black. There is a strong increase
of modulus at maximum absolute value of strain and a decrease
of modulus across the central part of vanishing strain. Important is
the orientation of the bow tie loop indicated by the blue dots that
mark the branch of increasing strain. The resulting modulus of the
material that is perturbed by the different effects reads

M = M0 + �Ml + �Mc + �Ms (1)

and is illustrated in Fig. 2.
Additional to these components that model the shape of the non-

linear signatures, there is a shift of the whole signature towards
smaller modulus with increasing amplitude of the pump strain. This
overall modulus decrease and the recovery result as a natural conse-
quence of the process that we suggest to model the bow tie shaped
signal component �Ms. In the following, we describe the math-
ematical form and physical explanations of these three modulus
perturbations.

We linearize the decrease of modulus with the strain in the DAET
signatures and thus account for it by a linear function

�Ml(t) = −Aε(t). (2)

This linear dependence describes the well-known increase of the
modulus under compression (King & Paulsson 1981). In addition,
we add the following dependence of the modulus on the strain:

�Mc(t) = B

(
exp

[−ε(t)2

2w2

]
− 1

)
. (3)
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This component of the modulus shapes its behaviour in the central
part of the deformation curve for strain with absolute value less than
the width w. We propose that it results from shear motion on the
rough interface of a crack. Shear motion occurs in a rock sample due
to internal heterogeneity and the intrinsic shear deformation in any
elastic wave even if the macroscopic excitation is longitudinal. In
this situation, it is reasonable to assume that the roughness is random
but to some extent correlated on both sides of the crack for zero
strain. In the unstrained situation the surfaces fit into each other like
two puzzle pieces, maximizing the contact area and consequently
the modulus. If the crack is sheared the fit is less good and the
contact area decreases due to the progressive mismatch until it is
finally restricted to the tips of the surfaces leading to a decreased
modulus (Borri-Brunetto et al. 2001). For larger shear, beyond the
correlation length of the surface roughness, the two sides of the
crack are uncorrelated and the average contact area does not depend
on the strain any more.

Hysteresis, decrease of average modulus, the orientation of the
DAET loops and slow dynamic recovery are all contained in �Ms

which is the main focus of this article. We suggest that �Ms is
a consequence of friction on internal interfaces in heterogeneous
materials.

We propose to model the contribution of the frictional interfaces
to the macroscopic modulus as the number of broken connections
across an interface normalized for the total number of potential
connections:

�Ms(t) = −C N (t) . (4)

This is motivated by friction models (Prandtl ; Capozza & Urbakh
2012; Capozza et al. 2013; Li et al. 2014), observations of single
asperity friction (Li et al. 2011) and the fact that heterogeneous
materials such as rocks contain a myriad of contacts with a range of
sizes and loading conditions of which some contacts experience tan-
gential deformation in the macroscopically longitudinal strain field.
These connections can be established as capillary bridges (Bocquet
et al. 1998; Barel et al. 2012), chemical bonds or van der Waals
forces (Li et al. 2011; Liu & Szlufarska 2012; Tian et al. 2017)
or adhesive contacts (Aleshin & Van Den Abeele 2007; Barthel
2008). Even fibres of minerals that grow in cracks as observed in
situ by Vanorio (2015), Hilloulin et al. (2016), Wiktor & Jonkers
(2011) and Vanorio & Kanitpanyacharoen (2015) could establish
such connections. All these types of connections are thermally cre-
ated and destroyed when the connections are deformed. The number
of existing connections results from the two competing processes of
constantly forming new connections and connection breaking when
the material is deformed.

We denote the fraction of broken connections by Ni. The subscript
i indicates that there is a multitude of microstructures that heal at
different rates. For the processes of creation of connections we as-
sume a simple exponential form with a characteristic time τ i, where
the rate at which connections are established is Ni/τ i. Connections
break when the medium is deformed, and they break at a higher rate
when the medium is deformed faster—leading to a dependence on
strain rate rather than strain. This can also be explained in terms of
the mean lifetime of connections that decreases with the rate of dis-
placement. Moreover, the sign of the strain rate is irrelevant for the
shear motion that strains the connections and we approximate the
rate at which connections break with linear function of the absolute
value of the strain rate and the number of established connections.
This leads to the following differential equation for the fraction of

broken connections Ni:

dNi

dt
= ν|ε̇|

τi
(1 − Ni ) − 1

τi
Ni . (5)

Ni varies between 0 indicating the perfectly relaxed state when all
possible connections are formed and 1 when all connections of type
i are broken. In eq. (5), the second term involving −τ−1

i Ni accounts
for the healing over a time τ i. The term ν|ε̇|τ−1

i (1 − Ni ) describes
excitation (breaking) of connections. This rate is proportional to the
fraction (1 − Ni) of existing connections, as well as the strain rate
|ε̇| meaning that no structures are damaged when the medium is
at rest (ε̇ = 0). In this case, the second term leads to exponential
recovery with time τ i. The strain rate and the constant ν normal-
ize the characteristic time τ i for the destruction of connections. ν

describes the susceptibility of the material’s elastic constants to dy-
namic deformation. It is the inverse of a characteristic strain rate at
which damage becomes more effective than healing. It has a similar
meaning as the susceptibility used by Brenguier et al. (2014). The
strain rate dependence is likely more complicated than suggested by
the linear function, which we choose for simplicity. We note that the
equilibrium number of broken connections approached for constant
|ε̇| is independent of i, namely Neq = ν|ε̇|/(1 + ν|ε̇|). This form is
closely related to the hyperbolic model for the shear modulus of
soil under cyclic loading used in earthquake engineering (Duncan
& Chang 1970; Hardin & Drnevich 1972). The average number
density of damaged connection is given by

N =
∑

i
1
τi

Ni∑
i

1
τi

, (6)

where the pre-factor 1/τ i increases the weight of fast processes
required by the log (t)-recovery during the slow dynamics process
(Snieder et al. 2017).

3 N U M E R I C A L E X P E R I M E N T S

We demonstrate the ability of the sheared contact model to quali-
tatively reproduce available observations in three numerical experi-
ments. Like the experiments that were performed by different groups
using different samples and set-ups our numerical experiments sim-
ulate different situations expressed in different parameters.

3.1 DAET signatures

Using eqs (1)–(6), we model the response of the material to har-
monic excitations of different amplitudes. The parameters used for
this experiment are given in column Exp. 1 of Table 1. Fig. 3 shows
the time-series of the resulting modulus for an experiment analo-
gous to Renaud et al. (2013), where the sample is perturbed with a
sinusoidal pump wave with a frequency of 4.5 kHz and a peak strain
of 10−6.

The modulus shows the same behaviour as in the experiments
of Renaud et al. (2013). During the action of the pump wave the
modulus fluctuates around a short-term mean that decreases rapidly
in the beginning and slowly converges towards a lower value. When
the excitation stops at 0.31 s the modulus re-increases—very fast in
the beginning and slower at later times.

Interesting detail about the processes that cause changes of the
modulus is revealed by the short-term response of the modulus
captured in the nonlinear signatures during DAET. Following the
procedure of Renaud et al. (2013), we model the signatures shown
in Fig. 4. Curves corresponding to increasing strain are plotted blue.
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Table 1. Model parameters used for the simulation of the nonlinear behaviour. ‘ ∼ ’ indicates that the value is identical
to the previous experiment listed to the left.

Symbol Meaning Exp. 1 Exp. 2 Exp. 3

A Slope of linear component 160 M0
∼ 0

B Amplitude of central component 0.002 M0 0 0
w Width of central peak 1.5 × 10−6 ∼ ∼
C Amplitude of strain rate-dependent change M0

∼ ∼
ν Damage susceptibility 0.08 s 8 s 1000 s
τmin Shortest timescale of healing 1 × 10−5 s ∼ 0.01 s
τmax Longest timescale of healing 100 s ∼ ∼

Figure 3. Modelled perturbation of the elastic modulus due to a 4.5 kHz
sinusoidal strain excitation of 10−6 from 0.01 s to 0.31 s. The appearance of
the curve as a thick line results from the high-frequency fluctuations during
the action of the pump shown in the close-up around 0.31 s when the pump
is turned off.

The bottom curve in the rightmost panel corresponds to the time-
series shown in Fig. 3 around 0.3 s. These modelling results are
to be compared with the experimental observations reproduced in
Fig. 1. Qualitatively the signatures reproduce the main features of
the experimental observations listed in Section 1.1, which are most
importantly the decrease of mean modulus with increasing peak
strain, the existence of hysteresis and the orientation of the loops.

We quantify the shape of the signatures following Renaud et al.
(2013) by approximating them with second-order polynomials. The
approximations are indicated in green in Fig. 4. In comparison to the
observations by Renaud et al. (2013), Fig. 5 shows the parameters of
these polynomials as function of maximum pump strain. Note that
the figure displays the logarithm of the negative values. The average
slope of the modelled signatures is constant at −160 as determined
by the parameter A (Table 1) while it slightly decreases from −80
to about −160 for strain above 10−6 in the experimental data. The
curvature of the signatures is approximately constant at −2 × 108

below 10−6 strain in model and experiment and then increases by
about two orders of magnitude for larger strain. For the smallest
strain, the estimated curvature of the modelled signature is slightly
positive and does not plot in these axes. The decrease of the mean
modulus expressed by the parameter CE changes approximately lin-
ear in the logarithmic axis from 2 × 10−5 to 10−2 in the experiment
while it covers the range from 10−4 to 10−2 in the model.

3.2 Frequency dependence

The time dependence of the damage and healing processes leads
to a dependence of the response on excitation frequency. To com-
pare our model predictions to laboratory measurements we conduct
numerical experiments analogous to Rivière et al. (2016) in the fre-
quency range from 0.2 to 200 Hz. In this second experiment, we use

the parameters given in column Exp. 2 of Table 1 with the difference
to Exp. 1 being the neglect of �Mc (B = 0) that is not observed by
Rivière et al. (2016) and a larger damage susceptibility ν. To obtain
results that can be compared to the observations of Rivière et al.
(2016) we decompose the waveforms during the stationary phase of
the oscillation into their harmonic components. We thereby obtain
the spectral amplitudes of the velocity signal at the excitation fre-
quency f1 and its overtones f2. . . f7. Additionally there is the overall
decrease of the average modulus indicated as f0. This procedure is
repeated with constant strain amplitude for various excitation fre-
quencies and we plot the amplitudes of the harmonic components
as function of frequency in Fig. 6.

Compared with the laboratory observations of Rivière et al.
(2016) the numerical experiment reproduces the first-order be-
haviour. Except for the fundamental frequency component f1 that
does not show any frequency dependence, the amplitudes of all
other components increase linearly with logarithm of frequency.
The amplitude of the mean velocity decrease (f0) is largest followed
by the even overtones with decreasing amplitudes for increasing
order of the overtone. Amplitudes of the odd overtones (f3, f5 and
f7) are at least an order of magnitude below the even harmonics and
are not shown in Rivière et al. (2016). Absolute amplitudes differ
from the experimental observations and could be adjusted with the
model parameters A and C.

3.3 Slow dynamics

To illustrate how our model reproduces the typical observations of
slow dynamic recovery we perform a third numerical experiment.
Since this experiment focuses on the evolution of the mean modulus,
we use an excitation that avoids fast oscillations as seen in Fig. 3
during the action of the pump. We achieve this by using a pump
waveform that keeps the damage term in eq. (5) constant, that is,
by using a triangular waveform with |ε̇| = const as indicated in the
inset of Fig. 7(a). We also set parameters A and B to zero as �Ml

and �Mc do only cause fast oscillations and do not contribute to the
long term dynamics. Other parameters of Exp. 3 given in Table 1 are
adopted to reproduce the long-term behaviour in analogy to TenCate
et al. (2000) and Shokouhi et al. (2017). The excitation lasts for
80 s and the recovery is followed for 500 s. To illustrate the effect of
the minimum timescale we use a minimum relaxation time τmin =
0.01 s that matches the onset of the roughly linear regime observed
by Shokouhi et al. (2017). The saturation of the damage phase can
be observed because we use a much higher damage susceptibility of
ν = 1000 here. Fig. 7(a) shows the time dependence of the modulus
as a function of the linear timescale. Red part shows the damaging
phase during the action of the pump. The recovery process is shown
with a black line. Figs 7(b) and (c) show the damage and recovery
phases on logarithmic time axis, respectively with t0 and t1 being
the start and end times of the excitation, respectively. The minimum
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Figure 4. Modelled nonlinear signatures for a range of strain amplitudes between 2 × 10−7 (top in right-hand side panel) and 10−5 (bottom in left-hand side
panel). The segments of increasing strain are plotted blue. Dashed boxes indicate the regions enlarged in the plot to the right. Green curves indicate second-order
polynomial fits of the signatures to quantify the shapes (Fig. 5).

Figure 5. Amplitude dependence of the nonlinear signatures. CE, βE and
δE are the coefficients of polynomial approximations of the signatures.

and maximum timescales of the recovery process are indicated in
Fig. 7(c). In Fig. 7(b), we indicate the end of the damage phase that
occurs at τd = τmax/(1 + |ε̇|ν) = 5.3 s for |ε̇| = 0.018 s−1 of the
triangular excitation used in this simulation. Change of the modulus
during conditioning (approximately) and relaxation is linear on the
logarithmic timescales similar to observations by TenCate et al.
(2000) and Johnson & Sutin (2005). As in the examples of Snieder
et al. (2017), the logarithmic time behaviour occurs for times τmin

< t − t1 < τmax. Deviations from linear recovery on a logarithmic

Figure 6. Frequency dependence of the nonlinear response as amplitude of
harmonic signal components for constant strain amplitude.

timescale as observed by Shokouhi et al. (2017) could be included
in the model using weights different from 1/τ i currently used in
eq. (6).

4 D I S C U S S I O N

4.1 Model parameters

The sheared contact model involves a number of parameters (seven)
and it is able to reproduce a number of versatile observations:

(1) pressure dependence of velocity (linear strain dependence
contained in �Ml),

(2) change of DAET loops shapes from bow tie shaped with a
central bump at higher amplitudes to parabolic loops at smaller
strain levels,

(3) bow tie shape of DAET loops and variation with amplitude,
(4) absence of cusps,
(5) existence of hysteresis in DAET loops,
(6) orientation of DAET loops,
(7) decrease of mean modulus with increasing dynamic excita-

tion,
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(a) (b) (c)

Figure 7. Slow dynamics of the damaging and relaxation phases. Modulus change during the damage phase is indicated in red while relaxation is plotted
black. (a) Modulus change during experiment 3 on a linear time axis. Inset shows the triangular strain curve of the pump used to avoid oscillations. (b and c)
show the damage and relaxations phases, respectively, on logarithmic time axes with t0 being the start and t1 the end times of the excitation, respectively. τmin

and τmax in (c) indicate the range of relaxation times in this numerical experiment.

(8) slow dynamics with faster excitation than recovery and linear
recovery on logarithmic timescale,

(9) constant f1 component for variable frequency,
(10) linear decrease of mean modulus with logarithm of fre-

quency,
(11) linear increase of overtone amplitudes with logarithm of

frequency and
(12) amplitude difference between even and odd overtones.

It is interesting to realize which of these observations are related
to which parameters. Observations (1) and (9) are directly related
to strain contained in �Ml and are simply described by parameter
A (eq. 2). Observation (2) is modelled by �Mc (eq. 3 with the two
parameters B and w).

All remaining observations are related to �Ms that is intended to
model the friction of internal contacts, which alters the number of
connections across the interfaces in the bond system. It contains the
time dependence of the response that is characteristic for the non-
classical behaviour of NME. Apart from its amplitude (C), �Ms

does only depend on a single parameter, the damage susceptibility
ν. The ability to explain the above-mentioned observations is thus
not provided by careful tweaking of numerous parameters but by
the model itself. It results from the simple assumption that friction
of internal contacts in the material contributes to the stress transfer
through the medium and that friction of these contacts increases
with time and decreases upon displacement—a standard observa-
tion in the physics of friction. Friction is determined by the state of
the interfaces. This state is described by the number of connections
across the interface that are constantly created but broken by shear
deformation. Our model suggests that this interplay between cre-
ation and destruction of connections is at the origin of NME. In all
simulations, the fraction of broken connections remains small (Ni

� 1) indicating that no saturation occurs.
The range of timescales (τmin and τmax) governs the extent of

the linear regime of the slow dynamic recovery and the excitation
process. It has a minor influence on the shape of the DAET loops
as long as τmin < 1/f1 < τmax. Since the range of timescales is
implemented explicitly to model the log (t) recovery, its occurrence
itself is not a surprise. The important observation is that the model
shows all the other desired properties of the DAET loops under the
constraint that it also reproduces the slow dynamic recovery. As
shown by Shokouhi et al. (2017), the spectrum of recovery times is
not necessarily constant but can be variable if the recovery is not
log (t).

The modulus perturbation �Mc is probably the most ad hoc part
of our model which is solely included to model the varying shape
of the DAET loops in Fig. 1 expressed by the decrease of curvature
with increasing peak strain (Fig. 5). Though easily justified by the
progressive mismatch during shear of correlated rough interfaces
that reduces the contact area (Borri-Brunetto et al. 2001) it is not
well supported by experiments. Moreover, this part of the modulus
perturbation seems to be very variable between different materials
(Rivière et al. 2015).

The linear perturbation �Ml with its parameter A is responsible
for the constant slope of the signatures (Fig. 5) and the frequency-
independent amplitude of the fundamental frequency component f1

in Fig. 6. It is directly related to the stress sensitivity of the velocity
(e.g. Shapiro 2003), which is related to the reduction of porosity
expressed in Athy’s law (Athy 1930). Since �Ml has different sign
for compression and dilation, it must result from compression and it
should thus disappear for shear excitation. This was indeed observed
by Lott et al. (2017) as vanishing of the fundamental frequency
component for shear excitation.

4.2 Frequency and pressure dependence of the
nonlinearity

Our model qualitatively reproduces the experimentally observed
frequency dependence by Rivière et al. (2016). The amplitude of the
velocity variation at the frequency of excitation (f1) is independent
of frequency. Oscillations at f2, f4 and f6 as well as the static offset
(f0) vary with frequency according to a power law �c/c = �fμ. The
harmonics at three, five and seven times the excitation frequency
have drastically lower amplitude compared to the even harmonics
as observed in the experiment, but follow the same power law. The
power-law exponent is μ ≈ 0.5 in our simulations compares to μ ≈
0.16 found experimentally by Rivière et al. (2016). This difference
might indicate that the damage and healing processes are not simply
related to the strain rate but depend to some degree on strain itself.
This could lower the frequency dependence.

The wave velocity depends on porosity φ as described by �Ml,
which is a linearization of the exponential porosity-pressure de-
pendence for small fluctuations: φ = φ0 exp (−θβsP). Here P is
effective pressure, βs is stiff compressibility, φ0 is porosity at zero
pressure and finally θ is the piezosensitivity (Shapiro 2003). How-
ever, the decreasing porosity with increasing pressure does not only
increase the velocity, it also removes the weak parts of the bond
system that are responsible for NME (Johnson & Sutin 2005). We
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thus propose that the parameters A, B and C that scale the nonlinear
components in our model all depend on the compliant porosity as
described above. This coincides exactly with the functional form
used by Rivière et al. (2016) to describe dependence of nonlinear-
ity on confining pressure where the characteristic pressure P0 of
Rivière et al. (2016) equals 1/θβs of Shapiro (2003).

4.3 Absence of cusps and the different moduli

The absence of cusps at maximum strain of the DAET measure-
ments appears to be in contrast with the quasi-static observations of
Guyer et al. (1997), Ostrovsky & Johnson (2001), TenCate (2011)
and Rivière et al. (2016). How does our model reconcile these ob-
servations from quasi-static and dynamic experiments? A detailed
modelling of the quasi-static experiments is beyond the scope of
this paper, but we sketch the simple mechanism that explains both
the fast DAET and the quasi-static experiments.

In quasi-static load experiments, hysteresis leads to the open
curves in the stress–strain behaviour that follow different paths
for increasing and decreasing strain. Since there is no possibility to
measure the stress directly in DAET experiments, one uses the wave
velocity of a probe wave to sense changes of the elastic modulus.
Also the velocity follows open curves in the strain–modulus space.
However, the instantaneous modulus M seen by the probe cannot
be interpreted as the one that relates the macroscopic stress σ and
strain ε. Given the orientation of the loops, such an interpretation
would lead to negative dissipation when integrating the strain energy
density E = 1/2Mε2 over the DAET loop.

Our model offers a simple mechanism to reconcile the orientation
of the loops and absence of cusps in dynamic measurements with the
fact that energy is dissipated rather than released by the material.
In Fig. 8, we show an illustration of the connections in one of
the frictional contacts present in the bond system during half a
deformation cycle of the pump wave.

If the contact is sheared, connections are strained and break while
new ones are formed at the current deformation state (Fig. 8b). At
peak strain of the harmonic deformation the material is at rest for a
moment meaning that no connections are damaged but healing goes
on. This leads to stiffening of the material around the peak strain
(Fig. 8c). When the strain rate reverses the deformation damages
connections, which leads to fewer connections in place when the
material passes through the zero-strain state (Fig. 8d). The modulus
that is measured by the high-frequency probe wave in a DAET
experiment is proportional to the number of connections across the
crack—no matter which portions of the surfaces they connect.

On the other hand, the contribution of a connection to the macro-
scopic stress involved in the pump wave depends on its restoring
force which in turn depends on the strain state under which it was
created. The connections in Figs 8(c) and (d) that bridge the crack
perpendicularly do not contribute to the stress involved in the pump
wave of a DAET experiment or the static stress in a load experiment
as they do not contribute to the restoring force. But they contribute
to the modulus seen by the probe wave because they counteract
any additional deformation (e.g. the probe). Therefore, the modulus
seen by the probe wave must not be confused with the modulus in-
volved in the macroscopic deformation. The modulus observed with
the probe wave in the DAET signatures is thus not suitable to draw
conclusions on the energy dissipation of the pump oscillation. Since
the connections are established at the current deformation state, the
healing process does not increase the strain energy. However, con-
nections break when strained. Whenever a connection breaks, strain

energy is lost, likely as heat for small structures (Prandtl 1928a) or
as damage-related radiation for macroscopic structures (Ben-Zion
& Ampuero 2009). This mechanism provides a link between de-
formation, velocity reduction and attenuation of the low-frequency
excitation.

Hysteresis is only related to processes with characteristic times
of healing (τ i) larger than the timescale at which changes are in-
duced in the experiments. Faster processes adopt instantaneously
(compared to the experimental timescale) to any new strain and
do not contribute to hysteresis. Since the number of contributing
processes decreases for slower experiments, the hysteresis in slowly
performed load experiments vanishes, as observed by Claytor et al.
(2009).

The proposed mechanism, that healing occurs by establishing
connections across a contact at the current strain state, can also
explain the absence of cusps in DAET and their presence in quasi-
static load experiments. In load experiments, the observed stress
corresponds to the applied strain as there is no distinction between
excitation and observation. So naturally, at maximum strain the
modulus does not increase in the healing phase because the con-
nections are established at exactly this strain and do not increase
the restoring force. Since the healing process does not alter the
macroscopic modulus relating stress and strain in the load experi-
ment there are cusps at the turning points of the load protocols. In
contrast, the probe wave in a DAET experiment will not see cusps
due to the increase of connection at peak strain.

4.4 Relation to other friction models

Since we model NME with processes that occur during sliding of
internal interfaces, it is legitimate to ask why we do not apply an
established model from the physics of friction (see Baumberger &
Caroli 2006 for an excellent review). This has the following reasons.
We are (1) not interested in the friction coefficient of the interfaces,
which is the target of most friction models. Instead we aim at a
description of the interface’s ability to contribute to the probe wave
propagation. This difference relates to the difference between the
modulus of the macroscopic deformation and the modulus seen
by the probe wave discussed in the previous section. (2) Standard
models like rate-and-state friction (Marone 1998; Rice et al. 2001)
are unable to model oscillatory slip as they diverge for zero velocity
and require adaptations that are less well established (Woodhouse
et al. 2015). (3) We aim to model kilohertz vibration that might
involve the regime of fast sliding in which friction models are not
well constrained by experiments (Woodhouse et al. 2015). And
finally (4) our model can be described in a single equation and has
the physical motivation of established or broken connections that
has been used as ingredient of fiction models (Prandtl ; Baumberger
& Caroli 2006; Popov 2010).

However, we can still make a simple connection to rate-and-state
friction in analogy to the illustration in Fig. 8. Rate-and-state friction
with Dieterich’s aging law and Coulomb’s law is described by the
following equations:

μ = μ0 + a ln

(
v

v0

)
+ b ln

(
ψ

ψ0

)
(7)

dψ

dt
= 1 − vψ

L
, (8)

where μ is the friction coefficient, v is the sliding velocity, ψ is
the state variable and L, a and b are constants. Applying this model
to internal interfaces the friction coefficient describes the ability of
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(a) (b)

(c) (d)

(e)

Figure 8. Illustration of contact with fragile connections formed by chemical bonds or capillary bridges. The contact is perfectly healed in (a) and deformed
via (b) to peak strain illustrated in (c). When returning to the initial position the contact contains fewer connections (d). Locations of the states (a) through (d)
in the DAET loops are illustrated in (e).

the interface to resist the shear stress and thus to contribute to the
macroscopic elastic modulus. The second term involving the con-
stant a diverges for v = 0. It describes the rate dependence of the
shear strength and is important only for the macroscopic deforma-
tion. The third term involving b describes the influence of the state
of the interface—its geometric age—and can be interpreted as the
size of the real contact area (Baumberger & Caroli 2006) formed by
the asperities of the rough interfaces (which are presumable rough
even at the atomic scale; Mo et al. 2009). It is well established that
the real contact area increases with the logarithm of contact time
(Baumberger & Caroli 2006) just like the number connections in
our model. We argue that the last term with its interpretation as real
surface area could be used to describe the ability of the interface to
transmit the additional stress perturbations of the probe wave. The
evolution of the state term in Fig. 7 for oscillatory v indeed shows
very similar characteristics to our model discussed above.

The two processes of aging and rejuvenation of contacts were
directly observed by Li et al. (2011) due to the formation of bonds
across a single silica asperity in an atomic force microscope. Fric-
tional aging is discussed as a potential origin of rate-and-state fric-
tion and provides an explanation for velocity-dependent friction
(Popov 2010). As healing in our model, the frictional aging exhibits
log (t) dynamics (Frye & Marone 2002; Nagata et al. 2008; Li et al.
2011). In fact our model is similar to the model by Prandtl (1928a)
for friction on internal interfaces as explanation for elastic hystere-
sis, after-effects and viscosity. The additional assumption in our
model is that connections/bonds do not only hop to closer locations
when a contact is sheared, they can also remain broken for some
time before creating a connection to a new location.

Assuming that NME is indeed related to the frictional properties
of internal interfaces as suggested by our model, we can draw on
investigations of frictional interfaces to constrain the physical nature
of the connections in our model. In the physics of friction, a contact
between two solid bodies of nominally macroscopic sizes consists of
numerous microscopic asperities at which the materials are in real
contact (range of repulsive atomic interactions). These asperities
form nanometric adhesive junctions in which the interactions occur
on the atomic scale. As pointed out by Bureau et al. (2002) and
Baumberger & Caroli (2006), the aging and rejuvenation dynamics
is due to the processes in the nanometric junctions rather than
the asperities on the microscopic scale. We thus suggest that the

connections used in our model should be seen as analogous to
individual chemical bonds in the junctions between asperities rather
interacting asperities in a macroscopic contact.

4.5 Implications for larger scales

Since we propose to model NME observed in centimetre scale
samples with DAET experiments with the number of nanoscale
structures, it is not clear how this description might be applicable
to larger time and space scales important, for example, in the ob-
servation of the coseismic decrease of seismic velocity (Wegler &
Sens-Schönfelder 2007; Brenguier et al. 2008; Hobiger et al. 2013;
Gassenmeier et al. 2016). For the small scales it is obvious that the
processes observed in the lab do also occur in situ. They are just
more difficult to observe in the field on the fast timescales (Renaud
et al. 2014). For the large scales we suggest without further dis-
cussion that this question relates to the fact that rate-and-state fric-
tions laws, developed for observations with laboratory samples, are
successfully used for the modelling of earthquakes (Scholz 1998).
Similarly results obtained from acoustic emissions (AEs) in cen-
timetre size lab samples are successfully extrapolated to the scale
of reservoirs and fault zones (Goebel et al. 2017). We speculate
that the spectrum of energy and timescales in our model used to
reproduce the abundant observations of log (t) slow dynamics is
linked to the range of spatial scales that contribute to the observed
dynamics. The longest timescales of the field observations of NME
(e.g. Gassenmeier et al. 2016) might thus be related to the larger
spatial scales available in the field.

5 C O N C LU S I O N S

Inspired by the wealth of information in the observations of DAET
experiments we have developed a simple mathematical model to
explain variations of the seismic velocity in response to dynamic
perturbations. The model consists of a material that contains struc-
tures, which are broken by shear deformation and closed by some
chemo-physical process with a range of characteristic timescales,
which continuously stiffens the material. The important element is
that the healing involves a range of timescales including the fast
timescales of the kilohertz vibrations used in DAET. Healing that
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occurs at non-zero strain freezes this strain state which lead to
stress–strain hysteresis and creep.

The decrease of the modulus for the same excitation will be
smaller when the material is already damaged because there is a fi-
nite number of connections only and broken connections cannot be
damaged any further. The strongest change will always be observed
in the best healed condition. The response of the material to a unit
excitation does therefore depend on the state of the material, that
is, the number of existing connections N. This consideration indi-
cates a relation between the softening in NME and brittle fracture
where the Kaiser effect (Lavrov 2003) describes the increase of AE
activity in a sample once the applied stress exceeds the maximum
previously experienced stress. In fact regarding the event of break-
ing connections as smallest scale fractures our model reproduces
the Kaiser effect in two aspects. First, damage inhibits further dam-
age. And second, the recreation of connections heals the damage
on a range of timescales similar to the decay of the Kaiser effect
that disappears over hours or days (Lavrov 2003). One can imag-
ine a continuum of structural and temporal scales ranging from
reversible chemical bonds with fast healing rates that rupture with-
out detectable acoustic signals over tiny asperities that generate AE
and heal on timescales known from the decay of the Kaiser effect
to macroscopic fractures with large healing times that make these
structures practically irreversible.

For seismological observations of the seismic velocity, that is, the
mean modulus, without detailed DAET information, our description
allows modelling the evolution of the seismic velocity for a series
of excitations based on measurements of the strain rate by fitting
eqs (5) and (6) to the data. This should make it possible to infer
values for the parameters C, ν, τmin and τmax, which constitute a
new set of material parameters with physical interpretations for
dynamic loading and the nonlinearity between weak and strong
motion.

The strain rate effect �Ms and the linear stress-dependent pertur-
bation �Ml are distinct components of our model. But both effects
might consistently originate at the same type of structures. If longi-
tudinal deformation is introduced in the contact illustrated in Fig. 8
then dilatation leads to destruction of connections while compres-
sion increases the number of connections. However, both effects
depend on the availability of compliant porosity and we can ex-
pect that materials with high piezosensitivity do also exhibit higher
sensitivity to dynamic deformation as observed by Richter et al.
(2014). But additionally we should expect a dependence of the dy-
namic effect on the chemistry of the rock and the availability of
water as observed in friction experiments (Frye & Marone 2002; Li
et al. 2011).

Creation and destruction of connection in our model are small-
scale damage and healing processes. We expect these processes to
occur in the weak parts of the bond system, that is, in the compliant
porosity which depends on the effective pressure. The damage and
healing process is therefore strong near the Earth’s surface where
the confining pressure is low. Due to pore pressure counteracting the
confining pressure in saturated materials, the damage and healing
processes will also be relevant in reservoirs, volcanoes (Brenguier
et al. 2014; Lesage et al. 2014) and subduction zones (Chaves
& Schwartz 2016). It might be an important process for dynamic
triggering of earthquakes (Hill et al. 1993; Brodsky & van der Elst
2014) or volcanic eruptions (Watt et al. 2009; Nishimura 2017) and
the damage and healing process might be an important agent in the
evolution of the aftershock activity.

The internal connections in our model can be interpreted as a
contribution to cohesion. They can alter the strength of a material.

We suggest that this is a potential origin of the long term increase
of the landslide activity after large earthquakes (Marc et al. 2015).
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