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Abstract we investigate the usefulness of complex flood damage models for predicting relative damage
to residential buildings in a spatial and temporal transfer context. We apply eight different flood damage
models to predict relative building damage for five historic flood events in two different regions of Ger-
many. Model complexity is measured in terms of the number of explanatory variables which varies from 1
variable up to 10 variables which are singled out from 28 candidate variables. Model validation is based on
empirical damage data, whereas observation uncertainty is taken into consideration. The comparison of
model predictive performance shows that additional explanatory variables besides the water depth improve
the predictive capability in a spatial and temporal transfer context, i.e., when the models are transferred to
different regions and different flood events. Concerning the trade-off between predictive capability and reli-
ability the model structure seem more important than the number of explanatory variables. Among the
models considered, the reliability of Bayesian network-based predictions in space-time transfer is larger
than for the remaining models, and the uncertainties associated with damage predictions are reflected
more completely.

1. Introduction

Flood losses have increased worldwide during the last decades [Barredo, 2009; Kron et al., 2012; UNISDR,
2011]. At the same time, the perception that floods are recurrent natural phenomena and the recognition
that both the hazard and the vulnerability ultimately control flood losses have pushed the implementation
of risk oriented approaches to flood design and flood risk management [Merz et al., 2004; EU, 2007].

Hence, flood damage assessments are of growing importance since damage has to be estimated in any
deliberation of cost-effectiveness of flood mitigation measures, analyses of vulnerability and resilience, land
use planning, flood risk mapping, comparative risk analyses, and financial appraisal [Merz et al., 2010]. For
these tasks, reliable models to estimate flood damage are an essential component [Dutta et al., 2003; Kang
et al,, 2005; Thieken et al., 2005].

Flood-damaging processes are complex: they are influenced by the interplay of various hydrological,
hydraulic, and socioeconomic factors [e.g., Kelman and Spence, 2004; Thieken et al., 2005; Schwarz and Mai-
wald, 2007; Kreibich et al., 2009]. In contrast to this complexity, common damage estimation methods are
simple [Merz et al., 2010]. Traditional damage models are based on the type and/or use of the element at
risk and the water depth as the exclusive determining factors for the estimation of damage [NRC, 2000;
Green, 2003]. Essentially, this is due to limited data and knowledge about the single and joint effects of
other damage-influencing factors. Important challenges remain to advance the understanding of the dam-
aging process [Bubeck and Kreibich, 2011], to deepen its theoretical foundations [Wind et al., 1999], and to
develop reliable damage models [Merz et al., 2013]. Flood damage modeling is subject to considerable
uncertainty [Merz and Thieken, 2005; de Moel and Aerts, 2011]. This uncertainty stems from various sources
including incomplete knowledge about the damaging process, which crystallizes, for instance, in generaliza-
tions concerning the damage-influencing factors and aggregated input data. Further, numerous quantities
involved in the damage process are inherently variable as, for example, the flow velocity or inundation
duration.

There are several examples of model developments aimed at a more comprehensive consideration of
damage-influencing variables. Wind et al. [1999] account for flood warning time and flood experience in
flood damage estimation. Zhai et al. [2005] include house type, length of residence, and household income
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in a probabilistic damage model. Thieken et al. [2008] set up the rule-based model FLEMOps+ using inunda-
tion depth, building type and quality, contamination, and precaution as explanatory variables for flood
damage. Elmer et al. [2010] includes flood frequency as an additional variable to FLEMOps+r. Merz et al.
[2013] derive a multivariate model using tree-based methods considering 28 potential explanatory variables
describing the flooding situation, early warning and emergency measures, precaution, building characteris-
tics, and the socioeconomic characteristics. Using the same set of candidate variables, Vogel et al. [2012]
take a data-driven Bayesian network perspective for the development of a probabilistic damage model.

One important step in model development is model validation. The purpose of validation is to evaluate
model-generated and real system data and thus to prove the suitability of the model to describe real sys-
tem behavior. The level of model validation has to reflect the intended purpose of the model application
[Power, 1993]. The validation of a model to predict flood damage has to evaluate the performance of the
model not only in replicative applications but more importantly in predictive applications. In this context,
replicative applications refer to a comparison of model results to observed damages which have been used
to develop and/or fit the model. Predictive applications correspond to estimating damage and comparing
model outcomes to damage data which have not been included in the model development.

In general, model validation is scarcely performed in loss modeling. This might be due to limited or missing
data: damage data are rarely gathered, repair cost estimates are uncertain, and data are not updated sys-
tematically [Downton and Pielke, 2005]. Some damage model validation studies are available: Penning-
Rowsell and Green [2000] compared synthetic damage functions of Penning-Rowsell and Chatterton [1977]
against postflood surveys derived by damage adjusters. This validation resulted in a general agreement
between surveys and synthetic results. Ding et al. [2008] report a good agreement between damage esti-
mates using the HAZUS-MH “level 2" flood damage model [Scawthorn et al., 2006] and the outcomes of an
alternative detailed approach to flood damage estimation; hence, the validation is not based on observa-
tions in this case. Elmer et al. [2010] successfully tested the model FLEMOps+r against other models using a
leave-one-out cross-validation method. Similar to Kreibich and Thieken [2008], who used a split sampling
technique to analyze the performance of 12 different versions of stage-damage functions and two different
versions of rule-based damage models predicting groundwater flood damage, Thieken et al. [2008] com-
pared damage estimates of FLEMOps+ with observed repair costs for the August 2002 flood for several
municipalities in Saxony (Germany) and showed that the model delivers very good damage estimates. How-
ever, the model has been developed using damage data for the same flood in the same region. Testing the
model predictive capability by applying it to the 1993 flood in a different region in Germany (Baden-
Wuerttemberg) showed much larger deviations. Jongman et al. [2012] compared seven damage models on
a predictive validation level. They reported considerable differences in model predictive capability across
regions. Recently, Cammerer et al. [2013] investigated the transferability of flood damage models to other
geographical regions by comparing model results to official damage data. The study confirms that flood
damage models which have been derived on data from geographical regions with comparable building
and flood event characteristics perform better than those based on more heterogeneous data sets encom-
passing different regions and floods.

These findings suggest that the predictive capability of flood damage models is rather weak, especially
when a temporal and spatial transfer is involved, i.e., the damage models are applied to different flood
events and/or in different regions than those which have been used to derive the model. Against this back-
ground, we investigate whether and to which extent complex flood damage models are useful to improve
the predictive performance in terms of variation, precision, and reliability. In this context, model complexity
is basically related to the ability of the model to capture and to reproduce complex processes and thus
depends on various factors such as the number and type of explanatory variables included, the interactions
between those variables described by the model, and the functional form of those interactions. The func-
tional form is ultimately defined by the model structure and varies from predefined functional relations,
e.g. traditional stage-damage functions, to probabilistic dependencies derived from observations without
any prior assumption concerning the functional form, e.g., Bayesian networks. In view of these conceptual
differences, a general and consistent measure of model complexity can hardly be defined. Measures such
as the Akaike or Bayesian information criterion (AIC or BIC) are of little value in this regard, since they are
not consistent across the different model approaches. Therefore, we use the number of explanatory varia-
bles (predictors) included in the model as an indicator for model complexity.

SCHROTER ET AL.

©2014. American Geophysical Union. All Rights Reserved. 3379



@AG U Water Resources Research

10.1002/2013WR014396

Table 1. Characteristics of Flood Damage Models

Number of

Knowledge Basis for

Explanatory

Damage Model Model Derivation Variables Explanatory Variables® Input Requirements Outcome Reference
1 Square-root Expert knowledge 1 wst Requires complete observations Point estimate for rloss Buck and Merkel [2009]
function
2 FLEMOps-+r Expert knowledge 6 wst, bv, bg, con, pre, rp Requires complete observations Point estimate for rloss Elmer et al. [2010]
3 RT Data mining 5P wst, bv, age, con, rp Approximate prediction for Point estimate for rloss Merz et al. [2013]
incomplete observations
4 RTp Data mining 2° wst, bv Approximate prediction for Point estimate for rloss Merz et al. [2013]
incomplete observations
5 BNd29 Data mining 6° wst, d, con, v, pre, epre Able to predict with Distribution of rloss Vogel et al. [2012]
incomplete observations
6 BNd11 Data mining 3¢ wst, con, pre Able to predict with Distribution of rloss Vogel et al. [2012]
incomplete observations
7 BNe28 Data mining and 10° wst, con, d, v, rp, bq, Able to predict with Distribution of rloss
expert knowledge bv, bt, em, pre incomplete observations
8 BNe10 Data mining and 8¢ wst, con, d, rp, Able to predict with Distribution of rloss
expert knowledge bv, bt, bq, pre incomplete observations

See Table 3 for detailed explanations.
PConsidering the model structure for the “no uncertainty” scenario.
“Considering the variables on the Markov Blanket only.

To test the hypothesis that increasing complexity of flood damage models improves the predictive capabil-
ity in a spatial and temporal transfer context, we apply eight flood damage models for three flood events in
two different regions in Germany. This enables us to distinguish between different model usages, namely,
local, cross regional, and/or temporal transfer applications. We focus on the estimation of direct damage to
residential buildings. Flood damage estimation is carried out on the scale of the individual buildings in
terms of relative damage (rloss), whereas relative building damage is defined as the ratio of the actual build-
ing loss and its total replacement value [Elmer et al., 2010]. The predictive performance of the models is
assessed by comparing modeled to observed relative building damage.

2. Setup of Validation Exercise

The damage models compared are a stage-damage function, using only water depth as explanatory vari-
able, FLEMOps+r, a rule-based model using six variables, and data mining approaches, namely regression
trees and Bayesian networks, using up to 28 explanatory variables. Table 1 summarizes key qualities of
these damage models. A detailed description will be given in section 3.

The comparison of model performance is based on empirical damage data. Flood damage records are avail-
able from computer-aided telephone interviews that were compiled after the floods in 2002, 2005, and
2006, respectively, in the Elbe and Danube catchments in Germany [Thieken et al., 2007; Kreibich and
Thieken, 2009; Kreibich et al., 2011]. The considered flood events and data sets are portrayed in sections 2.1
and 2.2. The location of the communities in which interviews have been undertaken is shown in Figure 1.
For the most part, varying localities were affected by the different flood events except for some commun-
ities mainly in the region of Dresden (Elbe catchment).

This database is split up according to different floods (2002, 2005, and 2006) and to different regions (Elbe
and Danube catchments), see Table 2. Furthermore, the subsample for the 2002 flood in the Elbe catchment
is partitioned randomly into two parts: two third of the data set is used to derive the damage models (Elbe
2002 id), and the remaining third (Elbe 2002 pr) is used for local validation.

The derivation of the models includes all steps to set up the model for the estimation of rloss. Depending
on the model approach, this involves the selection of the model structure (i.e., functional forms and func-
tional relations), the estimation of model parameters, scaling factors, parameter distributions, and their
discretization.

Next, the models are applied to predict rloss for the flood events (Elbe 2002 pr, Danube 2002, Danube 2005,
and Elbe 2006). For each event, the models are validated by comparing model results to observed damage
data using the criteria detailed in section 2.4. The subdivision of damage data according to different events
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Figure 1. Location of communities in which interviews had been undertaken after the 2002, 2005, and 2006 flood events in the Elbe and
Danube catchments (Germany), data sources—rivers and administrative borders: DLM1000 of BKG (2001); cities: Esri, DeLorme Publishing

Company, Inc.; catchment areas: CCM2 data of JRC [Vogt et al., 2007].

and regions allows for the evaluation of model predictive capability in spatial and temporal transfer

applications.

In view of the uncertainty present in flood damage modeling, we are particularly addressing the uncertainty
associated with the observations of the explanatory variables, which have been acquired via surveys with
flood-affected private households, e.g., uncertainties due to imprecise observations, bad memory, reluctant
answers, and misunderstandings. To ensure the robustness of the results against disturbances induced by
observation uncertainty, we explicitly consider this uncertainty. In this way, we substantiate that the differ-
ences in the predictive performance of the various damage models are actually a consequence of different
model complexity and not the outcome of uncertainties in the underlying database. The procedure to con-

sider observation uncertainty is outlined in section 2.3.

Table 2. Usage of Data Subsamples From Different Flood Events and River Basins

Subsample Year Location Interviews Completed Rloss Given Usage

Elbe 2002 id 2002 Elbe 850 426 Model derivation

Elbe 2002 pr 2002 Elbe 398 235 Local validation

Danube 2002 2002 Danube 449 286 Cross-regional validation

Danube 2005 2005 Danube 275 116 Cross-regional and Temporal validation
Elbe 2006 2006 Elbe 126 46 Temporal validation
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2.1. Flood Events

The extreme flood in central Europe in August 2002 was caused by intense long-lasting precipitation cover-
ing large areas in Austria, Slovakia, the Czech-Republic, and Germany. As a result, flash floods were observed
in the headwaters of the Elbe tributaries in the Ore Mountains as well as in some alpine tributaries of the
Danube and in the Bohemian Forest. Further downstream, floods came along with unprecedented water
levels, flooding of polders, and vast inundated areas as a result of levee overtopping and numerous levee
breaches, in particular, in the Elbe catchment. Twenty-two people were killed in Germany during this flood.
Infrastructures and buildings suffered substantial damage. As shown in Figure 1, mainly the tributaries in
the Ore Mountains (Saxony, Elbe catchment), the river Regen in Bavaria, and several southern tributaries of
the Danube were affected. Total damage amounted to 9.9 Bn € in the German part of the Elbe catchment
and 0.2 Bn € in the German part of the Danube catchment [IKSE, 2004].

In August 2005, another considerable flood affected the Alpine region, particularly Switzerland but also the
German part of the Danube catchment. The alpine foothills were affected by flash floods characterized by a
rapid increase of discharges and water levels. Inundations occurred along the Danube and its southern trib-
utaries being the main areas reporting damage in Germany (see Figure 1). Flood protection measures and
effective operation of dams reduced the flood impact. The total economic damage is estimated at about
190 M € [LfU, 2006].

In the Elbe catchment, another flood event followed in April 2006, which was caused by the combination of
widespread heavy rainfall and snowmelt in the upper catchment. In Dresden, the maximum water level was
clearly below the 2002 flood peak. In contrast, the flood situation downstream of the Havel confluence was
comparable or even worse than during the 2002 flood. Several towns in the Saxon Elbe valley and in the
lower reaches of the Elbe were inundated (Figure 1). Several hundreds of people were evacuated. The
resulting damage in Germany was estimated to be 75 M € [Munich Re, 2009].

2.2. Empirical Damage Data Collection

After the floods of 2002, 2005, and 2006 in the Elbe and Danube catchments in Germany, damage data
have been collected from affected households via computer-aided telephone interviews. In total, data from
2098 interviews are available, see Table 2. The survey for the 2002 flood resulted in 1248 completed inter-
views in the Elbe catchment and 449 completed interviews in the Danube catchment. The survey for the
2005 flood in the Danube basin provided 275 interviews. For the 2006 flood in the Elbe catchment, 126
interviews were completed. However, the loss ratio for the damaged buildings (rloss) could not be provided
for all interviews. As rloss is the variable to be predicted by the model, the data set is limited to 1109 dam-
age cases.

The households interviewed were randomly sampled from lists which have been compiled of all streets
affected by flooding with the help of information from local authorities, flood reports, or press releases as
well as with the help of flood footprints derived from satellite radar data (DLR, Centre for Satellite Based Cri-
sis information, www.zki.dIr.de). The raw data were supplemented by estimates of return period, building
values, loss ratio, i.e., the relation between the actual building damage and replacement costs, and indica-
tors for flow velocity, contamination, flood warning, emergency measures, precautionary measures, flood
experience, and socioeconomic variables [Thieken et al., 2005; Elmer et al., 2010].

From this extensive data set, 28 candidate variables were preselected to be used in a modeling context for
predicting the loss ratio of residential buildings (rloss), see Table 3. These candidate variables were selected
according to experiences from previous analyses [Thieken et al., 2005; Merz et al., 2013]: 5 variables are
related to the hydrological and hydraulic aspects of the flooding situation at the affected building, 10 varia-
bles are related to damage reduction, particularly to early warning and emergency measures undertaken, as
well as to the state of precaution of the household, and 13 variables are related to the residential building
characteristics and the socioeconomic status of the household.

2.3. Consideration of Observation Uncertainty

The collection of empirical damage data via computer-aided telephone interviews applied crosschecks of
answers during the interviews to avoid contradictions and to improve data quality. The information
retrieved from the interviews is considered to be of comparatively high quality and to be free of a strategic
response bias [Kreibich et al., 2005; Thieken et al., 2007]. This was confirmed via a comparison of the damage
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Table 3. Description of Candidate Variables for Flood Damage Modeling®

Uncertainty

Abbreviation Variable Scale and Range Model
Flooding Situation
1 wst Water depthb C: 248 cm below ground to 670 cm above ground ~N(m,sd)
2 d Inundation duration c:1-1,440 h ~N(m,sd)
3 v Flow velocity indicator 0: 0 = still to 3 = high velocity C(Px)
4 con Contamination indicator 0: 0 = no contamination to 6 = heavy contamination C(Px)
5 p Return period c: 1-848 years C(Px)
Early Warning and Emergency Measures
6 wt Early warning lead time c:0-336 h ~N(m,sd)
7 wq Quality of warning o: 1 = receiver of warning knew exactly what to do to 6 = receiver of C(Px)

warning had no idea what to do
8 ws Indicator of flood warning source 0: 0 = no warning to 4 = official warning through authorities C(Px)
9 wi Indicator of flood warning information 0: 0 = no helpful information to 11 = many helpful information C(Px)
10 wte Lead time period elapsed without using c:0-335h ~N(m,sd)
it for emergency measures

11 em Emergency measures indicator 0: 1 = no measures undertaken to 17 = many measures undertaken C(Px)
Precaution
12 pre Precautionary measures indicator 0: 0 = no measures undertaken to 38 = many, efficient measures undertaken C(Px)
13 epre Perception of efficiency of private precaution o: 1 = very efficient to 6 = not efficient at all C(Px)
14 fe Flood experience indicator 0: 0 = no experience to 9 = recent flood experience C(Px)
15 kh Knowledge of flood hazard n (yes/no) C(Px)
Building Characteristics
16 bt Building type n (1 = multifamily house, 2 = semidetached house, 3 = one-family house) C(Px)
17 nfb Number of flats in building c: 1-45 flats ~N(m,sd)
18 fsb Floor space of building c: 45-18,000 m? ~N(m,sd)
19 bq Building quality o: 1= very good to 6 = very bad C(Px)
20 bv Building value C:92,244-3,718,677 € ~N(m,sd)
Socioeconomic Status
21 age Age of the interviewed person c: 16-95 years
22 hs Household size, i.e., number of persons c: 1-20 people
23 chi Number of children (<14 years) in household c:0-6
24 eld Number of elderly people (>65 years) in household c:0-4
25 own Ownership structure n (1 = tenant; 2 = owner of flat; 3 = owner of building)
26 inc Monthly net income in classes 0: 11 = below 500 € to 16 = 3,000 € and more C(Px)
27 socp Socioeconomic status according to Plapp [2003] 0: 3 = very low socioeconomic status to 13 = very high socioeconomic status C(Px)
28 Helay Socioeconomic status according to Schnell et al. [1999] 0: 9 = very low socioeconomic status to 60 = very high socioeconomic status C(Px)
Flood Damage
29 rloss Loss ratio of residential building c: 0 = no damage to 1 = total damage ~N(m,sd)

“c: continuous; o: ordinal; n: nominal.
PThe depth of the basement of a building is assumed to be 250 cm below ground level.

data collected after the 2002 flood with official damage data in the federal state of Saxony [Thieken et al.,
2005]. Nonetheless, to ensure the robustness of the findings against disturbances resulting from observa-

tion uncertainty, we assume that the observations, i.e., the interview responses, are uncertain. Uncertainty is
understood as the deviation of the interview responses to the real situation. For the consideration of the
observation uncertainty within the evaluation of the predictive performance, we need to discern the funda-
mentally different modeling approaches considered in this study. Bayesian networks are probabilistic mod-
els, which as a basic principle treat all quantities involved as random variables, and do not distinguish
between explanatory and response variables. This enables to capture the joint probability distribution of all
variables. Consequently, the Bayesian network models the probabilistic dependency among the variables.
Thereby, it is assumed that observations are uncertain. On that note, the Bayesian network inherently cap-
tures the uncertainty that is related to the observations of the individual variables and thus implicitly
includes this uncertainty in the joint probability distribution modeled. Accordingly, the joint probability dis-
tribution reflects both the probabilistic dependence of the variables and the observation uncertainty associ-
ated with the variables. An explicit consideration of observation uncertainty is not indicated since it would
be double accounted. However, Bayesian networks do not allow to distinguish between observation uncer-
tainty and other uncertainty sources uncertainty, i.e., it cannot be determined to which extent the uncer-
tainty in the probabilistic dependence is actually due to uncertain observations.

In contrast, stage-damage functions, FLEMOps+r, and regression trees assume a deterministic relation
between explanatory and predicted variables, providing point estimates for specific observations of
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explanatory variables. For the derivation of these models, methods of regression analysis are applied. Usu-
ally in regression analysis, the observations are assumed to be error free. In this framework, a feasible
approach to account for the observation uncertainty is to explicitly describe this uncertainty and to feed it
into the analysis [Saltelli et al., 2000]. This includes the following steps: (i) define uncertainty models which
quantify the uncertainty associated with the observations of each explanatory variable, (ii) generate a large
number of variations of the observed data set, Elbe 2002 id, by random sampling from the different uncer-
tainty models using Monte Carlo techniques, (iii) derive a sample of models using each realization of the
data set variations generated in step (ii), (iv) predict flood damage for the other data subsamples (Elbe 2002
pr, Danube 2002, Danube 2005, and Elbe 2006) using each sample member of the models derived in step
iii. As a result, for each damage model and data subsample we obtain a distribution of model predictions
which represents the predictive uncertainty of the models given the assumed uncertainty in data
observations.

The definition of uncertainty models for the 28 explanatory variables is difficult, since knowledge about the
degree and characteristics of observation uncertainty is hardly available. As an exception, the water depths
(wst) obtained from the telephone interviews after the Elbe 2002 flood have been compared with a sample
of water marks at 409 buildings in the community of Eilenburg (Saxony) [Poser and Dransch, 2010]. A bias of
0.37 m and a root mean square error of 0.76 m are reported indicating the order of magnitude of the devia-
tion (in this case ca. 30%) and thus the degree of uncertainty concerning wst based on telephone inter-
views. However, the results from this localized comparison can hardly be generalized.

In this light, we need to resort to several assumptions concerning the degree and the characteristics of
observation uncertainty. First, the explanatory variables are distinguished concerning their underlying
scale: continuous, ordinal, or nominal scale. For the continuous variables (e.g., wst, d), we describe the
uncertainty in the measurement process using an uncertainty model which adds Gaussian noise to the
observed values. In this model, the mean (m) defines the systematic deviation from the unobservable true
value and the standard deviation (sd) controls the magnitude of the deviations. We parameterize the
uncertainty model in such a way that m = 0 and sd corresponds to a constant percentage of the individ-
ual observations.

The variables based on ordinal or nominal scales describe differences in the observations using a spectrum
of values (e.g., con: 0 = no contamination, 6 = heavy contamination) or qualitative classifications (e.g., kh:
yes, no). Hence, for these variables observation uncertainty refers to the attribution to a specific category
(C). We describe this uncertainty by setting a probability level (Px) for an erroneous categorization of an
observation. When an observation is wrongly classified, the observation is allocated to a wrong category
assuming uniform probability for all possible categories. For the variables age, hs, chi, eld, and own, we
assume that the uncertainty of the measurement process is negligible. The uncertainty models for
Gaussian noise (~N(m,sd)) and categorical uncertainty (C(Px)) applied to the explanatory variables are
listed in Table 3.

As there is hardly any evidence to quantitatively frame the observation uncertainty and the cross-
correlation structure of the explanatory variables, we investigate the potential implications for the predic-
tive performance of the deterministic damage models in terms of different uncertainty scenarios compris-
ing (i) no uncertainty, (i) small uncertainty, and (iii) large uncertainty. Within these scenarios we assume
that the observations of the different variables are independent from each other. Further, we control the
degree of uncertainty by varying both the magnitude of the standard deviation for continuous variables
and the probability level for erroneous observations for ordinal and nominal variables. The first scenario (no
uncertainty) corresponds to a deterministic regression approach, i.e., error-free input data which yields point
estimates for rloss. Within the small uncertainty scenario, we set the standard deviation to 5% of the
observed value and the probability level for an observation to be erroneous to 5%. Large uncertainty corre-
sponds to a standard deviation of 20% of the observed value and a probability level for erroneous observa-
tions of 20%. For the latter two uncertainty scenarios, we generate a sample size of 5000 realizations for
each observation of explanatory variables. This sample size has been checked for stable convergence using
the median and the quantile range at the 90% level as diagnostics. Note we have also conducted the analy-
ses for an additional scenario of “very large uncertainty” defined by a standard deviation of 50% and a prob-
ability level for erroneous observations of 50%. The outcomes for this scenario are very similar to the “large
uncertainty” scenario and, therefore, are not discussed in detail.
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2.4. Evaluation Criteria

Table 4. Model Evaluation Criteria® L. . .
The predictive capability of the various damage

Criterion LB UB OPT K . o
B i ” 0 models is evaluated with regard to precision, var-
mbe:%_ﬂ (Qs0i=0y) " " iation, and reliability. For the scenarios of small
n 0 inf 0 and large uncertainty, we use the median (Qs)
mae= 15" |Qsoi— 0| ioti istributi
= as a summary statistic of the distribution of
QRso=1 " (Qosi—Qosi) /Qsoi 0 i g model predictions. The Bayesian networks natu-
nM 1,if0; € [Qosi; Qos] 0 1 0.9° rally provide the conditional probabilities of the
HR=13 i ,-={ np——— predicted variable rloss and thus also capture the

prediction uncertainty. For the model compari-

a . . . . . H H
LB: lower bound; UB: upper bound; OPT: perfect prediction. son also uses the median of rloss distribution.

PDepending on the nominal coverage rate applied, e.g., 0.9 for
(2 5= GUEITHl2 BT The model precision is evaluated in terms of the
mean bias (mbe) and the mean absolute error
(mae) as listed in Table 4. Both criteria evaluate the model residuals, i.e., the differences between predictions
(Qs0) and observations (O) of rloss. The mean bias error (mbe) provides information about a systematic devi-
ation, i.e., an average overprediction or under prediction. The mean absolute error (mae) describes the aver-
age magnitude of the residuals and allows for a dimensioned comparison of average model precision

[Willmott and Matsuura, 2005].

The variation of the model predictions is quantified using the quantile range at the 90% level (QRyo), see
Table 4. A smaller value for QRyq corresponds to a smaller spread in the predictions, i.e., the model predic-
tions are less uncertain.

Concerning the model reliability we evaluate whether the predictive distribution actually covers the
observed values of rloss. For this purpose, we compute the hit rate (HR), which represents the proportion of
the number of observations that fall within the 95 and 5 quantile predictive interval and the total number
of observations available, see Table 4. The 95-5 quantile range corresponds to a nominal coverage of 0.9,
and thus a HR = 0.9 indicates that the coverage of model predictions is equal to the nominal coverage rep-
resenting a perfect reliability of model prediction on this level [Thordarson et al., 2012].

We derive the models and calculate the model predictions for the log transformed variable rloss (log-rloss).
This transformation reduces the influence of the few very high loss ratios present in the data sample.

3. Damage Models

We compare eight flood damage models of different complexity, see Table 1. In particular, we examine a
“traditional” depth-damage function based on a root function [Buck and Merkel, 1999], the rule-based model
FLEMOps-+r [Elmer et al., 2010], two variants of the regression tree model approach using different numbers
of explanatory variables proposed by Merz et al. [2013], and two variants of Bayesian network approaches:
first, completely data based [Vogel et al., 2012] and, second, using both expert knowledge and data to
derive the network structure. Further, the Bayesian network approach is applied taking into consideration
two different numbers of explanatory variables.

3.1. Depth-Damage Function

Damage functions are a central concept of damage estimation. They relate the damage for the respective
element at risk to characteristics of the inundation [Merz et al., 2010]. Most often, damage is estimated for
the type or use of the element at risk and the inundation depth [Wind et al., 1999; NRC, 2000]. Such depth-
damage curves were for the first time proposed in the USA [White, 1945] and since then have been applied
in numerous models and case studies. Depth-damage functions remain the standard approach to assessing
urban flood damage [Smith, 1994; Merz et al., 2010]. For Germany, stage-damage curves as separate square-
root functions for water depths in the basement and above ground floor were suggested by Buck and Mer-
kel [1999].

In this study, we apply a combination of root functions to predict rloss in the basement and in the building
above ground level separately. The model structure is defined as given in equation (1) for the basement
and equation (2) above the ground level
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rloss=ap+bp\/Wp ;Wp=w+250 {w|w < 0} (1)
rloss=a+byw {w|w > 0} )

With w (water depth in relation to the ground level), w;, (water depth above basement level), and g, b, a,, b,
parameters of the respective root functions. A general basement height of 250 cm is assumed.

The derivation of the model consists in estimating the parameters g, b, and a,, b,. This is done in a regres-
sion approach by minimizing the sum of squared residuals, i.e., the differences between modeled and
observed damage (rloss) in the subsample Elbe 2002 id. These best estimates of model parameters are used
to predict flood damage (rloss) for observed water levels during the other events.

3.2. FLEMOps+r

The Flood Loss Estimation Model for the private sector (FLEMOps) uses a rule-based multifactorial approach
to estimate direct tangible damage to residential buildings. It has been developed at the German Research
Centre for Geosciences, primarily for scientific flood risk analyses from the local to national scale [e.g., Apel
et al.,, 2009; Vorogushyn et al., 2012].

Since the initial version proposed by Thieken et al. [2008], the model has undergone several enhancements
including an increasing number of explanatory variables. We apply the most recent version FLEMOps+r
[Elmer et al., 2010]. This version incorporates six explanatory variables. Flood damage is calculated using five
different classes of water depth, three classes of contamination, and three classes of flood frequency, three

individual building types, two classes of building quality, and three classes of private precaution. The class
limits for inundation depth, building types, and building quality have been defined in a way to appropri-
ately reflect the range and variability included in available observations and other basic data as defined in

Biichele et al. [2006] and Thieken et al. [2008].

The derivation of the model within this study comprises two steps. First, for each class combination of inun-
dation depth, building types and building quality mean damage values are determined from observed
damage records (Elbe 2002 id). Second, a set of scaling factors are derived for each class combination to
reflect the impact of contamination, precaution, and flood frequency. Again, these scaling factors are

derived from observed damage records (Elbe 2002 id).
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Figure 2. Regression tree RT with 12 leaves considering five variables for estimating log(r-
loss) and pruned regression tree (RTp, indicated by bold joins) with 4 leaves considering
two variables for estimating log(rfoss) grown within the “no uncertainty” scenario.

3.3. Regression Trees
Following the approach by Merz
et al. [2013], a regression tree
has been grown based on 28
candidate explanatory variables
(Table 3) within the subsample
Elbe 2002 id. For the scenario of
“no uncertainty,” this results in a
tree with 12 terminal nodes (Fig-
ure 2) considering five variables.
The most important variable is
water depth, followed by build-
ing value, age, contamination,
and return period.

Using regression trees, overfit-
ting needs careful attention.
Hence, the large tree RT is cut
back to obtain a simpler tree,
which, however, should have a
predictive error comparable to
the most accurate large tree. For
this purpose, branches which
give less improvement in error
cost have been pruned from RT.
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RTp is the tree which results in the lowest cost. For the “no uncertainty” scenario, it consists of four leaves
and considers only water depth and building value to predict rloss. The trees derived from uncertain obser-
vations within the frame of the “small uncertainty” and “large uncertainty” scenarios differ from this solu-
tion, since the subdivision of the explanatory variable space strives for the minimization of the error for
each realization of the data set variations.

Tree-based models are a simple means to multivariate damage modeling, since they permit inclusion of
both continuous and categorical variables and they allow for nonlinearities and predictor interactions [Merz
et al., 2013]. Regression trees can handle incomplete data. In this case, predictions are made by considering
only the leaves that can be reached given the available data.

3.4. Data-Based Bayesian Networks

The Bayesian network approach relies on a probabilistic formalism which aims to describe the joint distribu-
tion of all variables involved in the system. The number of parameters that is needed to describe the distri-
bution is reduced by decomposing the joint probability into a product of conditional probabilities
according to a directed acyclic graph (DAG) capturing probabilistic independencies between the variables.
The joint probability of a Bayesian network is given in equation (3)

P(A;, ..., A,,)=H P(Ai|parents(A;)) 3)

i=1

Where A; are the variables and parents (A)) denotes the set of parent nodes of the node Ai as defined by the
DAG.

Using a completely data-driven approach, the graph structure as well as the parameters of the conditional

distributions can be learned from data, such that the learning algorithm respects various model complexity
issues relating to sample size, overfitting, etc. For a detailed description of the learning procedure we refer

to Vogel et al. [2012, 2013].

In contrast to other models, the Bayesian network allows use of all 850 records of the Elbe 2002 id subsam-
ple for the model derivation, thus exploiting information present in partially observed records. This also
includes those cases where rloss is unobserved. A Bayesian network treats all quantities involved as random
variables and does not distinguish between explanatory and response variables. This enables to capture the
joint probability distribution of all variables and to infer in any direction as new evidence, i.e., observations,
become available. The network learned for 29 variables (including rloss) is shown in Figure 3 (left). Its graph
structure gives insight into the (in-) dependency structure of the involved variables (note that this is differ-
ent from causality).

The gray shaded variables in Figure 3 form the so-called Markov Blanket of rloss, which is the minimal set of
variables having influence on rloss. This means that in this specific case of Bayesian network learning the
estimation of rloss depends only on six variables: water depth (wst), contamination indicator (con), inunda-
tion duration (d), flow velocity indicator (v), precautionary measure indicator (pre), and perception of effi-
ciency of private precaution (epre), and that all other variables can be ignored provided that the Markov
Blanket is fully observed. However, if observations of some of these variables are unknown or missing,
observations on variables from outside the Markov Blanket provide indirect knowledge “flowing” toward
rloss, thus helping to improve the prediction thereof.

In Bayesian network learning, in general, we strive to approximate the joint distribution of all variables.
Hence, we consider all variables equally important. However, in this study we are particularly interested in
the variable rloss. Therefore, in another attempt of learning a Bayesian network, we restrict attention to
those variable assumed to be highly relevant for the prediction of this target. The selection of these varia-
bles is based on available knowledge and experience from previous studies [e.g., Thieken et al., 2005; Merz
et al,, 2010]. For rloss this amounts to a subset of 10 variables from the original set of 28 explanatory varia-
bles. The resulting network is shown in Figure 3 (right) where the Markov Blanket of rloss shows that only
contamination (con), water depth (wst), and precaution (pre) have direct predictive relevance.

Predictions of any of the variables represented in the Bayesian networks are achieved by inferring the
respective conditional probabilities given the observations of other variables. For instance, the prediction of
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Figure 3. DAG of (left) data-based Bayesian network for 29 explanatory variables including rloss and (right) data-based Bayesian network
for 11 explanatory variables including rloss.

rloss given observations of water depth, return period, and precautionary measures corresponds to the
operation of forward inference and is accomplished by marginalization of the conditional probability for
rloss. In this context, we stress the fundamental property of Bayesian networks providing conditional proba-
bilities of the target variable and thus inherently capturing the uncertainty of the prediction. This is in con-
trast to the other models examined, which, without the additional efforts for uncertainty analysis, offer only
a single deterministic point estimate.

3.5. Expert Bayesian Networks

The construction of a Bayesian network can also incorporate domain or expert knowledge. This knowledge
may be included in the definition of the network structure, the direction of the arcs, and the distribution of
the parameters. This is of interest because a totally data-driven approach for Bayesian network learning can
result in models that capture unwanted artifacts of the data. Especially, when the data set used for model
derivation is sparse, those artifacts may overrule physical/causal relationships. The inclusion of expert
knowledge into Bayesian network construction might reduce the effect of data anomalies.

For the construction of expert Bayesian networks, we define the graph skeleton based on domain knowl-
edge and learn only the arc directions, the discretization of the ordinal variables and the parameters of the
conditional probabilities from the data.

For the definition of the network skeleton, we adopt a causal mapping approach as proposed by Nadkarni
and Shenoy [2001]. This procedure involves in a first step the derivation of a causal map for the variables of
interest. The causal map depicts the cause-effect relations among these variables according to expert
knowledge in terms of a directed graph [Nadkarni and Shenoy, 2004]. Next, the causal map is modified using
the idiomatic introduced by Fenton and Neil [2012] in order to construct a Bayesian causal map which
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Figure 4. DAG of (left) expert Bayesian network for 28 explanatory variables and (right) expert Bayesian network for 10 explanatory varia-
bles constructed with the specific goal to predict rloss.

satisfies the requirement of conditional independence among variables and acyclic structure of the graph
in order to represent a proper Bayesian network.

The causal map has been derived by using an adjacency matrix which is defined by the 29 candidate varia-
bles (including rloss) listed in Table 3. This matrix was independently completed by three flood damage
experts. In this matrix, the experts indicated whether there is a causal relation between any two variables
and defined the direction of these relations. On this basis, a causal map was derived as a directed graph by
superimposing the relations identified from the different experts.

Next, within a discussion among the experts any inconsistency in this draft directed graph was reviewed
and modified to be compatible with a Bayesian network. This is to ensure that the presence of a link
between variables represents dependence and that the lack of a link represents independence between
these variables. Further, the presence of direct and indirect relations between subsets of variables was scru-
tinized and any circular relations were eliminated.

Two alternative versions of expert Bayesian networks are derived: first, accounting for the complete set of
candidate explanatory variables and, second, for a subset of 11 of these variables which have been identi-
fied to be most informative to predict rloss on the basis of existing knowledge and damage modeling expe-
rience [Thieken et al., 2005; Kreibich et al., 2009; Merz et al., 2010; Elmer et al., 2010]. The resulting networks
are shown in Figure 4.

The definition of the network skeleton based on expert knowledge is a nontrivial task. Wrong independence
assumptions cannot be corrected by the data and should be avoided. A dense network structure leads to a
large number of combinations in the node probability tables. The automatic regularization of network com-
plexity which is ensured in a data-driven approach by means of a structure fitness score [Riggelsen, 2008;
Vogel et al., 2013] is thereby impaired by the network structure imposed. Therefore, the Markov Blanket of
rloss in an expert Bayesian network will be much larger than in a fully data-driven well-regularized learned
Bayesian network. This can be realized from the comparison of the data-based DAGs shown in Figure 3 and
the expert DAGs shown in Figure 4.
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Table 5. Precision of Damage Model Predictions for “No Uncertainty” Scenario®

Model

Subsample Criterion sdf FLEMOps+r RTp RT BNe10 BNe28 BNd11 BNd29

Model Derivation

Elbe 2002 id mbe 0.00 0.02 0.00 0.00 0.04 0.07 0.08 0.07
mae 0.76 0.77 0.72 0.67 0.60 0.69 0.73 0.71
ED 0.76 0.77 0.72 0.67 0.60 0.69 0.73 0.71

Local Validation

Elbe 2002 pr mbe 0.18 0.05 0.15 0.08 0.03 0.05 0.18 0.03
mae 0.96 0.90 0.94 0.95 1.05 1.00 0.91 0.93
ED 0.98 0.90 0.95 0.95 1.05 1.00 0.93 0.93

Cross-Regional and Temporal Validation

Danube 2002 mbe 0.48 0.72 0.77 0.65 0.75 0.77 0.76 0.51
mae 1.29 1.29 1.26 1.21 1.47 1.36 1.23 1.19
ED 1.38 1.48 1.48 137 1.65 1.56 1.45 1.29

Danube 2005 mbe 0.96 1.03 1.08 0.99 0.75 0.77 091 0.42
mae 1.71 1.69 1.51 1.51 1.70 1.60 1.55 1.54
ED 1.96 1.98 1.86 1.81 1.86 1.78 1.80 1.60

Elbe 2006 mbe 113 0.92 1.26 1.20 0.10 0.57 0.79 0.55
mae 1.75 1.55 1.55 1.49 1.54 1.35 1.31 135
ED 2.08 1.80 2.00 191 1.54 147 1.53 1.46

?ED: Euclidian distance to the perfect prediction in the two-dimensional space defined by mbe and mae. Best scores for each crite-
rion and data subsample are marked with bold numbers.

Predictions within the expert Bayesian network follow the same procedure as within the data-based
networks.

4, Results and Discussion

We test the hypothesis that increasing complexity improves the predictive capability of flood damage mod-
els by comparing the performance of the different models for the data subsamples defined in Table 2 with
regard to precision, variation, and reliability.

In the first instance, we examine the scores for the evaluation criteria mbe and mae within the “no uncer-
tainty” scenario. The scores which are achieved by the models for each subsample are compiled in Table 5
with the best score for each criterion marked bold. Obviously, different models perform best with regard to
mbe or mae within the different subsamples. Noticeably, the magnitude of mbe and mae increases from the
Elbe 2002 id subsample to the Elbe 2002 pr, Danube 2002, Elbe 2006, and Danube 2005 subsamples reflect-
ing the increasing difficulty to predict rloss in spatial and temporal transfer applications. At the same time,
the differences between the mae and mbe scores achieved by the different model approaches become
more pronounced. While the variations of model performance scores are small for the Elbe 2002 id subsam-
ple, they are clearly larger for cross-regional and temporal validation exercises based on the subsamples
Danube 2002, Elbe 2006, and Danube 2005. This suggests that the model approach makes a difference in
terms of the predictive precision, in particular, in a spatial and temporal transfer context, but is there a rela-
tion between model predictive capability and model complexity?

To investigate this question, we use the Euclidean Distance (ED) of mbe and mae to the point of optimum
model performance as a multicriteria measure of model predictive precision. ED values for the different
models and data subsamples are listed in Table 5. We relate ED to the number of explanatory variables
included by the different models (cf. Table 1). For each model, we calculate the average ED out of the results
obtained for the subsamples Danube 2002, Danube 2005, and Elbe 2006 which involve a temporal or spatial
transfer. The results are plotted in Figure 5 against the number of explanatory variables. This graph illus-
trates a trade-off between model complexity and predictive performance. However, this relationship is not
monotonic, but interfered by differences in the performance of different model approaches. In this regard,
for instance, the data-based Bayesian networks utilize fewer explanatory variables to predict rloss than the
expert Bayesian networks but still, on average, provide predictions with higher precision. Comparing alter-
natives of different complexity within similar modeling approaches, e.g., the pruned regression tree and the
complete regression tree, the data based or expert Bayesian networks based on a reduced number of
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Figure 5. Average model predictive precision ED (mbe and mae) in cross-regional and
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Figure 6. Average model predictive precision ED (mbe and mae) of deterministic models
in cross-regional and temporal validations against model complexity (number of explana-
tory variables used to predict rloss) within the uncertainty scenarios. Model approaches
are described by different symbols; uncertainty scenarios are represented by different col-
ors: black (no uncertainty), gray (small uncertainty), light gray (large uncertainty).

explanatory variables and the
complete set of variables, we
recognize that the more com-
plex variant performs better in
any case.

However, the results obtained
for the deterministic models are
based on the assumption that
the explanatory variables are
observed without uncertainty.
The implications of potential
observations uncertainty on the
predictive performance are
shown in Figure 6. Essentially,
two effects are apparent. First,
the noise added to the observa-
tions used for model derivation
propagates to the model predic-
tions and impairs the precision
of the models. Unsurprisingly,
the more variables are used to
predict rloss, the larger the
decline of predictive precision,
since with additional variables
additional sources of uncer-
tainty take effect. Accordingly,
RTp and the sdf model achieve
best predictive precision given
uncertain observations. Second,
observation uncertainty influen-
ces the structure of the regres-
sion trees derived from the data
and hence the complexity of the
resulting model. Mostly, RTp
models trained with uncertain
observations include only one
variable defining a single
branch. In contrast, RT models
tend to include more variables
in the tree structure than with-
out considering observation
uncertainty (within the sample
of models, on average six varia-
bles (+4 based on IQR) are
assuming “small uncertainty,”
and seven variables (=5 based
on IQR) are used assuming
“large uncertainty”). In this con-
text, the regression trees
derived within “no uncertainty”
scenario have to be thought of
as a single realization of the
sample of models considered
within the uncertainty scenarios.
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Table 6. Variation and Reliability of Predictive Distributions of Deterministic Models (sdf, flemops+r, RTp, RT) Within Small and Large
Uncertainty Scenarios (su, lu) and Joint Probability Distributions of Bayesian Network (BN) Variants

Model
sdf FLEMOps-+r RTp RT
Subsample Criterion su lu su lu su lu su lu BNe10  BNe28  BNd11 BNd29
Model Derivation
Elbe 2002 id QRyo 0.04 0.16 0.28 0.13 0.30 0.00 0.72 0.41 1.41 1.48 1.47 141
HR 0.05 0.13 0.16 0.57 0.25 0.00 0.50 0.41 0.96 0.94 0.92 0.92
Local Validation
Elbe 2002 pr QRyo 0.01 0.03 037 0.65 0.32 0.00 0.66 0.63 1.39 141 1.38 1.30
HR 0.00 0.02 0.13 0.44 0.26 0.00 0.46 0.42 0.86 0.87 0.86 0.85
Cross-Regional and Temporal Validation
Danube 2002 QRgg 0.01 0.03 0.35 0.44 0.42 0.00 0.70 0.64 1.20 1.41 1.20 1.10
HR 0.00 0.01 0.09 0.15 0.16 0.00 0.37 033 0.73 0.83 0.83 0.83
Danube 2005 QRgo 0.01 0.03 033 0.52 0.40 0.00 0.68 0.60 1.25 1.36 1.27 1.10
HR 0.00 0.01 0.09 0.15 0.16 0.00 0.31 0.28 0.62 0.64 0.69 0.66
Elbe 2006 QRgg 0.01 0.03 0.36 0.36 0.33 0.00 0.68 0.56 1.16 1.39 1.28 1.16
HR 0.00 0.00 0.08 0.08 0.12 0.00 0.28 0.23 0.63 0.67 0.67 0.65

To compare the variation and reliability of the model predictions (using the criteria QRyg and HR), we evalu-
ate the predictive distributions of rloss for the different damage models, whereat we discern, on the one
hand, the predictive distributions obtained for the deterministic models for the small and large uncertainty
scenarios and, on the other hand, the joint probability distributions of rloss from the Bayesian networks.
Table 6 documents QRyo and HR scores for the different subsamples and models. For the deterministic mod-
els, sdf and FLEMOps+r, QRg increases with the degree of uncertainty added to the observations. This rela-
tion is reverse for the RTp and RT models. For RTp this is due to the difficulty to derive meaningful tree
structures from increasingly uncertain observations which results in very simple model structures, and in
turn zero variability of model predictions with QRgy = 0 and HR = 0. For the BN model variants QRy, is
clearly larger (by a factor of 2). In this regard, we recall that the joint probability distribution inferred by BN
reflects both the probabilistic dependence of the variables and the observation uncertainty associated with
the variables. Overall, the variability of model predictions increases with model complexity since with addi-
tional variables additional sources of uncertainty take effect. Hence, more complex models tend to provide
more variable predictions.

For the prediction interval to be of use it should be reliable. The HR criterion quantifies the proportion of the
observations that fall within the prediction interval. The HR scores are listed in Table 6. Obviously, HR
increases with QRgo. Among the deterministic models RT provides the most reliable predictions. Further, the
HR scores provide evidence to which extent the uncertainty associated with the damage estimation is repre-
sented by the model. According to this interpretation, the closer HR is to the nominal coverage (0.9 for the
95-5 quantile range), the better the representation of the uncertainty. In this regard, the Bayesian networks
apparently embrace the prediction uncertainty more completely than the deterministic models. This is com-
prehensible since for the derivation of the deterministic models the uncertainty in the observations has been
considered, but the uncertainty concerning the probabilistic dependence of variables is not accounted for.

Figure 7 relates the average HR achieved by the different models in cross-regional and temporal validations to
the number of explanatory variables. This graph illustrates that the reliability of model predictions seems to
depend more on the model approach and the underlying concept to handle predictive uncertainty than on
model complexity. In this regard, the largest values for HR are achieved by BNd11 using three explanatory vari-
ables to predict rloss. Overall, the reliability of BN-based predictions in space-time transfer is larger than for the
remaining models, and the uncertainties associated with damage predictions are reflected more completely.
For these models the average HR is quite close to the nominal coverage of 0.9 for the 95-5 quantile range,
and, hence, the joint probability distribution of rloss describes the predictive uncertainty relatively well.

5. Conclusions

In this paper, we investigated the usefulness of complex flood damage models for the improvement of pre-
dicting relative damage to residential buildings. The results confirm the hypothesis that increasing
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1 — complexity of flood damage
models improves the capability
to predict flood damage. In par-
ticular, this applies to model
transfer applications to different
regions and different flood
events. Using additional explan-
atory variables besides water
depth improves the precision of
predictions assuming that there
is “no uncertainty” in the
04 — observed explanatory variables.
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Figure 7. Average predictive reliability HR in cross-regional and temporal validations ous facets of model complexity,
against model complexity (number of explanatory variables used to predict rloss) for the as, for instance, the representa-
predictive distributions of deterministic models within uncertainty scenarios (su, lu) and
joint probability distribution of Bayesian networks. Model approaches are described by
different symbols; uncertainty scenarios applied to deterministic models are represented explanatory variables and their

by different colors: gray (small uncertainty) and light gray (large uncertainty). functional form implemented

within the different model
approaches. Still, it is shown that the more complex variants of similar model approaches outperform the
simpler alternatives.
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Uncertainty is of high relevance in flood damage modeling as all models show difficulties in completely
explaining the real damage processes given the damage data available. The analysis of different uncertainty
scenarios has shown that observation uncertainty can considerably impair the predictive performance of
the deterministic models and may impede the derivation of appropriate model structures. In relation to
model complexity, on the one hand, the use of additional explanatory variables incorporates additional
knowledge, but, on the other hand, as these observations are uncertain, it also introduces additional uncer-
tainty. In the light of the magnitude of model prediction errors, it is mandatory to quantify the uncertainty
of model predictions. For a realistic estimation of model predictive uncertainty, not only observation uncer-
tainty but also other uncertainty sources, e.g., model structure uncertainty, have to be taken into account.
In this regard, probabilistic model approaches, as, for instance, Bayesian networks, provide a consistent
framework to comprehensively consider uncertainty. The results obtained for the hit-rate in relation to the
nominal coverage show that the joint probability distribution of damage estimates provided by Bayesian
networks represents the prediction uncertainty very well given the damage data available.

Overall, for the improvement of flood damage predictions more complex models including more details
about the damaging process are useful. However, the application of these models requires a sufficient
amount of data and a detailed and structured acquisition of explanatory variables preferably gathered
within the study region and hence representing local characteristics. Despite this, the variability of damage
records and related explanatory variables will remain considerable; thus, the uncertainty of flood damage
predictions must be analyzed, quantified, and communicated.
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