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alignment with the slip direction. When slip is parallel with the corrugation alignment we show that 24 

reducing the out-of-plane stress, from the normal traction acting on the fault when planar to that 25 

resolved on a perpendicular plane, has the same effect as halving the length of the corrugation 26 

waveform in terms of slip reduction for a given amplitude.  27 

1 Introduction 28 

1.1 Fault slip profiles 29 

Discontinuities within rock masses such as faults are commonly simplified as broadly planar 30 

structures, and relative displacement of the fault faces generates deformation in the surrounding 31 

rock. The aim of this paper is to assess the degree to which non-planar fault surfaces influence both 32 

the slip (fault parallel) and opening (fault normal) displacements for faults oriented such that they 33 

slide in the regional stress field. In the geological literature, an early theoretical treatment of 34 

discontinuities in the context of Linear Elastic Fracture Mechanics (LEFM) was outlined by Pollard and 35 

Segall (1987). Their text supplies analytical solutions for shearing and opening of the faces of a line 36 

crack and the resultant stresses and strains induced in the surrounding material. For these solutions, 37 

the medium surrounding the discontinuity is treated as a linear elastic material and the resultant 38 

deformation is static, satisfying a uniform stress drop prescribed at the fracture surface. The resultant 39 

displacement of the faces is such that these are traction free. Despite the many idealisations, the 40 

equations in Pollard and Segall (1987) can be used to gain insight into the slip distribution of faults. A 41 

quantitative understanding of fault slip profiles is of interest because:  42 

• Gradients in slip near the fault tip line are the source of the maximum strains induced by the 43 

fault within the wall rock (see the formulas of Pollard and Segall (1987)). These control the 44 

location of new fractures or ‘damage’, which in turn can influence rock strength and 45 

permeability; 46 
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• Fault slip profiles, combined with fault length scaling relationships, can be used to constrain 47 

fault displacement on structures where data is sparse (e.g. Kim and Sanderson, 2005), e.g. in 48 

the subsurface.  49 

• Slip on non-planar faults may promote local opening (or closing) of fault faces, and such 50 

movements can impact fault zone permeability, e.g. Figure 4 of Ritz et al. (2015). 51 

Numerical models have shown that several parameters can perturb the slip distributions of fault 52 

surfaces away from the simple elliptical profiles described in Pollard and Segall (1987). These are:  53 

• Fault overlap (Crider, 2001; Kattenhorn and Pollard, 2001).  54 

• Fault corrugations (Marshall and Morris, 2012; Ritz and Pollard, 2012; Ritz et al., 2015) 55 

• Fault tip-line shape (Willemse, 1997).  56 

• Non-uniform stresses and friction distributions on the fracture surface (Cowie and Scholz, 57 

1992; Bürgmann et al., 1994). 58 

The focus of this paper is to quantify the effects of non-planar fault surfaces on the slip and opening 59 

distributions of isolated faults in three dimensions (3D).  60 

1.2 Motivation: non-planar faults 61 

In this study, we use the term ‘faults’ for surfaces with shear displacement and the term ‘fractures’ or 62 

‘cracks’ more generally for surfaces with low offset where both opening and/or shear displacement is 63 

observed, these terms are common in LEFM literature. We focus on metre-scale faults to avoid the 64 

additional complexities of gravitational stress gradients, inhomogeneous material interfaces, and 65 

damage (Ritz et al., 2015). Several mechanisms cause the faces of fractures in rock masses to deviate 66 

from planar, these can occur both during initial fracture growth, and later, as slip accumulates on the 67 

fault surface. Examples of such mechanisms are:  68 

1. Mixed mode fracture propagation during fracture growth, which introduces relatively 69 

cohesionless curved or stepped surfaces into the rock as the fracture tip deviates from a 70 
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planar path as it grows, this has been shown experimentally (e.g. Thomas and Pollard, 1993; 71 

Cooke and Pollard, 1996; Dyskin et al., 2003) and several numerical criteria exist to evaluate 72 

this phenomenon (e.g. Erdogan and Sih, 1963; Lazarus et al., 2008; Baydoun and Fries, 2012);  73 

2. Fracture growth by linkage of discontinuities, pores, or inclusions (e.g. Olson and Pollard, 74 

1989; Janeiro and Einstein, 2010; Huang et al., 2015; Davis et al., 2017);  75 

3. Roughening of fault walls during shearing (e.g. Renard et al., 2012, Brodsky et al., 2016).  76 

For all these mechanisms parts of the fracture surface will evolve geometrically as it shears. Relative 77 

to the final direction of shearing mechanisms 1) and 2) should introduce complex steps in the fracture 78 

that have a spread of orientations relative to the direction of shearing, dependent on the boundary 79 

conditions driving growth and on the distribution of initial cracks. Assuming the rock is under 80 

compression and that the fracture grows by linkage of wing cracks the final fracture will be stepped 81 

with steps that are perpendicular to the final direction of shearing (e.g. Yang et., al 2008). For 3) 82 

asperities will be aligned parallel with the shear direction. Note the far field stresses driving shearing 83 

of the fractures faces can change over time, relative to the alignment of asperities.  84 

It is therefore reasonable to question how deviations from a planar surface affect the evolving fault 85 

slip profile as a fault shears and slips. In this study, we idealise fault surface roughness as a smoothly 86 

and continuously corrugated sinusoidal waveform. Although this is an oversimplification of the 87 

roughness of mm-metre scale fault surfaces, it is a useful end member situation for the evaluation of 88 

the effects of roughness (and its orientation), on the resultant slip distributions of faults.  89 

1.3 Previous numerical work 90 

The 2D numerical study of Ritz and Pollard (2012) explored how non-planarity affects the resultant 91 

slip profiles of fracture surfaces, where non-planarity is modelled as sinusoidal waveforms or 92 

‘corrugations’. As the study of Ritz and Pollard (2012) is 2D, fracture walls shear perpendicular to the 93 

asperities on the fracture faces. The boundary conditions are set such that the two principal stresses 94 

driving shearing are both compressive, and the ratio between these is calculated empirically, based 95 
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on the observations of shearing pre-cut fractures from Byerlee (1978). Ritz and Pollard (2012) showed 96 

that as the asperity wavelength decreases, or its amplitude increases, mean slip is reduced. The slip 97 

distribution deviates significantly from that of a planar fault.  98 

Greater complexity of asperity geometry was introduced in the study of Dieterich and Smith (2009) 99 

where fault plane topography was modelled as random fractal roughness. This study also models slip 100 

on 2D frictional surfaces and the faults satisfy a uniform shear stress drop aligned with the tips of the 101 

fault line. The positive shear stress boundary condition used is equivalent to the stress in a body 102 

induced by perpendicular inclined tensional and compressional stress of equal magnitude. This 103 

boundary condition puts planes of certain orientations into net tension and is unrealistic for a fault 104 

under confining crustal conditions. 105 

The 3D numerical analysis of Marshall and Morris (2012) examined the net slip for 3D ‘frictionless 106 

faults’ driven by a uniaxial compressive stress, typically 45° to the fault surface. Constraints were 107 

imposed such that the fault faces do not interpenetrate but frictional resistance itself was not 108 

considered. The study states that total scalar seismic moment release is not significantly different 109 

between rough and planar faults, but this contrasts strongly with the findings of the 2D study of Ritz 110 

and Pollard (2012), which has more physically realistic boundary conditions and includes friction.  111 

Therefore, we surmise that an analysis in 2D alone cannot provide insights into the mechanics of slip 112 

along the corrugation direction. The aim of the current study is to extend the comprehensive 2D 113 

analysis of Ritz and Pollard (2012) into 3D. We question how the corrugation orientation in relation to 114 

the far field stresses affects slip distributions (including openings) of the fault surfaces. Referring to 115 

‘in-plane’ stresses in our 3D model as those in the plane containing both the faults normal and shear 116 

vector direction, we also quantify the effect the ‘out-of-plane’ stress has on 3D slip distributions. 117 

Using similar boundary conditions to Ritz and Pollard (2012), we also quantify the differences 118 

between 2D and 3D analyses of such phenomena when corrugations in 3D are also perpendicular to 119 

the slip direction.  120 
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2 Background 121 

2.1 Theoretical background and terminology 122 

Figure 1 here 123 

As in the study of Pollard and Segall (1987) this study focuses on faults confined within a linear 124 

isotropic elastic medium. The material can therefore be described by two elastic constants; here we 125 

use Poisson’s ratio (ν) and the shear modulus (G). For planar 2D and 3D faults loaded by a constant 126 

shear traction as shown in Figure 1, these constants are related to slip in the following manner 127 

(Pollard and Segall, 1987; Eshelby, 1963): 128 

2D line crack:                    At 𝐿 < 𝑎,        𝐷𝑠 =
(1−𝑣)𝑡𝑠

𝐺
√𝑎2 − 𝐿2 (1) 

3D penny-shaped crack:  At 𝐿 < 𝑎,        𝐷𝑠 =
4(1−𝑣)𝑎𝑡𝑠

π(2−𝑣)𝐺
√1 −

𝐿2

𝑎2 
(2) 

Eqs. (1) & (2) supply the displacements (𝐷𝑠) of the planar cases of a 2D line crack and 3D penny-129 

shaped crack walls loaded by a constant shear traction 𝑡𝑠. Note this is the displacement of one wall of 130 

the crack away from its starting position. The result of these equations is that the faces are free of the 131 

shear traction imposed due to the resultant slip, note that we ignore tilting of the crack in this study. 132 

Here, a is the radius or half-length of the crack and L is the length from the crack centre to an 133 

observation point on the crack wall. We use traction in these equations instead of a remote stress 134 

driving slip on the crack for two reasons: 1) this removes the dependence on local coordinate systems 135 

and relative fracture orientation, and 2) we can directly input friction into these equations without 136 

the need for coordinate system transformations. For these equations, both in 2D and 3D, lower values 137 

of ν and G cause greater slip of the crack walls. Note that the equations for the opening of a line crack 138 

are found by simply replacing 𝑡𝑠 by 𝑡n in Eq. (1). For a penny-shaped crack under a tensile stress the 139 

opening displacement and its corresponding stress intensity are found using the line crack equations 140 

for this boundary condition and multiplying these by 2/𝜋. 141 
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Integrating Eq. (1) and applying shell integration to the radially symmetric curve from Eq. (2) between 142 

the interval 0 to a we can find the total ‘area’ (𝐴) or ‘volume’ (𝑉) of slip of one of the cracks walls. The 143 

results are: 144 

2D line crack:                        𝐴 =
𝜋(1−𝑣)𝑡𝑠𝑎

2

2𝐺
 (3) 

3D penny-shaped crack:      𝑉 =
8(1−𝑣)𝑡𝑠𝑎

3

3(2−𝑣)𝐺
 (4) 

Contextually, Eq. (3) is the area under the curve of static slip distributions typically shown for a 2D 145 

fracture, e.g. Ritz et al. (2015). These terms can also be converted to seismic moment using Eq. (5): 146 

 𝑀0 = 𝑉 ∗ 𝐺 (5) 

Faults buried in the subsurface will be subject to a non-zero confining stress, depending on depth. A 147 

proportion of this force resolves as a compressive force directed along the surfaces normal; resolving 148 

the force as a traction we adopt the notation 𝑡n. The normal and shear tractions on the surface can be 149 

combined with friction to find the resolved shear traction driving slip on the fault surface (Pollard and 150 

Fletcher, 2005):  151 

|𝑡𝑠_𝑟𝑒𝑠| = |𝑡𝑠| + 𝜇𝑡𝑛 − 𝑆𝑓 (6) 

The result of Eq. (6) can be put into Eqs. (1) – (4) to find the slip profile of a fault under crustal stress 152 

conditions. Eq. (6) describes the resultant shear traction 𝑡𝑠_res on a plane under compression after the 153 

frictional properties, the coefficient of friction (μ) and cohesion (Sf), have been considered. The bars 154 

surrounding t𝑠 represent the use of absolute values. We adopt a convention where a negative value in 155 

𝑡n represents a compressive force. Note that Eq. (6) ignores the sign and therefore the relative 156 

direction of the input t𝑠.   157 

2.2 Motivation 158 

Visual examples of fault roughness show it is ubiquitous but varied e.g. (Cann et al., 1997; Sagy & 159 

Brodsky, 2007; Jones et al., 2009; Griffith et al., 2010; Ritz et al., 2015). Many previous studies of 160 

rough fault surfaces have focussed on the scaling of roughness (Resor and Meer, 2009; Candela et al., 161 
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2011). Other studies look at how such corrugations deflect slip, at both kilometre fault scales (Roberts 162 

and Ganas, 2000) and locally on the fault surface (Kirkpatrick and Brodksy, 2014). Recent 163 

experimental studies have attempted to model how friction changes with the contact area and 164 

development of asperities and shear surfaces (e.g., Harbord et al., 2017). The aim of such studies is to 165 

look at how roughness and pressure change the contact area of the asperities and hence the friction. 166 

Fracture geometry and roughness also influences fracture stiffness and has been shown 167 

experimentally to control nucleation points of slip surface displacement (Choi et al., 2014; Hedayat et 168 

al., 2014). 169 

Although much of the previous work on rough faults has centred on the roughness itself and the 170 

scaling, there has been less work on the mechanics of rough faults, especially in 3D. In this study, a 171 

single-scale ‘roughness’ wavelength is used in each model. This neglects roughness below a certain 172 

scale, assuming that small-scale asperities and their contact mechanics can be reduced to the 173 

mechanical problem of a planar surface with a uniform coefficient of friction, which is the underlying 174 

assumption of Coulomb’s friction law (Persson, 2006). This study therefore focuses on how the larger 175 

scale geometrical asperities of a surface, in relation to both the remote stresses and the shearing over 176 

these irregularities, inhibits or promotes the sliding of faults.  177 

3 Displacement discontinuity method with friction 178 

In this section, we detail the numerical method used to model sliding surfaces with frictional 179 

properties. A frictional adaptation of the displacement discontinuity boundary element method 180 

(DDM) is employed. Such adaptations in 3D have been described in previous works (Kaven et al., 181 

2012). For the sake of clarity in notation and in defining a clear convention we describe the matrix 182 

system here. 183 
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3.1 3D DDM formulation: equations, elements and convention 184 

The whole space triangular element formulations of Nikkhoo and Walter (2015) are used as the basic 185 

displacement discontinuities in our method. The elements in this publication describe the stress 186 

perturbations and displacements in an isotropic linear elastic medium caused by the face of a planar 187 

triangle displacing with a constant mirrored movement. In the method, boundaries are meshed as 3D 188 

triangulated surfaces, where each face of the mesh acts as a triangular dislocation. Coefficient 189 

matrices [A] are built and a vector is supplied that describes the remote stresses resolved as a traction 190 

[t∞] at each face of the boundary. The displacement discontinuity method in 3D is then solved as: 191 

𝐷 = −A−1𝑡∞ (7) 

Expanding Eq. (7) for the 3D DDM method the matrix system is as follows:  192 

[

𝐷𝑛
𝑖

𝐷𝑠𝑠
𝑖

𝐷𝑑𝑠
𝑖

]  = −

[
 
 
 
 𝐴𝐷𝑛𝑡𝑛

𝑖𝑗
𝐴𝐷𝑠𝑠𝑡𝑛

𝑖𝑗
𝐴𝐷𝑑𝑠𝑡𝑛

𝑖𝑗

𝐴𝐷𝑛𝑡𝑠𝑠

𝑖𝑗
𝐴𝐷𝑠𝑠𝑡𝑠𝑠

𝑖𝑗
𝐴𝐷𝑑𝑠𝑡𝑠𝑠

𝑖𝑗

𝐴𝐷𝑛𝑡𝑑𝑠

𝑖𝑗
𝐴𝐷𝑠𝑠𝑡𝑑𝑠

𝑖𝑗
𝐴𝐷𝑑𝑠𝑡𝑑𝑠

𝑖𝑗
]
 
 
 
 
−1

[

𝑡𝑛
𝑖

𝑡𝑠𝑠
𝑖

𝑡𝑑𝑠
𝑖

] 

(8) 

In this system, 𝐷 is a vector containing the movement of each triangles face (i.e. a displacement 193 

discontinuity), where subscripts 𝑛, 𝑑𝑠 and 𝑠s represent displacement of the faces in the normal, dip-194 

slip, and strike-slip directions respectively. Vector 𝑡∞ represents the remote stress resolved as a 195 

traction on the mid-points (geometric incenter) of each triangular face. The sign of 𝐴 is flipped as we 196 

have adopted the same sign convention for the displacement of discontinuities and direction of 197 

traction, summarised in Figure 2. 198 

Figure 2 here  199 

For each sub-matrix of square coefficient matrix 𝐴 in Eqs. (7) & (8), the first subscript 𝐷 represents 200 

the displacement of an element with its direction defined by the lower subscripts. The second 201 

subscript 𝑡 represents the traction in the direction of its respective subscript. For example, 𝐴𝐷𝑛𝑡𝑠𝑠

𝑖𝑗
is a 202 

square matrix that describes how much an opening displacement of one unit length at element j 203 
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effects the strike-slip shear traction on element i. Each column in this matrix is the effect of one 204 

element on the mid-point of every other element.  205 

3.2 Aims of the DDM solution  206 

In Eqs. (7) & (8), the aim is to find a static slip distribution that approximates the mid-point of each 207 

face of the boundary as traction free (𝑡𝑛 & 𝑡𝑠𝑠 & 𝑡𝑑𝑠 = 0) under the given remote stress defined in the 208 

vector 𝑡∞ on the right-hand side of the equation. Once 𝐷 is found, 𝐷𝐴 results in traction vector 𝑡B, 209 

which represents the stresses at each mid-point induced by the displacement of the cracks walls. The 210 

result of Eq. (7) is that 𝑡B and 𝑡∞ should oppose each other resulting in a solution where there is no 211 

traction at any triangle mid-point along the meshed boundary (Eq. (9)). 212 

0 = 𝑡𝑛
𝐵 + 𝑡𝑛

∞ 

0 = 𝑡𝑠𝑠
𝐵 + 𝑡𝑠𝑠

∞  

0 = 𝑡𝑑𝑠
𝐵 + 𝑡𝑑𝑠

∞  

(9) 

3.3 DDM formulation with friction 213 

To add frictional constraints to this problem, the system of equations (7) & (8) is reformulated as a 214 

linear complementarity problem (Kaven et al., 2012). We use the open source complementarity solver 215 

of Niebe and Erleben (2015) implemented in MATLAB. For full details on the accuracy and 216 

convergence criterion of the complementarity solver see Niebe and Erleben (2015). For our analysis 217 

we have used the default converge criterion of 10 times the numerical precision and the zero Newton 218 

equation strategy supplied in the code. Following the notation of Niebe and Erleben (2015) the linear 219 

complementarity problem can be stated as: 220 

𝑦 = 𝑎𝑥 + 𝑏 (10) 

In Eq. (10) 𝑥, 𝑦, and 𝑏 are vectors and 𝑎 is a square matrix. For this problem, the following constraints 221 

are set: 222 
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𝑥 ∙ 𝑦 = 0 (11) 

𝑦 ≥ 0 (12) 

𝑥 ≥ 0 (13) 

In this formulation vectors 𝑥 and 𝑦 are unknowns representing tractions and or displacement 223 

discontinuities as the solver progresses. They are created such that each pair of corresponding values 224 

in the vectors contains a traction and displacement discontinuity and that the sign convention in 225 

vector 𝑥 is flipped. Vector 𝑏 is filled with the results from Eq. (8), if all displacements are positive 226 

according to our convention all constraints are already met, 𝐷𝑛 must be positive so the coefficient of 227 

friction does not need to be considered. If any displacements in 𝑏 are negative, then the constraint in 228 

Eq. (12) is not met and 𝑥 will begin to fill with opposing with non-zero values. The expanded form of 229 

Eq. (10) for a 3D DDM problem is:  230 

[
 
 
 
 
 
 
𝐷𝐹𝑛

𝑖+

𝐷𝐹𝑠𝑠
𝑖+

𝐷𝐹𝑑𝑠
𝑖+

𝑡𝑠𝑠
𝑖+

𝑡𝑑𝑠
𝑖+ ]

 
 
 
 
 
 

=

[
 
 
 
 
 
 (𝐶𝐷𝑛𝑡𝑛

𝑖𝑗
− (𝐶𝐷𝑛𝑡𝑠𝑠

𝑖𝑗
∗ 𝐼𝜇𝑖) − (𝐶𝐷𝑛𝑡𝑑𝑠

𝑖𝑗
∗ 𝐼𝜇𝑖)) 𝐶𝐷𝑛𝑡𝑠𝑠

𝑖𝑗
𝐶𝐷𝑛𝑡𝑑𝑠

𝑖𝑗
0 0

(𝐶𝐷𝑠𝑠𝑡𝑛

𝑖𝑗
− (𝐶𝐷𝑠𝑠𝑡𝑠𝑠

𝑖𝑗
∗ 𝐼𝜇𝑖) − (𝐶𝐷𝑠𝑠𝑡𝑑𝑠

𝑖𝑗
∗ 𝐼𝜇𝑖)) 𝐶𝐷𝑠𝑠𝑡𝑠𝑠

𝑖𝑗
𝐶𝐷𝑠𝑠𝑡𝑑𝑠

𝑖𝑗
𝐼 0

(𝐶𝐷𝑑𝑠𝑡𝑛

𝑖𝑗
− (𝐶𝐷𝑑𝑠𝑡𝑠𝑠

𝑖𝑗
∗ 𝐼𝜇𝑖) − (𝐶𝐷𝑑𝑠𝑡𝑑𝑠

𝑖𝑗
∗ 𝐼𝜇𝑖)) 𝐶𝐷𝑑𝑠𝑡𝑠𝑠

𝑖𝑗
𝐶𝐷𝑑𝑠𝑡𝑑𝑠

𝑖𝑗
0 𝐼

2 ∗ 𝐼𝜇𝑖 −𝐼 0 0 0

2 ∗ 𝐼𝜇𝑖 0 −𝐼 0 0]
 
 
 
 
 
 

[
 
 
 
 
 
 

𝑡𝑛
𝑖−

𝑡𝑠𝑠
𝑖−

𝑡𝑑𝑠
𝑖−

𝐷𝐹𝑠𝑠
𝑖−

𝐷𝐹𝑑𝑠
𝑖−]

 
 
 
 
 
 

+

[
 
 
 
 
 
 𝐷𝑛

𝑖+ − (𝐶𝐷𝑛𝑡𝑠𝑠

𝑖𝑗
∗ 𝑆𝑓

𝑖) − (𝐶𝐷𝑛𝑡𝑑𝑠

𝑖𝑗
∗ 𝑆𝑓

𝑖) 

𝐷𝑠𝑠
𝑖+ − (𝐶𝐷𝑠𝑠𝑡𝑠𝑠

𝑖𝑗
∗ 𝑆𝑓

𝑖) − (𝐶𝐷𝑠𝑠𝑡𝑑𝑠

𝑖𝑗
∗ 𝑆𝑓

𝑖)

𝐷𝑑𝑠
𝑖+ − (𝐶𝐷𝑑𝑠𝑡𝑠𝑠

𝑖𝑗
∗ 𝑆𝑓

𝑖) − (𝐶𝐷𝑑𝑠𝑡𝑑𝑠

𝑖𝑗
∗ 𝑆𝑓

𝑖)

2𝑆𝑓
𝑖

2𝑆𝑓
𝑖

]
 
 
 
 
 
 

 

(14) 

Where: 231 
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[
 
 
 
 𝐶𝐷𝑛𝑡𝑛

𝑖𝑗
𝐶𝐷𝑛𝑡𝑠𝑠

𝑖𝑗
𝐶𝐷𝑛𝑡𝑑𝑠

𝑖𝑗

𝐶𝐷𝑠𝑠𝑡𝑛

𝑖𝑗
𝐶𝐷𝑠𝑠𝑡𝑠𝑠

𝑖𝑗
𝐶𝐷𝑠𝑠𝑡𝑑𝑠

𝑖𝑗

𝐶𝐷𝑑𝑠𝑡𝑛

𝑖𝑗
𝐶𝐷𝑑𝑠𝑡𝑠𝑠

𝑖𝑗
𝐶𝐷𝑑𝑠𝑡𝑑𝑠

𝑖𝑗
]
 
 
 
 

= −

[
 
 
 
 𝐴𝐷𝑛𝑡𝑛

𝑖𝑗
𝐴𝐷𝑠𝑠𝑡𝑛

𝑖𝑗
𝐴𝐷𝑑𝑠𝑡𝑛

𝑖𝑗

𝐴𝐷𝑛𝑡𝑠𝑠

𝑖𝑗
𝐴𝐷𝑠𝑠𝑡𝑠𝑠

𝑖𝑗
𝐴𝐷𝑑𝑠𝑡𝑠𝑠

𝑖𝑗

𝐴𝐷𝑛𝑡𝑑𝑠

𝑖𝑗
𝐴𝐷𝑠𝑠𝑡𝑑𝑠

𝑖𝑗
𝐴𝐷𝑑𝑠𝑡𝑑𝑠

𝑖𝑗
]
 
 
 
 
−1

 

(15) 

Eq. (14) describes the 3D complementarity equation system for friction on fault surfaces in the 3D 232 

DDM method. 𝐶 is the matrix inverse of the collated coefficient matrix 𝐴 from Eq. (8); the sub-233 

matrices of 𝐶 are extracted as in Eq. (15). Matrix 𝐶 can be described as follows: the summed influence 234 

of all elements displacing the amount described in each column of matrix 𝐶 will cause a traction of 235 

one stress unit, tB on element (i) in the direction defined by the subscript. The other traction 236 

components at this element and all tractions at every other element will be 0. Sf (the cohesive 237 

strength of the material) and μ (the coefficient of friction) are defined as vectors, with one value for 238 

each element. I is an identity matrix (a square matrix of zeros with ones on the main-diagonal). DF 239 

represents the resultant displacement discontinuities when friction is considered. Values of D in 240 

vector 𝑏 (Eq. (14)) are the results of Eq. (8). Negative superscripts in Eq. (14) (vector 𝑥) are values with 241 

the opposite sign to the convention shown in Figure 2. This means that once solved, positive values in 242 

𝑥 of Eqs. (10) & (14) must be flipped in sign so the boundary displacements cause stresses that satisfy 243 

Eq. (9). The resultant displacement discontinuities at each face are therefore calculated from the 244 

results of Eq. (10) as:  245 

𝐷 = 𝑦 − 𝑥 (16) 

Note, this assumes that the corresponding vectors from 𝑥 and 𝑦 are extracted and aligned before this 246 

is performed.  247 

To stabilise the implementation, matrix conditioning is used. The matrix 𝐴 in Eq. (15) is scaled by a 248 

constant before it is inverted. This constant is the mean value of the half-perimeter length of all the 249 

triangles divided by the shear modulus. In the 2D code for line elements we use a similar scaling, the 250 

mean element half-length divided by the shear modulus, multiplied by 100. The output element 251 

displacements of Eq. (14) are simply multiplied by this scalar value to find the true displacements. 252 
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Without this scaling, the solver may fail to converge if both the coordinates and/or driving stresses 253 

are not scaled around values close to one. Note that the scaling described here assumes that the 254 

elements in the model have similar length scales and shapes.  255 

3.4 Aims of the frictional DDM solution 256 

Eqs. (10) & (14) attempt to reach a solution where all elements are free of 𝑡𝑠_res, which is the shear 257 

traction calculated using Eq. (6), either through shearing or opening of elements. Note that each 258 

element only shears if its frictional constraints allow it. The resultant boundary should also be free of 259 

tensile tractions defined in vector 𝑡∞. This solution explicitly factors in changes in the normal or shear 260 

traction and the associated frictional resistance due to the displacement of elements in the result as 261 

the solver progresses. In the formulation described, the input mesh represents an infinitesimally thin 262 

crack with initially coincident faces. To allow given surfaces to interpenetrate in this formulation an 263 

arbitrarily large value bigger than the amount needed to close the fracture in the stress field can be 264 

added to 𝐷𝑛 for the necessary elements vector 𝑏 in Eq. (10)/(14). This value is then subtracted from 265 

these elements in the outputs of Eq. (16). An example use case is modelling both fractures and 266 

stresses due to topographic loading, such topographic stresses can be modelled with the BEM as 267 

described in Martel and Muller (2000) where elements representing the topography must be able to 268 

both open and close. This manipulation also allows for the modelling of initially open fractures, the 269 

value added to the vector 𝑏 in this case would be the fractures initial opening profile. 270 

Figure 3 here  271 

Figure 3 shows the polygonal frictional approximation as described in Kaven et al. (2012). Figure 3a) 272 

shows a cross section through the 3D friction cone; in 2D this takes a form comparable to the typical 273 

failure envelope of a Mohr-Coulomb plot. Both points P and Q are the same distance in 𝑦 from the 274 

grey cone, therefore have the same resultant traction driving shearing. Figure 3b) shows a) extended 275 

to 3D space. In 3D space, the pyramidal approximation is shown by the dotted lines. In this numerical 276 
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approximation, the elements with shear tractions large enough to plot outside of the ‘pyramid’ will 277 

displace, rather than those that plot inside the cone. Figure 3c) shows an end-on view of the cone 278 

shown in b). The approximation overestimates friction for any part of vector 𝑡𝑠 that passes through 279 

the dark grey area between the pyramidal approximation (square) and the isotropic friction cone 280 

(circle). It is clear that this is highest at faces where t𝑑𝑠 and t𝑠𝑠 are equal. For this situation friction is 281 

overestimated by 41% (Kaven et al., 2012).  282 

4 Benchmarking and model setup 283 

4.1 Boundary conditions and shear profile of the crack  284 

This test of the numerical method uses the same boundary conditions, initial geometry, and sampling 285 

as the remainder of the analysis in this study. 286 

Figure 4 here  287 

Figure 5 here  288 

Figure 4 is a comparison of the numerical result to the slip profile of a penny-shaped crack as 289 

described by Eq. (2). The geometry of the problem is shown in Figure 5. The stress convention used 290 

puts σ1 as the least compressive stress. The boundary conditions have been chosen such that in the 291 

𝑥𝑦-plane these match the empirically defined boundary conditions of Ritz and Pollard (2012).  292 

Here we summarise the motivation behind the chosen boundary conditions in Ritz and Pollard (2012), 293 

Byerlee (1978) finds that the maximum friction of rocks in the upper crust (normal stress of up to 294 

200MPa) occurs when 0.85𝑡𝑛 = 𝑡𝑠. Maximum friction being the point in experiments when the contact 295 

between two separate blocks of material suddenly shears. Using the ratio 0.85 as the coefficient of 296 

friction and placing Eq. 9.45 into Eq. 6.55 of Pollard and Fletcher (2005) as the value of a𝑥 and 297 

rearranging to find the ratio between σ𝑥𝑥 and σ𝑦𝑦 (treating these as principal stresses by ignoring σ𝑥𝑦) 298 

the following equation is found:  299 
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𝜎3

𝜎1
= 2

𝑡𝑠
𝑡𝑛

√(
𝑡𝑠
𝑡𝑛

)
2

+ 1 + 2(
𝑡𝑠
𝑡𝑛

)
2

+ 1 

(17) 

For a ratio of 𝑡𝑛 to 𝑡𝑠 of 0.85 this results in a principal stress ratio of 4.68, Eq. 9.45 of Pollard and 300 

Fletcher (2005) supplies the angle of these principal stresses away from the fracture plane, 24.8°. The 301 

friction coefficient of the fractures face in our model is set to a value less than 0.85, this takes the 302 

fracture surface past failure, allowing it to slip in the defined stress field. We orientate the 3D surface 303 

so that its normal points along the 𝑦-axis, i.e. an extension of a 2D model. Here Θ is set at 24.8° and is 304 

the angle of the normal away from σ3. The results supplied in the rest of the analysis are scaled 305 

relative to these analytical solutions so are dimensionless and can be scaled as necessary. 306 

For the modelling the following parameters were used: the fault radius (a) was set to 1 metre and σ1 307 

and σ3 were set to -50 MPa and -233.8 MPa respectively, adhering to the ratio defined above. When 308 

resolved into Cartesian tensor components with the fault plane oriented as above these are: σ𝑥𝑥 = -309 

201.5 MPa, σ𝑦𝑦 = -82.3 MPa and σ𝑥𝑦 = -70.0 MPa. The shear modulus (G) was set at 12 GPa while the 310 

Poisson’s ratio (ν) was set to 0.25. The frictional properties were as follows: no cohesive strength was 311 

imposed and the dimensionless value of μ was set to 0.6 (Pollard and Fletcher, 2005; Harbord et al., 312 

2017). For these parameters, the maximum slip from Eq. (2) scales with fracture length (2a) in a 313 

1:1,000 relationship. Such a scaling lies at the lower end of shear fractures observed in the field (Kim 314 

and Sanderson, 2005).  315 

The analytical solution from Eq. (2) is plotted on Figure 4 with the boundary conditions stated above 316 

driving slip. The surface is meshed using a grid of points within a circle on the 𝑥𝑧-plane that have a 317 

spacing of 1/65 m. Points on this grid 0.02 m from the circles edge were removed and equilateral 318 

triangles where added to approximate a smooth outer boundary of the crack, see Figure 17. The 319 

overestimation of the crack shear displacement at the tip region of the fracture is 30% ± 5% as shown 320 

in Figure 4. Note that the angular dependency of error is dependent on the mesh used.  321 
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In the subsequent analysis, we plot the relative area (or volume) of slip on the fault surface to indicate 322 

how it is reduced by the fault geometry. This can be calculated numerically with the 2D and 3D DDM 323 

using:  324 

2D      𝐴 =
∑(𝐷𝑠∗2𝑎)

∑(2𝑎)
 (18) 

3D      𝑉 =
∑(𝐷𝑠∗𝑇)

∑𝑇
 (19) 

Where 𝐴 and 𝑉 are the area and volume of slip of the 2D or 3D fracture, respectively. 𝑇 in Eq. (19) is 325 

the area of each triangles face and a is the half-length of the 2D elements. D𝑠 is the shear 326 

displacement calculated at each element. The following equation is used to evaluate the slip decrease 327 

on wavy faults from the reference slip observed for a planar penny-shaped crack: 328 

% 𝐴 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛    = [100 𝐴𝑝⁄ ] ∗ [𝐴𝑝 − 𝐴𝑤] (20) 

% 𝑉 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛    = [100 𝑉𝑝⁄ ] ∗ [𝑉𝑝 − 𝑉𝑤] (21) 

Figure 6 here  329 

where the subscript p is the slip of a planar fault, i.e. Eq. (3) & (4) and the subscript 𝑤 that of a wavy 330 

fault. Figure 6 shows diagrammatically the slip distribution for a planar and a wavy fault. Eq. (21) here 331 

would describe the volume between the planar and wavy surfaces. 332 

A second test of the accuracy of the numerical setup in 3D is to calculate how well Eq. (19) 333 

approximates Eq. (4) when the fault is planar. Using Eq. (21) this results in a value of 1.08%. The error 334 

is deemed acceptable for the current analysis as our results look at levels of slip reduction greater 335 

than 1%. This gives an insight into the numerical accuracy of results shown later, where the sampling 336 

in 3D described above is used. We have also run our 3D analysis for a mesh as described previously 337 

but with half the number of triangles to test how sensitive our results are to sampling. Comparing for 338 

the waveform where the observed change in volume and stress intensity reductions is steepest (𝐻 = 339 

1% of a and λ = 25%) we see a maximum difference of 1.5% for the stress intensity and volume of slip 340 
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reductions reported in our results (Figure 8 to Figure 12). Our mesh sampling is therefore deemed 341 

high enough to provide stable results at the scales of reduction in these properties that we report.  342 

Our last test of accuracy is to use the output slips from Eq. (16) and compute the tractions using Eq. 343 

(8). Converting the boundary conditions to tractions and using Eq. (6) we find the analytical resultant 344 

traction. Comparing the analytical and numerical tractions at every elements midpoint, the highest 345 

error observed is 1E-7% of the analytical value. This is deemed sufficiently accurate in capturing the 346 

boundary condition set. 347 

Corrugations were introduced onto the surface using Eq. (22). The resultant undulations are aligned 348 

along the 𝑧-axis created by moving each triangles corner point by the 𝑦 value of the prescribed 349 

waveform. To orient these corrugations at different angles to the slip sense a rotation of the surface 350 

around the 𝑦-axis was then applied (Figure 5b to c). 351 

𝑦 = 𝐻 sin (
2𝜋𝑥

𝜆
) (22) 

Where 𝐻 is the waveform amplitude and λ the wavelength. Note that we have set an upper limit to 352 

the waveforms used in this analysis such that the inflection points on the waveforms (where 𝑦 = 0) 353 

are never angled more than 45 degrees away from the 𝑥-axis. 354 

4.2 Stress intensity approximation 355 

Stress intensity factors approximate stress distributions and magnitudes at distances very close to a 356 

fracture’s tip. For a 2D fracture (shear or opening) these have been shown to approximate stress 357 

distributions at distances of 10% of the fractures half-length from the tip with less than 15% error 358 

(Pollard and Segall, 1987; Pollard and Fletcher, 2005). The accuracy of this approximation increases 359 

with decreasing distance from the fracture’s tip. In 2D the formula for the stress intensity of a line 360 

crack subjected to shearing is:  361 

2D line:          𝐾II = 𝑡𝑠√𝑎 𝜋⁄  (23) 
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Following Tada et al. (1973) the formulas for the stress intensity factors around a penny-shaped crack 362 

subject to shearing are: 363 

{
𝐾II

𝐾III
} = {

cos 𝜃
sin 𝜃 (1 − 𝑣)

}
4𝑡𝑠√𝑎 𝜋⁄

2 − 𝑣
 

(24) 

Where Θ is measured from the crack centre and defines the angle between the shear direction and a 364 

location on the crack’s tip-line, (Figure 1). The results of the DDM method can be used to approximate 365 

the stress intensity factors at a fracture’s tip (Olson, 1991). We have followed the method of Olson, 366 

(1991) but re-derived the formulas using the equations for a 3D penny-shaped crack (Appendix A). 367 

The 3D formulas are:  368 

{

𝐾I

𝐾II

𝐾III

} = {

𝐷𝑛

𝐷II

𝐷III(1 − 𝑣)
}

√π𝐺

√h(1 − 𝑣)2
𝑐 

(25) 

In these equations, h is the distance from the mid-point (geometric incenter) of the boundary 369 

element to the fracture’s tip (Ritz et al., 2012), 𝐷𝑛 is the normal displacement of this element, 𝐷II is 370 

the displacement perpendicular to the crack edge, and 𝐷III is the displacement parallel with the edge. 371 

The correction factor c is used to correct for the errors due to the numerical approximation. This is set 372 

to 1/1.834. See the appendix for the reasoning.  373 

Figure 7 here  374 

The accuracy of the 3D DDM in matching Eq. (24) is shown in Figure 7. The maximum vertical 375 

separation between the analytical curve and points (residual) shown in Figure 7 is 0.032 for KII and 376 

0.035 for KIII, this is for the surface as described in Section 4.1.  377 

5 Model results 378 

5.1 Effect of corrugation amplitude and wavelength: comparison to 2D results 379 

We now compare the slip reduction differences for 2D and 3D geometries with the same shaped 380 

corrugations. The results of Eqs. (20) & (21) are plotted to compare the slip area or volume reduction 381 
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relative to a planar fault. The fault in 3D is oriented as in Figure 5b. For this configuration, the ‘out-of-382 

plane stress’ σ𝑧𝑧 in 3D makes no difference to the results as this is not resolved as a traction at any 383 

point on the surface. 384 

Figure 8 here  385 

Figure 8 shows a comparison between the results for 2D and 3D wavy faults with several amplitudes 386 

and four different wavelengths. The 2D sampling has been set to 1,000 equally spaced elements on 387 

the fault plane in the 𝑥-axis before the waveform is introduced. Slip reductions relative to a planar 388 

penny-shaped and line cracks are plotted in Figure 8 as a function of the surface waveform, and both 389 

2D and 3D results are shown. This shows the simple trends observed in previous 2D studies where 390 

resultant slip is reduced by corrugations with higher amplitudes and/or shorter wavelengths (Ritz and 391 

Pollard, 2012). 392 

Trends, due to both changes in amplitude (𝐻) and wavelength (λ), in the reduction in slip are similar 393 

for the 2D and 3D results. The largest difference between 2D and 3D reductions in slip due to 394 

corrugations is less than 10%. Some notable differences are that the 2D results have greater 395 

reductions in slip for all modelled wavelengths, except for when the wavelength is larger than the 396 

fault half-length (in this case the opposite is true). As the numerical accuracy of the DDM has been 397 

quantified as accurate to approximately 1%, the difference between the two results is due to the 398 

shape and area of the crack in 3D and the lack of the plane strain boundary condition. From these 399 

results, we suggest that the slip distribution profiles documented by Ritz and Pollard (2012) for 2D 400 

fractures can be extrapolated to 3D penny-shaped fractures when shearing is perpendicular to the 401 

alignment of asperities. 402 

5.2 Effect of corrugation orientation in 3D  403 

In this section, we explore the effects of corrugation orientation in relation to the direction of 404 

shearing, i.e. changing from the geometry shown in Figure 5b to that in Figure 5c. When corrugations 405 
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are oriented as in Figure 5c this means σ𝑧𝑧 is resolved as a normal traction on some parts of the 406 

surface. We start by exploring the changes in slip volume when σ𝑧𝑧 is set to the same magnitude as 407 

the stress component, σ𝑥𝑥; this is t𝑛 acting on the plane if it was perpendicular to its orientation shown 408 

in Figure 5a. Changes in the magnitude of σ𝑧𝑧 are explored later. 409 

Figure 9 is an example that shows the shearing of a faults faces for the geometries in Figure 5b and 410 

Figure 5c. An important observation from this figure is that there is no slip in the 𝑧 direction. The lines 411 

running parallel with the 𝑥-axis are not perturbed. This is different to the findings of Marshall and 412 

Morris (2012) where deviations in slip vector rake are analysed on frictionless faults. For high values 413 

of friction and for these boundary conditions the fault plane only slips in directions parallel to the 414 

greatest resolved shear traction vector.   415 

Figure 9 here  416 

Figure 10 here 417 

Figure 10 has the same axes and plots the same corrugation waveforms as Figure 8 but compares slip 418 

reductions when corrugations are parallel and perpendicular to the slip direction (Figure 5b to c). 419 

Reviewing the trends in this graph shows that: 420 

• The range in slip reduction due to doubling the wavelengths of corrugations (vertical distance 421 

between lines with the same symbol) is almost always greater than the reduction due to 422 

corrugation misalignment for a given corrugation waveform (vertical extent of each shaded 423 

patch).  424 

• Faults with shorter corrugation wavelengths are more sensitive to corrugation angle relative 425 

to slip. These have greater ranges in slip as the corrugation directions change from parallel to 426 

perpendicular in relation to the plane containing the most compressive stress.  427 
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Figure 11 here  428 

Figure 11 explores what the out-of-plane stress (here σ𝑧𝑧) does to the results of Figure 10. Two cases 429 

are shown: a) σ𝑧𝑧 is set equal to σ𝑥𝑥; b) σ𝑧𝑧 is equal to σ𝑦𝑦 (i.e. t𝑛 when planar). The figure shows slip 430 

reductions when corrugations are parallel with the slip direction. For cases when σ𝑧𝑧 is reduced so is 431 

the additional frictional resistance which allows the fault to slip a greater amount. Here it can be seen 432 

that doubling the wavelength of the corrugations (vertical distance between lines with the same 433 

symbol) has close to the same effect in reducing slip as decreasing the out-of-plane stress σ𝑧𝑧 to the 434 

magnitude of the lowest stress driving slip (vertical extent of each shaded patch). 435 

Adjusted coefficients of friction are supplied for planar faults in Figure 11 to give an idea of how this 436 

parameter reduces slip volume in comparison to the reductions due to fault waveform. Note these 437 

values also apply to Figure 8 and Figure 10 also. This gives some idea of the ‘effective’ friction that 438 

would be calculated by fitting a planar fault model to slip data from a wavy fault surface that was 439 

subject to the boundary conditions we have described. 440 

5.3 Stress intensity factors 441 

Reductions in stress intensity between the 2D and 3D results are shown in Figure 12. This figure plots 442 

results relative to the result from Eq. (24). Note that the 3D results plot the maximum stress intensity 443 

on the crack edge. Unlike in Figure 8 the trends between 2D and 3D results are quite disparate, <40% 444 

in places. This is due to the crack tip in 2D being a single point. Figure 9 shows that parts of the fault 445 

surface slip less due to the waveform of the fault surface and its relation to the principal stresses. In 446 

2D if the crack tip is at a location where the slip is reduced then so is the stress intensity. In 3D, the 447 

crack has a tip-line so even if slip along parts of its tip-line are reduced, locations along parts of the 448 

tip-line in ‘releasing bends’ will continue to slip. This results in some edges of the fault maintaining 449 

higher stress intensities. Note that reductions in KIII for the 3D case follow very similar trends to that 450 

of KII. This observation highlights the need for careful consideration of geometry and local departures 451 
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from the general trends when analysing the results of the previous graphs, Figure 8, Figure 10, and 452 

Figure 11.  453 

5.4 Effect of waveform on opening aperture 454 

This part of the study focuses on the ‘lenticular’ openings as described by Ritz et al. (2015). The same 455 

basic boundary conditions and constants are used as before, but with an additional pore pressure 456 

inside the fracture. In this part of the study a 2D plane strain code is used to model slip perpendicular 457 

to the asperity direction. In the 2D study of Ritz and Pollard (2012) a ratio a/λ greater than 11 (when λ 458 

is less than ~9% of a) was required before opening was observed on parts of the fractures face. We 459 

look at openings for faults with longer corrugation wavelengths when there is a pore pressure (𝑃) 460 

acting to reduce the effective normal stress confining the surface. From Eq. (6) we can state that 461 

increases in pore pressure should increase the overall slip on the fracture surface, this should also 462 

promote opening of the surfaces faces: 463 

2D line:  At 𝐿 < 𝑎,        𝐷𝑛 =
2(1−𝑣)𝑃

𝐺
√𝑎2 − 𝐿2 (26) 

We choose to scale the maximum apertures observed on the wavy faults, so they are relative to the 464 

maximum opening observed for a planar line shaped crack dilating due to an internal pressure, (Eq. 465 

(26)). 𝐷n here being the total separation between the faces not just the displacements of one wall of 466 

the crack. Note that the maximum opening here is found by simply setting the term L inside the 467 

square root to zero, i.e. the centre of the crack (Figure 1). This allows us to scale our results to a 468 

problem that uses both the same elastic constants and has the same surface geometry (when planar) 469 

making our results dimensionless. The internal pressure opening the crack is set to half the magnitude 470 

of the normal stress that confines our shear fault when it is planar. In terms of pressure this is a value 471 

𝑃, 41.15 MPa.  472 

Figure 13 here 473 
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Figure 13 shows how openings on the fracture surface change as a function of the waveform of the 474 

fracture. The two axes show the parameters that control the waveform and the coloured squares are 475 

openings as a percentage of Eq. (26). Note that the dashed lines shown are where waveform slopes 476 

are deemed excessive (see Section 4.1). The graph shows that lenticular openings on confined shear 477 

fractures can reach up to 25% of the maximum apertures of an unconfined pressurised crack. 478 

Maximal openings are found for waveforms with ratios of λ/𝐻 of around 15. Such a ratio and the 479 

opening magnitudes will change with friction, pore pressure and driving stresses.  480 

6 Discussion 481 

6.1 Relationships in slip reduction 482 

From the modelling results, the following statements can be made:  483 

1. When slip is perpendicular to the corrugations, results from 2D studies match closely with 3D 484 

results (Figure 8). This suggests that the slip reductions due to the shape of corrugations are 485 

not greatly affected by the tip-line shape of the fracture so plane strain (2D) modelling is 486 

adequate in this case.  487 

2. When slip is parallel to corrugations, reductions due to doubling corrugation wavelength are 488 

greater than the slip reduction due to rotation of the corrugations out of alignment with the 489 

slip direction (Figure 10). This is provided that the out-of-plane stress is high, high being the 490 

value of t𝑛 resolved on the crack face when planar. 491 

3. For slip parallel with corrugations, the maximum reduction in slip when changing the out-of-492 

plane stress from low to high matches the reduction in slip when halving the corrugation 493 

wavelength. Low here being the value of t𝑛 resolved on a planar crack orientated 494 

perpendicular to the crack in our setup (with its normal in the 𝑥𝑦-plane). 495 

These results should give some indication as to which fault shapes will preferentially accrue more slip 496 

in a given slip direction. Such results rely on both an estimation of fault roughness at a larger scale 497 
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and the stresses driving failure. Note the two latter relationships detailed here are dependent on the 498 

coefficient of friction being at 0.6. We have tested if these statements hold true for values of μ 499 

between 0.4 – 0.67. Statements 1 and 3 hold true between these values. Statement 2 is still valid 500 

when μ is higher, i.e. 0.67, but begins to break down for lower values i.e. 0.4. Here results for the 501 

different wavelengths would begin to overlap in Figure 10. 502 

It is worth reviewing the statements earlier that friction is overestimated by 41% on faces where the 503 

two shear traction components (t𝑑𝑠 and t𝑠𝑠) are of equal magnitude. We can therefore state that 504 

trends for the slip parallel with corrugations in Figure 10 and Figure 11 will show greater reductions 505 

due to friction than would be observed if we modelled this using an isotropic friction cone. 506 

6.2 Additional complexity 507 

In 2D the correlation between slip reduction and stress intensity is clear; see Figure 8 and Figure 12. 508 

This breaks down in 3D where high stress intensities remain even when the total volume of slip is 509 

significantly reduced. Similar examples of local departures from the global trend of slip on the fault 510 

surface were presented by Ritz and Pollard (2012); here we have shown an example where 3D 511 

geometry also introduces such a complexity.  512 

Changing the start location and sign of the waveform (phase shift) for faults with longer corrugation 513 

wavelengths changes the slip distributions (Ritz and Pollard 2012). Changing these parameters will 514 

only have substantial effects on slip reductions for corrugations of longer wavelengths, for example 515 

the greatest slip reduction shown for the longest wavelength in Figure 8 increases by up to 10% for a 516 

waveform shifted positively by 90 degrees. The other wavelengths modelled here are broadly 517 

unaffected (less than 5%).  518 

Figure 14 here 519 

An obvious question related to the results shown here is how well does the approximation of a 520 

smoothly undulating roughness compare to slip on surfaces with real fracture surface roughness? To 521 
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give some indication of the limitations of the approximation adopted here, we numerically simulate 522 

slip on two more complex geometries to quantify how slip is reduced on such surfaces. We have 523 

found slip distributions relative to planar faults for 2D and 3D fracture surface geometries observed in 524 

the field. The first is from Ritz et al. (2015) and the second an exposed fracture face on a sandstone 525 

outcrop reconstructed using 3D photogrammetry. The sampling of this face is such that roughness 526 

below a 10th of the half-length is not captured and additional artefacts may have been introduced 527 

during processing. Figure 14 also shows approximations of these two fractures with waveforms. For 528 

the 2D results for the surface shown in Figure 14 we observe a slip reduction of 17% compared to 529 

planar. This compares well to that for the waveform approximation shown, that has an approximate 530 

slip reduction of ~12% (Figure 8). For the 3D fracture surface, the slip reduction is 25%. For the 531 

approximate waveform from Figure 10 the slip reduction is ~5%. Therefore, for the two surfaces 532 

shown here the results suggest that first order approximation will overestimate the volume of slip 533 

compared with a natural fracture shape that has multiple length scales of asperities. Intuitively, this 534 

will be especially apparent when 3D surface roughness is close to isotropic, i.e. lacking alignment of 535 

the asperities. This is seen for small faults (slip<1 m), which in general are characterised by roughness 536 

that is closer to isotropic than larger faults (~10-100 m slip) (Sagy et al., 2007). Power and Dunham 537 

(1997) show that roughness on fracture surfaces of both natural and experimental tensile fractures is 538 

close to isotropic, at scales of 0.001 to 2 cm. To provide a conflicting example, Pollard et al., (2004) 539 

show clear examples of joint surfaces with clear anisotropic roughness perpendicular to the fracture 540 

tip lines, on the scale of cm’s, formed during mixed mode fracture propagation. 541 

In section 1.2 we provide some potential mechanisms that create or cause non-planarity of fractures. 542 

None of these mechanisms create the sinusoidal structures observed on some fault surfaces, that are 543 

typically above the metre scale (Resor and Meer, 2009; Brodsky et al., 2016). Are our results 544 

applicable to such structures? Our model results can be scaled up to a larger scale using the 545 

appropriate values in the analytical solutions provided. This is dependent on the assumption that the 546 
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roughness is not destroyed or modified during slip and that the boundary conditions we have used 547 

are still suitable.  548 

6.3 Fluid flow 549 

We have quantified the opening of apertures when wavy fault surfaces shear at fluid pressures close 550 

to hydrostatic conditions. These open even when confined by remote stresses driving shearing. This is 551 

contrary to the assumption that fluid pressure must exceed the normal stress acting on a fracture 552 

face before openings are observed (e.g. Mildren et al., 2002). Figure 13 uses internal pressure as the 553 

variable controlling opening of the fracture. To use the data presented in this figure the input 554 

pressure must be scaled so there are reasonable values for the remote stresses that drive shearing. 555 

Using the elastic parameters and stresses described previously this suggests that a 10 m-long shear 556 

fracture with the correct waveform could have had 1.25 cm lenticular openings. It is of interest to 557 

know if in a laboratory, an experiment using pre-cut rock samples would also show increases in the 558 

permeability during shear loading, for certain cut shapes. 559 

7 Conclusions 560 

We have quantified the amount that slip is reduced by friction on 3D fault surfaces with variations in 561 

fault topography. We use a first order approximation where topography is modelled as a sinusoidal 562 

waveform, i.e. parallel corrugations. Firstly, when typical friction values are considered the fault plane 563 

only slips in directions parallel to the resolved traction vector, independent of its direction in relation 564 

to the corrugation alignment. Slip reductions due to corrugations are comparable for both 2D line 565 

cracks and 3D penny-shaped cracks when shearing is perpendicular to corrugation alignment. 566 

Differences in slip reductions when the slip is aligned and misaligned with corrugations appear to be 567 

less than the differences in slip reductions when the corrugation wavelength is doubled, when the 568 

out-of-plane stresses are high. When the slip vector is aligned with the corrugations on the fault 569 

surface, halving the corrugation wavelength has almost the same effect at reducing slip volume as 570 
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increasing the out-of-plane stress from close to the lowest stress in the plane of shearing up until it 571 

matches the normal stress acting on the plane. For lenticular openings on fault surfaces we have 572 

quantified which waveforms have the greatest openings: for typical shearing conditions, this is a λ/𝐻 573 

ratio of around 15. Note that opening apertures are observed even when the internal pore fluid 574 

pressure does not exceed the remote stresses clamping the fault surface.  575 
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FIGURES 704 
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 705 

Figure 1. Geometry and boundary conditions of the elastic boundary-value problem of a line and 706 

penny-shaped crack subject to uniform shear or tensile loads. Traction directions are relative to the 707 

fractures normal (n) and Θ is the angle away from the direction of shearing. The crack surfaces have 708 

been artificially separated (grey area) in order to see its faces and the respective tractions acting on 709 

these.  710 

 711 

Figure 2. Positive displacement and traction component convention adopted for the 3D DDM 712 

formulation. Traction and discontinuity convention match, positive D𝑛 and t𝑛 are opening and tension 713 
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respectively. In the 𝑥𝑦-plane positive 𝐷𝑠𝑠 and 𝑡𝑠𝑠 are left lateral, i.e. along the direction counter-714 

clockwise from the element normal (n). For 𝐷𝑑𝑠 and 𝑡𝑑𝑠 positive directions are those where the angle 715 

between the normal and the shear direction in question (φ) contains the 𝑧-axis. For flat triangles the 716 

convention of Nikkhoo and Walter (2015) is used, for normal vectors facing upwards, 𝐷𝑠𝑠 and 𝐷𝑑𝑠 are 717 

positive when shearing south and west, whereas when the normal vector points downward, positive 718 

directions face north and west. 719 

 720 
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Figure 3. A summary of the 3D friction cone used in the numerical calculation. Figure adapted from 721 

Kaven et al. (2012) & Niebe (2009). 722 
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723 
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 724 

Figure 4. Benchmarking of the numerical results against analytical solutions. 𝐷𝑠 represents the slip of 725 

the penny-shaped crack normalised to the maximum slip value from Eq. (2). The sampling used is 726 

described in the text. c) shows the crack tip elements overestimation of the analytical slip profile in 727 

percent vs Θ.  728 
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 729 

Figure 5. a) Boundary conditions used in the numerical analysis that lie in the 𝑥𝑦-plane. λ is the 730 

wavelength and the amplitude is 𝐻. b) Slip direction (white arrow) perpendicular corrugations. c) Slip 731 

direction parallel with corrugations. Note that the dashed boundaries are included to highlight the 732 

principal stress directions, the fracture surfaces modelled lie within an infinite elastic medium.   733 

 734 
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Figure 6. Cross section through 3D slip distributions for a planar and wavy fault. Here a=1 and the 𝑥𝑧 735 

axes of the graph are the location on the cracks walls. The wavy fault has an 𝐻 and λ that are 2% and 736 

37.5% of a respectively. Driven by the boundary conditions described in Section 4. 𝐷𝑠 here is slip 737 

normalised to a planar faults maximum slip value from Eq. (2). 738 

 739 

Figure 7. Stress intensity factor approximation using the 3D DDM method. Analytical curves shown 740 

are for a penny-shaped crack subject to shear stress; Eq. (24). All results are normalised the maximum 741 

analytical value of KII. The numerical approximation is shown as dots. The sampling used, and 742 

boundary conditions on the fracture are those described in Section 4.1. The signs here follow the 743 

shear direction convention shown in Figure 9.30 of Pollard and Fletcher (2005). The positive direction 744 

of the crack 𝑦-axis in Figure 5b corresponds to the 𝑦-axis in the local coordinate system of their figure. 745 
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 746 

Figure 8. Comparison between numerical results for 2D (𝐴) and 3D (𝑉) slip reduction due to changes 747 

in a wavy fault surfaces amplitude and wavelength. Squares are the resultant 2D slip area and 748 

diamonds are the 3D slip volume. Results on the 𝑦- axis are relative to Eqs. (3) & (4). Different colours 749 

on the graph correspond to different wavelengths relative to half-length a. On the right of the figure 750 

we show our mesh captures the most extreme waveform we show this looking down the corrugations 751 

for a waveform where 𝐻 and λ are 3.5% and 25% of a respectively. The slight deviations at the wave 752 

crests are caused by the added equilateral edge triangles.  753 



41 
 

 754 

Figure 9.  Deformation pattern of the fracture walls when slip is perpendicular (top) and parallel 755 

(bottom) to corrugations. The dotted line represents the fractures boundary. The light uniformly 756 

gridded squares in the background represent one of the fracture walls before deformation. The 757 

deformed grid is the resultant displacement once this wall shears. The topography of the surface is 758 

shown as the 2D lines at the side; this waveform corresponds to an 𝐻 and λ that are 4% and 75% of a 759 

respectively. Boundary conditions are those as stated in Section 4.1 but the displacement is 760 

exaggerated by 300 times. 𝑥𝑧 axes correspond to those shown in Figure 5b) and c). σ𝑧𝑧 here has been 761 

set equal to σ𝑥𝑥. 762 
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 763 

Figure 10. 3D slip 𝑉 reduction due to changes in a wavy fault surfaces amplitude and wavelength. 764 

Diamonds are when slip is perpendicular with corrugations and squares parallel. Note perpendicular 765 

results match those in Figure 8. Results on the 𝑦- axis are relative to a planar fault described by Eq. 766 

(4). Different colours on the graph correspond to different wavelengths relative to half-length a. 767 
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 768 

Figure 11. 3D slip 𝑉 reduction due to changes in a wavy fault surfaces amplitude and wavelength. 769 

Diamonds are when the stress out of the plane of shearing is low (equal to σ𝑦𝑦) and squares when this 770 

is high (equal to σ𝑥𝑥). Results on the 𝑦- axis are relative to a planar fault described by Eq. (4). Different 771 

colours on the graph correspond to different wavelengths relative to half-length a. Values of μ shown 772 

on the right of 𝑦-axis are adjusted coefficients of friction for planar faults, these will reduce the slip 773 

volume by the amount shown on the left 𝑦-axis (relative to the volume when μ is 0.6). 774 
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 775 

Figure 12. Stress intensity factor reductions due to corrugations, comparison between 2D and 3D 776 

results. Results on the 𝑦- axis are relative to a planar fault described by Eq.(24). Different colours on 777 

the graph correspond to different wavelengths relative to half-length a. 778 
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 779 

Figure 13. Waveform and associated lenticular opening apertures on the fault surface. Results scaled 780 

relative to Eq. (26).  781 
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 782 

Figure 14. a) 2D fracture profile from Ritz et al. (2015), Figure 8, fracture is approximately 3m long. b) 783 

2D approximation with waveform: λ = a, 𝐻 = 2.5% of a. c) 3D fracture surface from photogrammetry 784 

on a sandstone block (self-defined edges), the exposed fracture surface was 2m wide, looking into the 785 

𝑥-axis (slip direction). The height of the surface in the 𝑦-axis varies by 14cm. d) Approximation of c) 786 

with the waveform: λ = 200% of a, 𝐻 = 5% of a. e) 3D fracture surface front coloured for height/depth 787 

away from 0. f) 3D fracture surface front approximation of d) with the same colour scale as e).  788 
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 789 

Figure 15. Comparison between crack wall displacements for a penny-shaped crack and an 790 

approximation of displacements close to the tip for a fracture a 10th of the length. 791 
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 792 

Figure 16. The resulting stress intensity error for multiple meshes, compared to analytical solutions 793 

for an inclined penny shaped crack subject to tension. ν was set to 0.25 for all runs. The maximum and 794 

minimum errors are shown as solid horizontal lines, mean as shapes. Shades highlight the mode. The 795 

mean error shown in the 𝑦-axis is the sum of residuals 𝑟 divided by the number of edge triangles 𝑛 796 

divided by the maximum value of the stress intensity in question for this geometry. The 𝑥-axis shows 797 

the mean mesh quality, defined as two times the radius of the triangles inscribed circle to the radius 798 

of its circumscribed circle. A value of one is a mesh where all triangles are equilateral, some examples 799 

triangles are shown below their respective values. Mesh sizes (number of triangles) are shown above 800 

each data point.  801 
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 802 

Figure 17. The lowest and highest density meshes used in Figure 16. The text describes the number of 803 

triangles. The mesh used in the bottom left is the mesh used in this study as described in Section 4.1.  804 

11 Appendix A 805 

The aim of this section is to detail how we derive the equations for the stress intensity approximation 806 

using the 3D displacement discontinuity method. This allows us to provide reasons for the error in the 807 

equation and propose a value to correct for this. We then go on to detail the errors for different 808 

meshes types and refinements.  809 

It is of note to add that other formulations exist for approximating stresses at a cracks tips using the 810 

BEM DDM method, these are either directly calculating stress distributions around the tip or using 811 
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more complex discontinuities on the crack edge (Meng et al., 2013; Li et al., 2001).  The method of 812 

Meng et al. (2013) lacks propagation criterion that are related to measurable fracture strengths of 813 

materials but could be adapted for this, the method of Li et al. (2001) directly calculates KI but has 814 

does not detail how to work with shear fractures. Sheibani and Olson (2013) describe a similar 815 

method to described here for rectangular dislocation elements in 3D, we go into greater detail, 816 

deriving the formulas in 3D to show these are the same as 2D, this derivation allows us to correctly 817 

identify the sources of error and appropriately adjust for these. We then quantify the accuracy of our 818 

approximation. 819 

Tada et al., (1973) supply stress intensity factors for 3D penny-shaped cracks loaded by remote 820 

stresses: 821 

𝐾I = 2𝑡𝑛√𝑎 𝜋⁄   (27) 

{
𝐾II

𝐾III
} = {

cos 𝜃
sin 𝜃 (1 − 𝑣)

}
4𝑡𝑠√𝑎 𝜋⁄

2 − 𝑣
 

(28) 

And Eshelby (1963) gives the separation distance between the walls of the crack (penny): 822 

𝐷𝑛 =
4a(1 − 𝑣)𝑡𝑛

π𝐺
√1 −

𝐿2

𝑎2
 

(29) 

𝐷𝑠 =
8(1 − 𝑣)𝑎𝑡𝑠
π(2 − 𝑣)𝐺

√1 −
𝐿2

𝑎2
 

(30) 

Rearranging these to give this in terms of traction: 823 

𝐷𝑛

1

√1 −
𝐿2

𝑎2

∗
π𝐺

4a(1 − 𝑣)
= 𝑡𝑛 

(31) 

𝐷𝑠

1

√1 −
𝐿2

𝑎2

∗
π(2 − 𝑣)𝐺

8(1 − 𝑣)𝑎
= 𝑡𝑠 

(32) 

Combining Eq. (27)(28) with (31)(32), note 𝐷III the displacement vector parallel to the crack edge and 824 

𝐷II is perpendicular to this, in the plane of the crack. This removes the dependence on Θ in Eq. (28).  825 
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𝐾I = 𝐷𝑛

1

√1 −
𝐿2

𝑎2

∗
2√𝑎 𝜋⁄ π𝐺

4a(1 − 𝑣)
 

(33) 

{
𝐾II

𝐾III
} = {

𝐷II

𝐷III(1 − 𝑣)
}

1

√1 −
𝐿2

𝑎2

∗
4√𝑎 𝜋⁄ π(2 − 𝑣)𝐺

(2 − 𝑣)8(1 − 𝑣)𝑎
 

(34) 

As the crack tip is approached the reciprocal term goes to zero. Assuming sufficient sampling of the 826 

crack so the edge elements are close to the tip we therefore drop this term.  827 

𝐾I = 𝐷𝑛

2√𝑎 𝜋⁄ π𝐺

4a(1 − 𝑣)
 

(35) 

{
𝐾II

𝐾III
} = {

𝐷II

𝐷III(1 − 𝑣)
}
4√𝑎 𝜋⁄ π(2 − 𝑣)𝐺

(2 − 𝑣)8(1 − 𝑣)𝑎
 

(36) 

After some rearrangement: 828 

{

𝐾I

𝐾II

𝐾III

} = {

𝐷𝑛

𝐷II

𝐷III(1 − 𝑣)
}

√a√π𝐺

𝑎(1 − 𝑣)2
 

(37) 

As sqrt(x)/x=1/sqrt(x) then: 829 

{

𝐾I

𝐾II

𝐾III

} = {

𝐷𝑛

𝐷II

𝐷III(1 − 𝑣)
}

√π𝐺

√𝑎(1 − 𝑣)2
 

(38) 

The BEM DDM method supplies displacements on the crack wall. If h is substituted for a in Eq.(38) we 830 

simulate a smaller crack with the same opening as the crack tip element close to the fractures tip. 831 

Such a crack will have a similar opening profile very close to the tip, i.e. Figure 15 and therefore a 832 

similar stress intensity. This approximation means the terms that specify the crack size in the 833 

equations is dropped. Constant c is also added which can be used to correct for the mismatch 834 

between the approximation and the analytical solution.  835 

{

𝐾I

𝐾II

𝐾III

} = {

𝐷𝑛

𝐷II

𝐷III(1 − 𝑣)
}

√π𝐺

√h(1 − 𝑣)2
𝑐 

(39) 

 836 
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Figure 15 here 837 

The correction factor c therefore adjusts for error in the approximation detailed above, the fact we 838 

drop the reciprocal term when deriving the equations, and that due to the overestimation of crack 839 

wall displacements from the BEM-DDM method. Figure 4 shows that the error due to the 840 

overestimation of crack wall displacements is ~30% +-5%, this error is similar for opening 841 

displacements. This overestimation is close to being independent of mesh refinement which can be 842 

seen when we compute the accuracy of the approximation. Using analytical formulas, we compute 843 

one source of error. Comparing stress intensities for cracks under the same boundary conditions 844 

between a crack where a=1 using Eqs. (27) & (28) to the results of Eq. (39) using a displacement of a 845 

crack where a is a 1000th of the width with its max displacement defined by the crack wall 846 

displacement of the larger crack (Eqs. (29) & (30)). The overestimation of the approximation of Eq. 847 

(39) is 41.4%. Combining the two errors the total error of the numerical method is 183.4%. The 848 

correction factor is therefore simply 1/1.834.  849 

Figure 16 here 850 

Figure 17 here 851 

Figure 16 shows the error due to the stress intensity approximation described, this is compared to the 852 

analytical formula for an inclined crack subject to tension described in Tada et al., (1973). We have 853 

tested different crack geometries: with normals between 5 and 85 degrees away from 𝑧, and the 854 

errors for each angle are coincident provided the mesh is the same. The figure shows the results of 855 

different meshes, triangulated uniform grids (with an edge of equilateral triangles added) like used in 856 

this study and unstructured meshes from the code DistMesh (Persson and Strang, 2004). Note that 857 

for both cases we have set a constraint that all the edge triangles are isosceles, see Figure 17 for 858 

examples. The results show the error is relatively stable, with the mean values (shapes) below 4% of 859 

the maximum analytical value of each stress intensity. Structured meshes appear to have slightly 860 
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higher errors, even though for these meshes we have put equilateral triangles around the crack edge. 861 

The scatter in the crack tip error as shown in Figure 4 must therefore be larger for such meshes. For 862 

the unstructured meshes the number of triangles (numbers above each data point) increases mean 863 

mesh quality, there is a trend for KII and KIII where mesh density increases the mean accuracy, but 864 

the error is only halved as the mesh size is squared. It must be noted that ν changes the scatter of the 865 

crack tip element slip distribution error in shown in Figure 4. This only affects the slip profile 866 

estimation of the DDM, for opening this scatter is constant, around 3% for the mesh used in our 867 

analysis. For a ν of 0.01 the shear component scatter drops from around 5% to 2% and when 868 

increased to 0.49 it is close to 10%. These errors are for the mesh we have used in the rest of the 869 

analysis. This change in the scatter with ν in turn affects the error of the stress intensity 870 

approximation of KII and KIII.  871 

In this section we have detailed a method to approximate stress intensities at a fractures tip in 3D 872 

where the fracture can have frictional constraints. The method to calculate stress intensities is simple 873 

to implement in BEM DDM formulations or in other methods provided the crack opening/slip profile 874 

can be estimated. After correcting for the error of the approximation we have described the error in 875 

the stress intensities from using this method. This is caused by scatter in the methods estimation of 876 

crack tip displacements. Methods to improve the consistency of the crack opening/slip profile near to 877 

the tips have potential to reduce this error. 878 

12 Appendix B 879 

MATLAB scripts containing the DDM code used in this research can be found at: 880 

https://github.com/Timmmdavis/CutAndDisplace 881 


